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Scalable Distributed Planning for Multi-Robot, Multi-Target Tracking

Micah Corah and Nathan Michael

Abstract—In multi-robot multi-target tracking, robots co-
ordinate to monitor groups of targets moving about an
environment. We approach planning for such scenarios by
formulating a receding-horizon, multi-robot sensing problem
with a mutual information objective. Such problems are NP-
Hard in general. Yet, our objective is submodular which
enables certain greedy planners to guarantee constant-factor
suboptimality. However, these greedy planners require robots
to plan their actions in sequence, one robot at a time, so
planning time is at least proportional to the number of robots.
Solving these problems becomes intractable for large teams,
even for distributed implementations. Our prior work proposed
a distributed planner (RSP) which reduces this number of
sequential steps to a constant, even for large numbers of
robots, by allowing robots to plan in parallel while ignoring
some of each others’ decisions. Although that analysis is not
applicable to target tracking, we prove a similar guarantee,
that RSP planning approaches performance guarantees for fully
sequential planners, by employing a novel bound which takes
advantage of the independence of target motions to quantify
effective redundancy between robots’ observations and actions.
Further, we present analysis that explicitly accounts for features
of practical implementations including approximations to the
objective and anytime planning. Simulation results—available
via open source release—for target tracking with ranging
sensors demonstrate that our planners consistently approach
the performance of sequential planning (in terms of position
uncertainty) given only 2-8 planning steps and for as many as
96 robots with a 24x reduction in the number of sequential steps
in planning. Thus, this work makes planning for multi-robot
target tracking tractable at much larger scales than before, for
practical planners and general tracking problems.

I. INTRODUCTION

In target tracking problems, robots seek to observe a num-
ber of discrete targets whose states may evolve in time, such
as for surveillance, monitoring wildlife [1], and intercepting
rogue UAVs [2]. The robots may track the positions of the
targets as well as other features of their states, such as to
track an animal’s actions or the pose of an elite athlete. When
a large number of such targets are spread over more space
than a single robot can cover, deploying more robots can
improve their capacity to track the targets but at the expense
of more complex planning problems.

Still, even simple target tracking problems can be difficult
to model and solve. Noisy range observations can pro-
duce multi-modal posterior distributions over target positions
which do not have closed-form solutions; and planning and
tracking systems often approximate both filter posteriors and
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sensing utility [3, 4]. Likewise, realistic environments induce
complexity by constraining target motion such as for search
on a road network [5] or in an indoor office space [6]. Ad-
ditionally, deep learning methods for visual object tracking
enable systems to track wide varieties of objects, and these
objects may have similarly varied states and dynamics [7].
This motivates development of objectives and planners that
capture the nuances of these problems. To address this, we
provide analysis for general tracking problems where target
states are independent of each other and the robots tracking
them! with a flexible objective (mutual information), and we
allow for choice of approximate representations and planners.
Systems for target tracking in multi-robot settings often
rely on greedy algorithms [9, 10] which apply to a wide va-
riety of relevant submodular objectives, including the mutual
information objectives we study [11, 12]. Additionally, these
greedy algorithms can augment general single-robot planners
to provide efficient planning and constant-factor performance
guarantees in multi-robot domains [13] despite common
formulations of these problems being NP-Hard [11, 14].
However, a limitation of greedy algorithms for multi-robot
planning—especially in distributed settings—is that robots
must make decisions sequentially [15] so that planning time
grows with the number of robots, and this growth in plan-
ning time can prohibit large teams of robots from reacting
promptly to target motions. Advances in distributed algo-
rithms relevant to target tracking begin to address this issue
but are currently limited to coverage-like objectives [16, 17].
Here, we extend our analysis for RSP planning [16, 18] to
include more general mutual information objectives. Analy-
sis for sequential planners also typically assumes individual
robots obtain solutions that are either exact [15, 19] or within
a constant factor of optimal [13, 20, 21]. Although such anal-
ysis is appropriate for single-robot planners with guarantees
on solution quality [13, 20, 22], assuming constant-factor
suboptimality is less suited for anytime or sampling-based
planners [15, 23, 24] like those we apply in this paper.

A. Contributions

This paper extends methods for distributed planning to
target tracking problems, presents analysis that accounts for
common approximations, and applies these methods to multi-
robot planning in a simulated target tracking scenario.?

1) Distributed planning for target tracking: Although
sequential planners generally require computation time that is
at least proportional to the number of robots, recent works on

! Although problems may be adversarial in other parameters, this
excludes pursuit-evasion problems [2, 8] where targets can observe pursuers.
2This work and [16] appear as chapters in the thesis [18].



distributed optimization introduced methods that can reduce
the number of sequential steps [25, 26]. Our prior works
built on these to develop planners based on Randomized
Sequential Partitions® (RSP) that run in constant numbers of
steps, independent of the number of robots [16, 18]. While
the prior analysis is only relevant to coverage objectives,*
this paper demonstrates that RSP planning is applicable
to target tracking with mutual information objectives by
providing guarantees on solution quality in terms of a bound
on the effective pairwise redundancy between robots’ actions.
We obtain this bound after decomposing the objective as a
sum of submodular functions over each target. This analysis
demonstrates that distributed planners running in constant
time can guarantee performance approaching that of more
inefficient sequential planners (within half of optimal) [19].

2) Analysis of approximate, anytime planning: The anal-
ysis of RSP also introduces a novel approach to account
for common sources of suboptimality in receding-horizon
planning (due to approximation of the objective and subop-
timal single-robot planning). This affirms that methods for
submodular maximization are applicable to target tracking
in the presence of approximate objective values and anytime
planners that may sometimes produce poor results or fail.

3) Application to a multi-robot multi-target tracking prob-
lem: Finally, we apply the analysis to develop a planner’ for
multi-robot multi-target tracking with a mutual information
objective and demonstrate that a distributed RSP planner
running in constant time can guarantee suboptimality ap-
proaching that of fully sequential planning. Then, additional
simulation results confirm that RSP maintains consistent
solution quality for up to 96 robots. This produces a 24x
reduction in the number of sequential planning steps and an
at least equivalent reduction in planning duration.

II. BACKGROUND

Let us begin by presenting the mathematical background
on our approach to multi-robot planning.

A. Set functions and their properties

Functions of sets ¢ : 2 — R can quantify the utility of
sets of control actions, each a subset of a finite collection of
possible actions €2, and we seek to maximize set functions
that satisfy the following conditions. First, g is normalized if
g(0)=0. Additionally, objectives in sensing tasks [6, 13, 15,
27] often have useful monotonicity properties when written
as set functions. A function is monotonically increasing if

9(A) = g(B) (1)

where B C A C . Next, functions with monotonically
decreasing marginal gains are submodular, satisfying the
following inequality

9(AuC) —g(4) <g(BUC) —g(B) 2

3Although [16] introduces the method, [18] introduces the term RSP.

4Corah and Michael [16, Fig. 1] also describe a different mutual infor-
mation objective which violates requirements for “coverage-like” objectives.

5Source code for the target tracking simulations is available at: ht tps :
//github.com/mcorah/MultiAgentSensing

Fig. 1: A team of aerial
robots R (black) plan over a
receding horizon to track a
number of targets T (red).
The robots select sensing
actions to minimize uncer-
tainty in the target states
which evolve independently
of each other and the robots.
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where C' € 2\ A. The differences in (2) express discrete
derivatives of g. Drawing on notation for mutual informa-
tion [28], the n*" derivative of g at X C § with respect to
disjoint sets Y7,...Y, C Q can be defined recursively as

g(Yl;.. ;Yn,1|XUYn)
YoalXNY,) ()

S YalX) = g(Vii..
—g(Vi;...

where g(X) = g(+|X) is the O*" derivative. So, (2) can be
written as g(C|A) < g(C|B), and so both monotonicity (1)
and submodularity (2) form monotonicity conditions on
derivatives of g [18, 29]. Further, second derivatives are
written as® g(A; B|C) = g(A|B U C) — g(A|C) which
expresses effective redundancy between A and B.

This text also abuses notation for sets and set functions:
writing arguments to set functions like multivariate functions
so g(4, B)=g(AUB); implicitly wrapping elements x € {2 in
sets g(z) =g({x}); writing integer ranges with the notation
i:j={k|i<k<j, k€Z}; and indexing into sets with
sets of integers in subscripts as in A;.5 where intent is clear.

B. Partition matroids for multi-robot systems

Eachrobot i € R inateam R = {1,...,n,} has access to
a unique set of local control actions %; (i.e. the set of feasible
receding-horizon trajectories). These sets of control actions
are disjoint and together form (and partition) the set of all
available actions Q = | J;.» %;. Each robot may choose any
one action from its local set, and the set of all such complete
and incomplete assignments forms a simple partition matroid
I ={XCQ|1>|XN%|,VieR}[12, Sec. 39.4].

III. TARGET TRACKING PROBLEM

Consider a set of moving targets 7 = {1,...,n:} and
robots tracking those targets R = {1,...,n,}, seeking to
minimize uncertainty (i.e. entropy [28]), as illustrated in
Fig. 1. Let x; , € R% and xh, € R% be the respective states
of robot i € R and target j € T at time ¢t € {0,...,T'}. The
states of each evolve in discrete time, with known dynamics

t trot  _t
Xjt+1 = f (Xj,t7€j,t)’ 4)

where u; ; € U is a control input from a finite set of inputs U/
and €} , is the targets’ process noise. The robots then receive
noisy observations y; ;; of the target states via

X§,t+1 = fr(x§,ta Uit),

_ t y
Yigt = MG 1 X515 € 5.1 ®)

where €} ; , is the observation noise. We refer to states and
observations collectively with boldface capitals as X, X,
and Yy, each at time ¢.

®We ignore intersections in (3) as variables are disjoint.
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A. Receding-horizon optimization problem

Every so often, the robots plan to jointly maximize in-
formation gain over a receding horizon, starting at time ¢
and with duration [, in what we refer to as a planning epoch.
Specifically, robots maximize a submodular, monotonic, nor-
malized objective g subject to a partition matroid constraint
so that the optimal set of control actions is

X* € argmax g(X). (6)
Xes

The partition matroid .# (Sec. II-B) represents assignment
of sequences of control actions to robots with local sets

U ={(i,ura) | wg €U'} VieR. )

The objective g is the mutual information between obser-
vations and target states given the choice of control ac-
tions. Now, interpret future states X ., and observations
Y i1.44: (taking care not to confuse states X with sets X)
as random variables induced by the process (4) and obser-
vation (5) noise terms. Then, writing future observations’ as
Yit1.440(X) for X C Q, the mutual information is

9(X) =1(X} 1 1q00; Yerren (X)) Yo, Xi.)  (8)

where I(X;Y|Z) is the Shannon mutual information be-
tween X and Y conditional on Z and quantifies the reduction
in uncertainty (entropy) of one random variable from observ-
ing another. We refer interested readers to Cover and Thomas
[28] for more detail and thorough definitions. Crucially,
mutual information objectives are normalized, monotonic,
and submodular (defined in Sec. II-A) when observations
are conditionally independent of target states [11] as they
are here. However, mutual information does not satisfy
the higher-order monotonicity condition which our prior
work employs [16]. Instead, this work takes advantage of
properties of a factored form of the objective. Equation (8)
can be factored as a sum over the targets as

9(X) = IXS s Yiesrent (X[ Y00, X0) (9)
JET
because the target states and observations of the same are
jointly independent and because the robot dynamics are de-
terministic. This follows because the mutual information is a
difference of entropies [28, Eq. 2.45] which each decompose
as sums over targets [28, Theorem 2.6.6].

B. Channel capacities and spatial locality

Spatial locality in target tracking problems arises from the
factored form of the objective and how robots’ capacities to
sense targets decrease with distance. Variations in robots’
i € R abilities to sense different targets j € T produce this
spatial locality which take the form of channel capacities

7Yt+1:t+l (X) is a random variable expressing the noisy observations
(5) that robot 7 receives after executing uq.; for each (i,uq.;) € X. For
the purpose of analysis, X C € may include multiple assignments to one
robot which will be associated with unique observation noise terms €Y.

C; ; from information theory [28, Chapter 7] so that
Cij = fé%i‘ H(X,tj7t+1:t+l3Yj,t+1:t+l($)|Yj,0:t7 0:¢)- (10)

This channel capacity is an upper bound on the amount of
information a robot may obtain about a given target. These
channel capacities themselves form informative planning
problems which we solve for the simulation results.

C. Computational model

A common feature of distributed planning problems is lim-
ited access to information. We assume for our computational
model that each robot ¢ € R is able to approximate the
objective for its own set of actions %;. That is, each robot has
access to an approximation of marginal gains g;(z;|4) which
is valid for only its own actions z; € %; and given any prior
selections A C Q. This expresses both how robots evaluate
mutual information approximately and how limited access
to sensor data for distant targets could prohibit accurate
evaluation of marginal gains for distant robots.

Robots likewise have limited access to the set of all control
actions {2: robots do not have access to others’ actions except
those they obtain by communicating each others’ decisions,
and robots also only obtain elements of their local sets %; C
Q implicitly via local planners.

IV. APPROACH TO DISTRIBUTED PLANNING

The proposed distributed planning framework seeks to
approximate sequential solvers that are known to be near-
optimal [19] but become impractical at large scales. This
motivates our distributed approach which is similar but uti-
lizes modifications and approximations to achieve planning
in constant time and to satisfy constraints on information
access for online, receding horizon planning. Later, Sec. V
will describe the costs of these approximations, and Sec. VI
will integrate these costs into a suboptimality guarantee that
relates our distributed planner to sequential planning.

A. Greedy, sequential planning (an idealized planner)

The local greedy algorithm, originated by Fisher et al. [19]
and applied to robotics by Singh et al. [13] enables robots
to obtain near-optimal solutions to sensing problems by
planning in sequence conditional on prior decisions. Robots
produce solutions X& = {z%,..., 28 } by greedy planning

Y

z% € argmax g(z| X5, _,).
TEU;
This local greedy algorithm is specific to partition matroids
(Sec. II-B) and differs subtly from greedy algorithms for
general matroids [19, 30, 31] which maximize over all
possible actions (2) at each greedy step rather than robots’
local control actions (%) as in (11). Still, both greedy
algorithms satisfy a constant-factor bound g(X8) > 1g(X™).
While the local algorithm completes only one complete pass
over () rather than one per robot, both require robots to make
decisions in sequence: the duration of planning for (11) is
at least proportional to the size of the team.



B. Distributed planning algorithm

Algorithm 1 provides pseudo-code for a distributed plan-
ner which can run in a constant number of sequential steps
and produces distributed solutions X 9. As Fig. 2 illustrates,
this planner follows a directed acyclic graph structure where
robots are nodes and an edge to a robot represents access
to another’s decision. Designing the graph appropriately—
ignoring some decisions—enables robots to plan in parallel.

Starting in lines 4-6, each robot begins planning upon re-
ceiving decisions from its in-neighbors A/I*. Robots approx-
imate the objective given available computational resources
and sensor data 0; via g;. The available sensor data may
include data for all targets or only those near the robot (we
will study both cases). We assume robots obtain this sensor
data via inter-robot communication (not shown). Then, in
lines 7-8, once the planner exits or runs out of time, the
robot commits to an action which it executes in a receding-
horizon fashion and sends to any out-neighbors N2Vt

As described, planning proceeds asynchronously, and
robots have access to both A" and N?PUt. However, [18,
Chapter 8] provides a more practical time-synchronous im-
plementation where the graph structure is implicit.

1) Planning in parallel via RSP: To enable parallel plan-
ning with little impact on suboptimality, robots construct
the directed graph structure via Randomized Sequential
Partitions (RSP) [16]. When planning via RSP robots assign
themselves randomly to one of ng sequential steps. Then,
robots assigned to the same step plan in parallel with access
(via M) to some or all decisions from prior steps.

The cost of planning via RSP instead of sequentially (11)
approaches zero when effective redundancy between agents
is bounded [16]. In Sec. VI, we will obtain a new such bound
for target tracking in terms of a weighted undirected graph
G = (R, E&,W) which connects the robots with edges £ =
{(,7)]i,7 € R,i # j} whereas [16] proves that when the
optimum is proportional to the sum of weights:

g(X*) o > Wi, j)

(1,7)€€

12)

distributed planning with a constant number of steps guaran-
tees suboptimality approaching half of optimal (with 1/nq)

Algorithm 1 Distributed algorithm for receding-horizon
target tracking from the perspective of robot i € R for
execution at time {.
1: Ni™ < in-neighbors of robot i
2: NP < out-neighbors of robot i
3: 0; < sensor data (or summary) accessible to robot ¢
RECEIVE: X¢

Nin from ./\/'Z-in

g; < approximation of g given 6;

! < PLANANYTIME(g;, X} ;, X {in)

SEND: z¢ to NPt l

EXECUTE: z¢ starting at time ¢ and until the beginning
of the result of the next planning round

AR

in expectation, for any number of robots [16, Theorem 3].

V. COST MODEL FOR APPROXIMATE PLANNING

This section describes the costs of planning with directed
acyclic graphs via RSP and of approximations in planning
and objective evaluation given constraints on computation
time and information access. Rather than assume constant-
factor suboptimality at each step [13]—as would be appro-
priate if the local planner satisfied a consistent performance
guarantee—we present this flexible cost model to account for
uncertainty arising from planning in real time. The analysis
(Sec. VI) will integrate these costs for distributed planning,
objective evaluation, and anytime (single-robot) planning
into a suboptimality guarantee that relates the suboptimality
of Alg. 1 to the bound for sequential planning (11).

A. General cost of suboptimal decisions for individual robots

Before describing the specific costs of approximations, let
us define a general cost in terms of the difference between
the exact marginal gain for a greedy decision and the gain for
the actual decision produced by the planner z¢. Specifically,
given an instance of (6) with objective g and a subset of prior
decisions X C X¢,_,, the cost to robot i € R for making a
suboptimal decision z¢ is the difference between the utility
of that decision and the true maximum over %;

7" (g, 2, X) = max g(a] X) — g(|X).  (13)
This expression will be useful both for defining specific costs
and as a tool for analyzing suboptimality.

B. Cost of distributed planning on directed acyclic graphs

Planning nominally via the greedy algorithm (11), robot
i € R has access to prior decisions by robots {1,...,i—1}.
In our approach, (Alg. 1) robots only have access to a subset
NI C {1,...,i — 1} of these decisions, which induces a
directed acyclic graph with edges (j,4) for each robot j €
Ni™ whose decision i accesses while planning [25, 26]. In a
sense, the robots ignore decisions by ./\A/Z-i’rl ={1,...,1—1}\
/\/ii“, and the cost of doing so is a second derivative (3):

%(‘iiSt = g(iﬁg‘X}\if;n) - g(x?‘Xﬂiq) = —Q(CU?ZXJ%/;H X/(\ifgn)-
(14)

This cost expresses the effective redundancy between @’s
decision and the decisions by A" which were ignored. Later,
we will upper bound this redundancy in terms of J\A/iin and
eliminate the dependency on X¢.,.

C. Cost of approximate evaluation of the objective

We assume robots can access relevant data to evaluate the
mutual information objective (8), either exactly or approxi-
mately such as by ignoring distant targets or via sampling.
Either way, robot 7+ € R has access to a local approximation
g; of the objective, and the cost of this approximation
(treating stochasticity implicitly) is at most the sum of the



(b) Parallel

(a) Sequential

Fig. 2: Graph models for two distributed planners where edges represent
access to robots’ prior decisions. (a) The sequential greedy algorithm (11)
corresponds to a complete directed acyclic graph because robots have access
to all prior decisions. This graph has one sequential step per robot (time
increases toward the right). (b) Deleting edges (red) removes temporal
constraints due to requiring access to prior decisions. Here, deleting edges
enables pairs of robots to plan in parallel, and the planner subsequently
requires two sequential steps instead of four.

maximum over- and under-approximation of g
(3 @118) = g1 | Xn)

+ g2l X ) = Gilwa | X))

where z; and x5 are the points where g; most under- and
over-approximates g over the local action set %;.

obj

Vi max

x1,22E€EY;

(15)

D. Cost of approximate (anytime) single-robot planning

Selecting sensing actions to maximize information gain
for an individual robot over a finite horizon produces an
informative path planning problem [13, 22]. However, robots
have limited amounts of time available and must terminate
planning and transmit results soon enough so that later robots
that depend on those decisions can make their own decisions
in time for the plans go into effect (at time ¢ in Algorithm 1).

Although some existing planners provide performance
guarantees [13, 22, 32], designers applying these methods
may have to vary replanning rates or tune problem parame-
ters to satisfy constraints on planning time for operation in
real-time. On the other hand, randomized planners [23, 24]
and gradient- and Newton-based trajectory generation [33,
34] converge to local or global maxima but typically provide
no guarantees on solution quality before convergence for
anytime planning. Likewise, this paper applies Monte Carlo
tree search [35, 36], a common randomized planner for
single-robot planning (see the results, Sec. VIII).

We model online planners via their empirical performance
at approximating optimal single-robot solutions conditional

on Xﬁ/’_in and with the local objective g;

i

PP = A (G, s X i) (16)

This captures the inherent uncertainty in anytime planning
and enables us to characterize collective performance in
terms of the bulk suboptimality of single-robot planning.

VI. ANALYSIS OF SUBOPTIMALITY OF DISTRIBUTED
PLANNING

This section analyzes suboptimality for distributed plan-
ning. Specifically, Alg. 1 achieves a performance bound
which approaches that for sequential planning (Sec IV-A)
with suboptimality arising from the aforementioned costs.

Theorem 1 (Suboptimality of Alg. 1): Considering an in-
stance of (6), any solution X¢ that Alg. 1 produces satisfies

9(X") < 2(XN) + 3 (3 4+ 4P a7
i€R
and the total cost of distributed planning is bounded by

STl <3 ST WG, )

1ER iERje_/viin

(18)

where )7\/\(2, j) is an edge weight that bounds effective
redundancy between pairs of robots for observing the same
targets (whose expression we provide in following analysis).
This sum of weights approaches zero when planning via RSP
with increasing numbers of rounds ng (Sec. IV-B.1).

The proof of Theorem 1 is in Appendix III. We summarize
this result in (Sec. VI-C) after introducing preliminary results
related to the first (Sec. VI-A) and second (Sec. VI-B) parts
of the theorem.

Regarding the form of Theorem 1, this bound characterizes
practical implementations of Alg. 1. An idealized version of
our distributed algorithm would obtain exact objective values
and maxima, and the associated costs v°Pi and yP'** would
each be zero. From this perspective, (17) describes how
real implementations may deviate from this ideal and states
that suboptimality arises as an accumulation of individual
inefficiencies which can be modeled empirically.

A. General suboptimality in multi-robot planning

The following lemma expresses the joint suboptimality of
any solution as a sum of costs of suboptimal decisions.

Lemma 2 (Suboptimality of general assignments): Given
some submodular, monotonic, normalized objective g, any
assignment of actions to all robots (a basis) X de #ona
simple partition matroid satisfies

g(X*) < 29(XY) + Y (g, 2, XTy).

The proof of Lemma ZZTS1 in Appendix II. Observe that
if we obtain X9 via exact sequential maximization, the
summands (v%°") of (19) are zero, and we obtain the original
result by Fisher et al. [19] and likewise for single-robot
solvers with constant-factor suboptimality [13, Theorem 1].

19)

B. Bounding the cost of distributed planning for target
tracking problems

This section characterizes the cost of distributed planning
(18) in target tracking problems. We begin by investigating
the decomposition of the objective as a sum over targets to
obtain an intermediate bound. Applying this bound produces
the weights JV which relate the cost of ignoring robots during
distributed planning (Sec. V-B) to the channel capacities (10)
between the robots and targets.

1) Decomposing objectives as sums: The objective (8)
for the target tracking problem we study forms a sum over
information sources, the targets (9). Let 4 = {¢1,...,9n,}
be a collection of set functions so that for j € 7 and X C Q

9i(X) = I(X5 s Yierraet (X)[Y0., XGp) . (20)



This collection of set functions ¢ decomposes g and enables
us to characterize interactions between robots in terms of
robots’ capacities to sense near and distant targets.

Definition 1 (Sum decomposition): A set of submodular,
monotonic, normalized functions ¢4 = {¢1,...,9,} decom-
poses a set function g if

g(X) =Y §(X), forall X CQ.
G4
Closure over sun;]se [29] ensures that g is submodular,
monotonic, and normalized if the same is true for each
g € ¢. Further, although some such sum decomposition
always exists (¢ ={g}), the choice of decomposition affects
the tightness of the performance bound; choosing ¥ to
form a sum over targets (20) will capture spatial locality
in distributions of robots and targets.
2) Derivatives and the sum decomposition: Given some
decomposition ¢ of g, the second derivative (3) of g at X C
Q with respect to A, B C (, all disjoint, is

9(A; BIX) = §(A; BIX).
gev

21

(22)

This derivative has the form of the negation of the cost of
ignoring decisions during distributed planning y4'* (14), and
the rest of this section is devoted to obtaining a bound on
expressions which relate a robot’s decision A to the decisions
that robot ignores B while eliminating dependency on which
prior decisions the robot has access to X.

3) Bounding second derivatives via sum decompositions:
Applying monotonicity and submodularity respectively pro-
vides a lower bound on the second derivative of a set function

9(A; B|X) = g(A|B, X) — g(A|X) > —g(A]X) > —g(A)
(23)

where A, B, X C Q) are disjoint. By symmetry

9(A; BIX) = — min(g(A), g(B)). 24)

Then, expressing the second derivative of g in terms of
the sum decomposition (22) and using (24) to bound the
derivatives of § € ¢ yields

9(4; BIX) > > —min(g(A), §(B))-
g€y
Remark 1: Our prior work [16] relies on g(A4; B|X) in-
creasing monotonically in X to state g(4; B|X) > g(A; B).
To unify this result with (25), we state that each produces a
lower bound on g(A; B|X) as a function of A and B.
4) Quantifying inter-robot redundancy: This bound on the
second derivative of g (25) leads to a bound on redundancy
between agents which we express with the weights:

(25)

x; EQI/?%J}J‘(E@/J' ;& mln(g(xi)7 g(xj))
g

> —g(a; 25| X)
for all z; € %, e, X € Q\{xj,x}}.

(26)

Evaluating values of W is difficult as doing so involves
search over the product of two robots’ action spaces. To make

evaluation of weights tractable, relaxing this expression by
taking the pairwise minimum of the maximum values of each
objective component produces an upper bound in terms of
channel capacities (10), avoiding search over a product space

W(i.j) =Y min (Cix, Cjx)
keT

=" min (max 9(x,), mex Q(ﬂfj))

jew T, €EU; xj
> max min(g(z;), §(z;)) = W(, j).

27)

The second equality follows from the definition of the chan-
nel capacities (10), recalling that we chose ¢ to decompose
g by targets 7. This expresses how if sensing capacity
decreases with distance so do interactions between robots.

C. Summary of the proof of Theorem I

Theorem 1 consists of two parts. The first, the effect
of approximations on planning performance (17) follows
by applying Lemma 2, on the suboptimality of general
assignments, and substituting the definitions of the costs
((14), (15), and (16)). The second part (18) characterizes
suboptimality due to distributed planning and follows by
applying a chain rule (Appendix I) to the definition of cost
of distributed planning (14) and substituting (25), (26), and
(27). Please refer to Appendix III for the full proof.

VII. RUN TIME AND SCALING

Algorithm 1 requires a number of sequential planning
steps that depends on the planner graph (Sec. V-B), a
constant number of steps for RSP. Further, Sec. IV-B.1 stated
that if the optimum is proportional to the sum of weights (12)
RSP guarantees suboptimality approaching half of optimal.

Assuming the optimum is proportional to the number
of robots (n;), then (12) holds if the sum of weights is
proportional to n, as well. Appendix IV presents sufficient
conditions for the sum of weights to be proportional to n,,
given the robot-target channel capacities (10) are bounded
appropriately with distance. This ensures the cost of dis-
tributed planning v4** (14) is bounded independent of n,.

Additionally, bounds on channel capacities as a function
of distance enable robots to ignore sufficiently distant robots
and targets in what we refer to as Range-limited RSP
(R-IRSP) [18] as the additional cost (ignoring decisions and
approximating the objective) approaches zero.

By incorporating range limits and tracking targets with
sparse Bayes filters we also achieve single-robot planning in
constant time (depending on densities of robots and targets).

Regarding communication, robots send one message with
constant size for each edge in the directed planner graph
(Sec. V-B). Ignoring distant robots via R-IRSP reduces the
total to a constant number of messages per robot [16].

VIII. RESULTS

To evaluate the approach, we provide simulation results
(visualized in Fig. 3) for teams of robots tracking groups



Fig. 3: Visualizations of eight and sixteen robots tracking same numbers of
targets. Robots with dotted finite-horizon trajectories are blue and targets
red. The background illustrates the sum of target probabilities at each grid
space, increasing from purple to yellow.

of targets (one target per robot). Robots move according to
planner output and targets via a random walk, all on a square
four-connected grid with /12.5n, cells on each side.® The
robots estimate target locations via Bayesian filters® given
range observations to each target with mean d= min(d, 20)
and variance 0.25 + 0.5d% where d is the Euclidean distance
to the target in cells lengths.! For the purpose of this
paper, robots have access to all observations or, equivalently,
centralized filters. Trials run for 100 time-steps; initial states
are uniformly random; initial target positions are known;'!
and we ignore the first 20 steps of each trial to allow the
system to converge to steady-state conditions.

Robots plan actions individually using Monte Carlo tree
search (MCTS, PLANANYTIME) [36] with a two step hori-
zon and collectively according to the specified distributed
planner. To ensure tractability we replace the original objec-
tive (8) with a sum of mutual information for each time-step

l
g (X) =D IX Y Yisraeen(X)[You, Xp,), X S Q.
k=1

(28)
This objective is equivalent to [37, (18)] and can be thought
of as minimizing uncertainty at the time of each planning
step. Being a sum, (28) remains submodular, monotonic, and
normalized, and all analysis, including Theorem 1, applies
unchanged. Like Ryan and Hedrick [37], we evaluate this
objective by simulating the system and computing the sample
mean of filter entropy. The MCTS planner also estimates
the objective implicitly by simulating the system once per
rollout; by sampling more valuable actions more often,
MCTS produces increasingly accurate estimates for nearly
optimal trajectories. The experiments compare methods for
multi-robot coordination including: sequential planning (11);

8Numbers of targets and grid cells are proportional to the number of
robots (n,). We desire entropies approaching a constant for large n, on a
per-robot basis and the same for redundancy and objective values.

9 Additionally, planners with sixteen or more robots use sparse filters,
ignoring target occupancy probabilities below 103,

10We selected simulation parameters to maximize discrepancy between
sequential and myopic planning without evaluating the performance of RSP.

'Known initial states promote fast convergence and ensure initial
uncertainty does not increase with environment size.
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Fig. 4: (a) Regarding target entropy, the task performance criterion, (lower
is better) our RSP planners consistently improve upon myopic planning and
approach sequential planning with many times fewer sequential steps. (b)
Objective values on common 16-robot subproblems reflect a similar trend,
and results for distributed planning (bold) closely match sequential. (6). (c)
Considering average objective values and total redundancy (12) (both per
robot) for RSP with nq =4 (including values for trials from (b) and five
additional trials with R-IRSP with up to 96 robots), values initially increase
but appear to approach asymptotes, indicating that the two are approximately
proportional at large scales (12) so that RSP planning approaches constant-
factor suboptimality. Shaded regions depict standard error.

distributed planning (Alg. 1) with RSP [16]; myopic planning
(MCTS without coordination); and random actions. Addi-
tionally, we provide results with range limits (R-IRSP) where
robots ignore targets further than 12 units (in terms of the
filter mean positions) and robots further than 20 units. Given
use of sparse filters, R-IRSP runs in constant time.

We evaluate the distributed planning approach via task
performance (average target entropy) for various numbers of
robots (Fig. 4), objective values on a common set of subprob-
lems (6), and the redundancy per robot (the sum of weights
(12) divided by n,). The results for average target entropy—
which express uncertainty in target locations [28]—are based
on 20 simulations of target tracking for each configuration.
Results for objective values and redundancy use planning
subproblems (6) taken from the simulation trials for RSP
with nq = 4. The results for objective values by solver are
for 16 robots and are normalized according to maximum
values across solvers for each planning problem. For results
on redundancy, an additional five trials of R-IRSP with nq =4
demonstrate behavior for up to 96 robots.'?

Proposed distributed planners provide consistent improve-
ments in target tracking performance (average target entropy)
(Fig. 4a) compared to myopic planning; distributed planning

12Planning at this scale is intractable for other planner configurations.



in eight rounds matches sequential planning despite requiring
as much as five times fewer planning steps and produces
5-13% better (lower) target entropy than when planning
myopically. The objective values (Fig. 4b) exhibit a similar
trend, and all distributed planners closely match sequential
planning. Although the objective values and redundancy per
robot (Fig. 4c) initially increase with more robots, the values
eventually level off and are roughly proportional (12). This
is consistent with analysis of scaling behavior in Appendix II
which suggests that redundancy per robot approaches a
constant value. Overall, the results indicate that even a small
amount of coordination (ngq =2), independent of the number
of robots, is sufficient to provide performance comparable to
sequential planning in receding-horizon settings.

IX. CONCLUSIONS AND FUTURE WORK

This paper has presented a distributed planner for mutual
information-based target tracking which runs in a fixed
number of steps and mitigates growth in planning time for
existing sequential planners for submodular maximization.
The analysis provided a novel bound on suboptimality by us-
ing target independence to decompose the objective as a sum.
Additionally, by explicitly accounting for suboptimal local
planning (e.g. anytime planning) and approximation of the
objective, we affirmed that the proposed approach is appli-
cable to practical tracking systems. The results demonstrated
that distributed planning improves tracking performance (in
terms of target entropy) compared to planners with no coordi-
nation and that distributed planning with little coordination
can even match fully sequential planning given a constant
number of planning rounds. Finally, although we focused on
target tracking, future work may take advantage of how the
analysis applies to general multi-objective sensing problems,
possibly in concert with our work on coverage [16].
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APPENDIX I
THE CHAIN RULE FOR DERIVATIVES OF SET FUNCTIONS

Set functions and their derivatives satisfy chain rules
analogous to those for entropy and mutual information [28,
Theorem 2.5.1-2]. We provide a general statement here
which we will apply to first and second derivatives of set
functions.

Lemma 3 (Chain rule for derivatives of set functions):
Consider sets Y7,...,Y,, X C €, all disjoint. Then,
writing the elements of Y;, as Y, = {yn.1,. .. ,yn}‘y"|}, the
derivative of g can be rewritten in terms of derivatives with
respect to the individual elements of Y, as

[Yn|
Zg Y17~-- n— 17ynz|Ynlz 1,X)
(29)

Proof: The proof follows by expanding the derivative
(3), forming a telescoping sum, and rewriting the summands
as individual derivatives:

g(Yi5.. Y |X) =

—g(Y1;.. ;Yo a|X)
[Yn |
= (g(}/la7Yn—1|Yn,1uX)
=1
—g(Y1;.. 5 Y 1|V 1hm1, X))
[Yn|
:Zg(Yiv ';Yn—l;yn,i|Yn,1:i—1aX)-
=1
(30)
|

APPENDIX I
PROOF OF LEMMA 2, SUBOPTIMALITY OF GENERAL
ASSIGNMENTS

Proof: This result follows typical methods for sequen-
tial submodular maximization with slight changes to assist
in book-keeping:

g(X*) < g(X4, X*) 31)
=g(X) +> 9@} Xti1, X9 (32)
i=1
<g(XN+ > grxt, ) (33)
=1
<g(Xh)+ Zﬁ%} 9@ X{_1) (34)

d|X1; 1) +’Ygen(ga$?7Xf:i—1))

g(X%h +Z

(35)

=29(X") + ng”‘ (9,25, XTi1). (36)
=1
Above, (31) follows from monotonicity; (32) expands a

telescoping series; (33) follows from submodularity; (34)

upper bounds the gains for the optimal decisions z with the
maximum marginal gains; (35) substitutes the expression for
general suboptimality (13) thereby adding and subtracting
the marginal gains for z¢; and (36) collapses the telescoping
series. |

APPENDIX III
PROOF OF THEOREM 1, SUBOPTIMALITY OF
DISTRIBUTED PLANNING

Proof: Theorem 1 consists of two parts, (17) and (18).
We prove each in turn. Since the costs in both equations
involve sums over robots, both proofs analyze costs with
respect to some robot ¢ € R.

1) Proof of Theorem 1, part 1 (17): According to the
standard greedy algorithm (11), robot ¢ would plan condi-
tional on decisions by robots {1,...,7 — 1}. However, in
Alg. 1 that robot instead plans conditional on decisions by
a subset of these robots V" C {1,...,i — 1} and ignores
Nm {1,...,i—1}\WN". Recalling Lemma 2, we can write
the suboptimality of decisions X9 in terms of a general cost

7$°". Let us now extract the cost of distributed planning st
from this expression as follows:

gen

d yd d d|yd
v (g, @y, Xiyq) < max g(x|XN;n) —g(z5 |1 X 1)

gen

- ’Yz (9,$?7Xﬁfim)

+ 92| X ) — 92§ X 1)

gen dlbt

—’Yz (g7xzvX/\/m)

(37

Here, the first step follows by referring to the general cost
model (13) and observing that max,cq, g(z| X3, ;) <
maxge; ¢(¢|X%:,) due to submodularity. The second

rewrites the cost 1;1 terms of decisions with respect to X d 0
and the last substitutes the cost of distributed planning (14).

To incorporate the cost of suboptimal planning ~”'*",
observe that

gen

Vi

gen plan plan

(gaxgvXﬁ/'ii“) Yi (971'?;X§[iin)+71 -V
1
= ’yzp o +’ygen(gaxi 7X/\/i")

gen

’71 (glaxzaXNm)
(38)

which follows from the definition of the planning cost (16).

The cost of approximation of the objective 7y b upper
bounds the difference of the last two terms in (38):
rYigen(g’I?’Xﬁfii") ’yzgen(glvxiﬂX/\/l“)
~ . d d
= gi(w; |XNL_;n) — g(; |XNL_in)
d y_ ~ d
+ max 9(| X i) max 9i (@[ X i)
< Gl X ) — (a1 X k) (39)

+ 9(5%|X/C3/;n) - ﬁi(ﬂXf\i/;n)a
for £ € argmax g(;%|dewn)

< ypbj .

— K2



The equality in (39) follows by expanding and rearranging
the costs (13) on the left-hand-side. The first inequality swaps
the subtracted maximum for the approximate marginal gain
g; at the point of the first maximum. Then, the second
inequality uses the definition of the objective cost (15)
(maximum over- and under- approximation) to bound the
two differences.
Then, the expression for the costs in (17)

P (g, ad, X, 1) <A AP 4B 40)

follows by substituting the prior three equations into each
other: (39) into (38) and the result into (37). Finally, sub-
stituting this inequality (40) into (19) from Lemma 2 (on
the suboptimality of general assignments) yields the desired
bound (17) which completes the first part of this proof.

2) Proof of Theorem 1, part 2 (18): The second part of
Theorem 1 (18) follows by referring to definition of ~st
in (14), applying the chain rule (29), and substituting the
definitions of the weights (26) and (27) in turn:

ydist — g (x; Xﬁ[m Xﬁ/m) 41)
_ d d
== > g(wafIX im0 X in g1 1}) (42)
jeﬁit)
< > OW(GLg) < ZW@] 43)
jENIn jENIn

Then, (18) follows by summing over R. This completes this
second and last part of the proof of Theorem 1. [ ]

APPENDIX IV
ANALYSIS FOR SCALING TO LARGE NUMBERS OF ROBOTS

The analysis in this section establishes sufficient condi-
tions for the cost of distributed planning vt (14) for each
robot to be constant (in expectation) for planners with a fixed
number of sequential steps, independent of the number of
robots. Afterward, we discuss how this analysis relates to
the design and analysis of target tracking systems.

A. Bounding expected inter-agent redundancy

Consider a distribution of robots and targets on R™ with
at most « robots and [ targets on average per unit volume.
Then, assume that the channel capacities (10) between each
robot ¢ € R and target j € 7 satisfy a non-increasing upper
bound ¢ : R>o — R>o (possibly in expectation) so that

i; < ¢(||pi—p}||2) where pj and p}; are the robot position
and target mean position in R".

Now, consider the expectation of the total weight associ-
ated with robot ¢ € R considering only robots and targets on
an n-ball with radius R / 2 centered around p; which we write
as Eryo[> - e\ (i }W(z 9] COHS'IdCI‘ also the .expectatlon
for targets distributed within a radius R around ¢ and robots
on balls with the same radius centered on each target. The
intersection of these balls is a ball around ¢ with radius R/2
so that the latter expectation produces an upper bound on

the former. Given the expression for W in terms of channel
capacities (27), and designating the zero-centered ball with

radius R as Br we can write this inequality as:

</BR /BR aBmin(e(|[x|]2), d(|[y]]2)) dxdy . 44)

By integrating over the surface of each ball (each an (n—1)-
sphere with surface area S,,_1)

R (R
= aﬁ/ / Sy 2V gl min(¢(r1), ¢(ra2)) dry dry .
o Jo 45)

Given that ¢ is non-increasing, separating the minimum
produces:

R o
= aﬁSn_12 </ / r1"_1r27’_1¢(r2) d’l"l d7“2
/ / iyt (rl)drldr2>

(46)

and by swapping the bounds of the second integral, combin-
ing, and evaluating the inner integral, we get:

R T2
= aﬁSn_lz (/ / T1n71T2n71¢(T2) dT’l d?"g
0 0
R 1
e
0 0

17”2“71(1)(7"1) d7’2 dT’l

47)
= QQBSH 1 / / ¢(T1) d’l"g dT1 (48)
0 0
720555} ! / 2" (ry) dry (49)
n 0

The above integral (49) converges in the limit if ¢ €
O(1/x®"+¢). Most relevantly, for a plane, this condition
comes to ¢ € O(1/x4F¢).13

B. Scaling and sensor models

The sensitivity to how quickly interactions between robots
and targets fall off motivates attention to sensing design and
modeling to prevent distributed planning from performing
poorly for large numbers of robots or else requiring addi-
tional computation time. For example, considering additive
Gaussian noise with a standard deviation proportional to
distance (as is common in range sensing models [4]) mutual
information does not fall off quickly enough as is evident
from the capacity of Gaussian channels [28, Chap. 9].

At the same time, robots in realizable systems cannot
obtain and process observations of unbounded numbers of
targets, and features such as a maximum sensor range (as
we use in the results) can model such limits. Still, the
observation of whether a target is within range provides

13This requirement on interactions between robots and targets is stricter
than the equivalent one between robots [16, Sec. VI.C] as interactions
between robots must decrease as O(1/x"T¢).



some information. Introducing a narrow tails assumption on  ensures that ¢ decreases sufficiently quickly. However, due
the target filters—such as that the tails approach zero ex-  to this sensitivity to the tails, the scaling behavior (49) may
ponentially—in combination with a maximum sensing range  be difficult to estimate, even when known to be bounded.
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