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Abstract— We address the problem of robot localization using
ground penetrating radar (GPR) sensors. Current approaches
for localization with GPR sensors require a priori maps of
the system’s environment as well as access to approximate
global positioning (GPS) during operation. In this paper,
we propose a novel, real-time GPR-based localization system
for unknown and GPS-denied environments. We model the
localization problem as an inference over a factor graph. Our
approach combines 1D single-channel GPR measurements to
form 2D image submaps. To use these GPR images in the
graph, we need sensor models that can map noisy, high-
dimensional image measurements into the state space. These
are challenging to obtain a priori since image generation
has a complex dependency on subsurface composition and
radar physics, which itself varies with sensors and variations
in subsurface electromagnetic properties. Our key idea is to
instead learn relative sensor models directly from GPR data
that map non-sequential GPR image pairs to relative robot
motion. These models are incorporated as factors within the
factor graph with relative motion predictions correcting for
accumulated drift in the position estimates. We demonstrate our
approach over datasets collected across multiple locations using
a custom designed experimental rig. We show reliable, real-time
localization using only GPR and odometry measurements for
varying trajectories in three distinct GPS-denied environments.

I. INTRODUCTION

We focus on the problem of localization using ground
penetrating radar (GPR) in unknown and GPS-denied en-
vironments. Hardware failure, repetitive or sparse features,
and poor visibility and illumination can make localization in
warehouses, mines, caves and other enclosed, unstructured
environments challenging. Consider an operational subsur-
face mine where continuous drilling and blasting changes the
line-of-sight appearance of the scene and creates unexplored
environments, which could lead to poor localization using
visual and spatial information. While the visual environment
may change, subsurface features are typically invariant and
can be used to recognize the system’s location.

Currently, GPR is widely used in utility locating, concrete
inspection, archaeology, unexploded ordinance and landmine
identification, among a growing list of applications to deter-
mine the depth and position of subsurface assets [1, 2]. GPR
information is often difficult to interpret because of noise,
variable subsurface electromagnetic properties, and sensor
variability over time [3]. A single GPR measurement only
reveals limited information about a system’s environment,
requiring a sequence of measurements to discern the local
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Fig. 1: Estimating poses for a ground vehicle using subsurface measure-
ments from Ground Penetrating Radar (GPR) as inference over a factor
graph. Since GPR measurements are challenging to correlate, a relative
transformation is learned between submaps to correct the system’s pose.

structure of the subsurface. In order to use GPR for localiza-
tion, we need a representation for GPR data that (1) captures
prominent local features and (2) is invariant over time.

In GPS-denied environments, operating using only pro-
prioceptive information (e.g. IMU, wheel encoders) will
accumulate drift. Prior work [4, 5] on GPR localization has
addressed this challenge by using an a priori global map of
arrayed GPR images. During operation, the system compares
the current GPR image against this global map database, and
corrects for accumulated drift within a filtering framework.
However, this approach requires approximate global posi-
tioning and a prior map of the operating environment which
would not generalize to previously unknown environments.

We propose an approach that allows for correction of
this accumulated drift without any prior map information.
In the absence of a prior map, we must reason over multiple
GPR measurements together to be able to infer the latent
robot location. We formulate this inference problem using
a factor graph, which is now common with many modern
localization and SLAM objectives [6–10]. GPR, inertial, and
wheel encoder measurements are incorporated into the graph
as factors to estimate the system’s latent state, consisting
of position, orientation, velocity, and IMU biases. To in-
corporate measurements into the graph, a sensor model is
needed to map measurements to states. For GPR sensors,
a priori models are typically challenging to obtain since
image generation has a complex dependency on subsurface

ar
X

iv
:2

10
3.

15
31

7v
1 

 [
cs

.R
O

] 
 2

9 
M

ar
 2

02
1



composition and radar physics. Instead, we learn relative
sensor models that map non-sequential GPR image pairs to
relative robot motion. The relative motion information in turn
enables us to correct for drift accumulated when using just
proprioceptive sensor information. Our main contributions
are:

1) A formulation of the GPR localization problem as
inference over a factor graph without a prior map.

2) A learnable GPR sensor model based on submaps.
3) Experimental evaluation on a test platform with a single-

channel GPR system operating in three different GPS-
denied environments.

II. RELATED WORK

GPR in robotics: Most use of GPR in the robotics domain
has been for passive inspection, which includes excavation of
subsurface objects [11], planetary exploration [12–14], mine
detection [15, 16], bridge deck inspection [17], and crevasse
identification [18].

Localizing GPR (LGPR) was introduced by Cornick et
al. to position a custom GPR array in a prior map [4].
In this method, the current GPR measurement is registered
to a grid of neighboring prior map measurements using
a particle swarm optimization, which attempts to find the
5-DOF position of the measurement that maximizes the
correlation with the grid data. Ort et al. extended this work
using the same LGPR device for fully autonomous navigation
without visual features in variable weather conditions [5].
This approach involves two Extended Kalman Filters; one
filter estimates the system velocities from wheel encoder and
inertial data and the other filter fuses these velocities with
the LGPR-GPS correction. In the evaluation across different
weather conditions, it is apparent that GPR measurements
acquired in rain and snow were less correlated to the a priori
map than in clear weather using the heuristic correlation for
registration method proposed in [4].

Factor graphs for SLAM: Modern visual and spatial lo-
calization systems often use smoothing methods, which have
been proven to be more accurate and efficient than classical
filtering-based methods [7]. The smoothing objective is typi-
cally framed as a MAP inference over a factor graph, where
the variable nodes represent latent states and factor nodes
represent measurement likelihoods. To incorporate sensor
measurements into the graph, a sensor model is needed to
map high dimensional measurements to a low-dimensional
state. Typically these sensor models are analytic functions,
such as camera geometry [19, 20] and scan matching [21].

Learned sensor models: Learning-based methods provide
an alternate option to model complex sensor measurements.
Prior work in visual SLAM has produced dense depth recon-
structions from learned feature representations of monocular
camera images [8, 10]. In computer vision, spatial correlation
networks have been used to learn optical flow and localize
RGB cameras in depth maps [22–24]. Recent work on object
state estimation using tactile feedback has demonstrated
the effectiveness of learned sensor models in factor graph
inference [9].

Our approach enables robust GPR-based positioning by
leveraging the benefits of structured prediction in factor
graph inference with learning-based sensor models. We use
a smoothing-based approach, which is more accurate and
efficient than filtering-based approaches used by previous
localizing GPR systems, and can be solved in real-time using
state-of-the-art algorithms [25, 26]. Learning-based sensor
models for GPR can outperform engineered correlation ap-
proaches by exploiting unique features in a sequence of
GPR measurements, enabling improved performance in even
sparsely featured environments.

III. PROBLEM FORMULATION

We formulate our GPR localization problem as inference
over a factor graph. A factor graph is a bipartite graph with
two types of nodes: variables x ∈ X and factors φ(·) : X →
R. Variable nodes are the latent states to be estimated, and
factor nodes encode constraints on these variables such as
measurement likelihood functions.

Maximum a posteriori (MAP) inference over a factor
graph involves maximizing the product of all factor graph
potentials, i.e.,

x̂ = argmax
x

m∏
i=1

φi(x) (1)

Under Gaussian noise model assumptions, MAP inference
is equivalent to solving a nonlinear least-squares problem [6].
That is, for Gaussian factors φi(x) corrupted by zero-mean,
normally distributed noise,

φi(x) ∝ exp

{
−1

2
||fi(x)− zi||2Σi

}
⇒ x̂ = argmin

x

T∑
t=1

||fi(x)− zi||2Σi

(2)

where, fi(x) is the measurement likelihood function predict-
ing expected measurement given current state, zi is the actual
measurement, and || · ||Σi

is the Mahalanobis distance with
measurement covariance Σi.

For the GPR localization problem, variables in the graph at
time step t are the 6-DOF robot poses st ∈ SE(3), velocities
vt, and IMU bias bt, i.e. xt = [st vt bt]

T . Factors in the graph
incorporate different likelihoods for GPR, IMU, and wheel
encoder measurements. At every time step t, new variables
and factors are added to the graph. Writing out Eq. 2 for the
GPR localization objective,

x̂1:T =argmin
x1:T

T∑
t=1

{
||fgpr(xt-k, xt)− zgprt-k,t||

2
Σgpr

+

||fwh(xt-1, xt)− zwh
t-1,t||2Σwh

+

||fimu(xt-1, xt)− zimu
t-1,t ||2Σimu

} (3)

This objective in Eq. 3 is solved online every time step using
an efficient, incremental solver iSAM2 [26]. Individual terms
in Eq. 3 are described in more detail in Section IV.
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Fig. 2: Overview of GPR image construction. (a) Unprocessed localized
traces received by the device. (b) Horizontally stacked traces from (a), where
the amplitudes correspond to pixel intensity. (c) Measurements after filtering
and gain. (d) Final image after thresholding.

IV. APPROACH

There are three primary stages in our approach: GPR pre-
processing and submapping (Section IV-A), learning GPR
models (Section IV-B), and factor graph optimization (Sec-
tion IV-C). Fig. 3 illustrates our ground encoding approach.

A. GPR Submapping

Preprocessing: Digital signal processing techniques are
needed to improve the signal-to-noise ratio of the received
GPR signal, counteract signal attenuation, and remove re-
current artifacts that are intrinsic to GPR systems. Measure-
ments ot arrive from each position as a 1D discrete waveform
called a trace, which are locally averaged to reduce noise and
resampled to form a uniformly spaced image [27].

Receiving signals often contain a low frequency com-
ponent and DC bias caused by saturation and inductive
coupling, requiring a dewow filter, which involves a DC
subtraction and low-cut filter parameterized on the radar’s
center frequency and bandwidth [1]. In order to counteract
attenuation, we multiply the signal by a Spreading and
Exponential Compensation (SEC) gain function,

G = exp(a · t) · tb (4)

where, a is the exponential gain constant and b is the power
gain constant [28].

GPR images have global and local context. Global features
such as horizontal layers encode information about the gen-
eral environment of a system, which can include boundaries
like layers of asphalt in roads. Local features, which include
pipes and point objects, provide salient features needed to
effectively localize. To maintain prominent global features,
we subtract the mean trace over all prior submaps (as
opposed to over each submap) to remove repeated artifacts
introduced by the radar while emphasizing local features.

Submap formation: Traditional GPR systems provide
a one-dimensional trace ot at each position, which does
not provide enough information to effectively determine a
system’s unique position. A collection of traces represents
a local fingerprint that may contain valuable information for
localization. Our approach involves constructing submaps St

based on integration of local wheel encoder measurements
wx

t (Fig. 2). A submap is approximated by sampling discrete
GPR measurements from a continuous distribution of GPR
measurements using an interpolation function F̂ to create a
uniformly sampled image,

St = F̂ ({(ōt, wx
t ) | wx

start ≤ wx
t < wx

end}) (5)

where, ōt is the locally averaged GPR measurement, de-
scribed in Preprocessing, at time t and wx

t is the wheel
encoder measurement at time t. We use a rule-based method
that maps a set of wheel odometry and angular velocity
measurements to a decision of whether a short trajectory is
a valid submap.

B. Learned GPR model

The goal of the learned GPR sensor model is to derive the
GPR factor cost term in Eq. 3 for the factor graph optimiza-
tion. The sensor model is trained to predict a relative trans-
formation between two submaps {St−k, St} from ground
truth measurements. Submap images are compressed into
feature activation map, which are provided to a transform
prediction network to estimate the relative transformation
snett−k,t between poses st−k and st (Fig. 3).

Feature learning: Identifying the function that directly
maps submaps to transformations is prone to overfitting
because of substantial noise in the original radar submaps.
To learn the function that relates two similar submaps St−k
and St, an intermediate feature representation ft−k and ft is
needed. A ResNet-18 auto-encoder is used to obtain k feature
activation maps that contain relevant features for localization
like vertical edges. The autoencoder is trained with an L1
reconstruction loss to preserve the sparsity of features in the
original submap.

Submap comparison: Prior to identifying transformations
in the data, we perform an average pooling on the row-
wise standard deviation of submap images to check for
salient features. If submaps St−k and St contain valid
features, a linear correlation network checks whether they
share common features using a method further described in
Transform Prediction.

Transform prediction: If submaps contain salient features
and are correlated, we predict a relative 1D transformation
snett−k,t using a two stage approach. We first construct a set of
cost curves by comparing each feature map St−k,i and St,i

for all k using Eq. 9 for feature activation map pixel space.
We then construct a vector of argmax elements from each
cost curve, which is provided to a fully-connected regression
network to identify the relative transformation snett−k,t. The
network learns to provide higher weight to filters that are
better correlated with the desired translation, reducing the
effect of filters that encode common patterns in the data
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Fig. 3: Overview of the Ground Encoding system. On the left, two submaps containing similar subsurface structures are acquired during forward-backward
trajectory that has accumulated drift. An autoencoder maps these submaps to feature activation maps, which are used by the transform prediction network to
find the relative transformation. Factors denoting the measurement likelihoods from GPR, inertial, and wheel encoder measurements are incorporated into
the graph to estimate the system’s latent states xt = [st, vt, bt]T ∀t ∈ {1 ... T}. The trajectory on the right shows the outcome of the GPR correction.

like horizontal banding. The transform prediction network
is trained using Huber loss against supervised ground truth
data sgtt−k,t acquired by a robotic total station.

C. Factor graph optimization

GPR factor: Measurements from GPR are incorporated
into the graph as factors with the cost from Eq. 3. The relative
GPR factor has a quadratic cost penalizing large residual
values and is defined as,

||fgpr(xt-k, xt)− zt-k,t||2Σgpr
:= ||s−1

t st-k 	 zgprt-k,t||
2
Σgpr

(6)

where, zgprt-k,t is the predicted relative transformation from
the transform prediction network, s−1

t st-k is the estimated
relative pose transformation between two variable nodes in
the graph, and 	 represents the difference between two
manifold elements.

IMU preintegrated factor: For incorporating IMU mea-
surements in the graph, we use the IMU preintegration
factor proposed in [29]. The preintegration factor locally
integrates multiple high-frequency accelerometer and gyro-
scope measurements into a single compound preintegrated
IMU measurement. This has the advantage of combining
the speed and complexity benefits of filtering-based methods
along with the accuracy of smoothing methods.

The IMU factor term from Eq. 3 can be expressed as a
residual over the differences in orientation ∆Ri,j , velocity
∆vi,j , and position ∆ti,j ,

||fimu(xt-1, xt)− zt-1,t||2Σimu
= ||rIij ||2 + ||rbij ||2 (7)

where, {i, j} are state index pairs between which preintergra-
tion is performed. We perform the preintergration between
consecutive states, i.e. {i, j} := {t-1, t}. Here, rIij =
[rT∆Ri,j

, rT∆vi,j
, rT∆ti,j

]T is the preintegration error residual

and rbij is bias term estimation errors. We refer the reader
to [29] for more details on these residual error terms.

Wheel encoder factor: Wheel encoder measurements
are incorporated into the graph between sequential poses
{st−1, st}. The relative wheel encoder factor is defined as,

||fwh(xt-1, xt)− zwh
t-1,t||2Σwh

:= ||s−1
t st-1 	 zwh

t,t-1||2Σwh
(8)

where, zwh
t-k,t is the relative difference between two poses

measured by the wheel encoder.

V. RESULTS AND EVALUATION

We evaluate our GPR-based localization system in three
distinct, GPS-denied environments: a basement (nsh b), a
factory floor (nsh h), and a parking garage (gates g). We
first discuss our experimental setup in Section V-A. We
then provide an ablation of validation losses from different
learned and engineered GPR sensor models in Section V-C.
We finally evaluate our entire GPR-based localization system
and demonstrate the effects of adding GPR information in
the graph optimization in Section V-D.

A. Experimental setup

We constructed a manually-pulled test rig named Super-
Vision shown in Fig. 4(a) for data acquisition. SuperVision
uses a quad-core Intel NUC for compute and wirelessly
transmits onboard data from an XSENS MTI-30 9-axis
Inertial Measurement Unit, YUMO quadrature encoder with
1024 PPR, and a Sensors and Software Noggin 500 GPR.
Readings from the IMU magnetometer were excluded due
to intermittent magnetic interference commonly found in
indoor environments. Ground truth data was acquired by a
Leica TS15 total station. The base station logs measurements
from the onboard computer and the total station to ensure
consistent timing.
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Fig. 4: (a) Experimental setup for ground encoding datasets. (b) Testing in
distinct environments. (c) Left GPR image constructed with 2.5cm antenna-
ground separation. Right GPR image constructed with ground-coupled
antenna configuration.

In our testing, we found that GPR antenna placement was
a critical design decision. Our initial design suspended the
radar system 2.5cm above the ground to maintain a fixed
transformation between the IMU and GPR sensor. While a
fixed sensor setting like this is most common for localization
systems, the small air gap between the GPR and the ground
introduced ground energy losses and multi-path interactions
causing poor depth penetration and repetitive ringing. To
address this, we added a passive suspension to the GPR
system so as to maintain constant ground contact. This
improved depth penetration as shown in the right image of
Fig. 4(c). We address methods to improve the robustness and
applicability of our system in Section VI.

B. Engineered GPR model baseline

For evaluating our approach, we also consider a baseline
engineered GPR model that makes use of a correlation metric
similar to existing work. This engineered GPR model is
incorporated as factors in the graph in the same way as our
learned GPR model.

Existing GPR-based localization methods use a mea-
surement correlation value to register images to a prior
map [4, 5]. We compute a similar measurement correlation
value between image pairs and select the pair with the
highest correlation to add as factors in the graph. We use
the Pearson product-moment correlation between two non-
sequential GPR images St−k, St,

r(A(T ), B(T )) =

∑
r,cAr,c(T )Br,c(T )√∑

r,cAr,c(T )2
√∑

r,cBr,c(T )2
(9)

where, Ar,c(T ) = St−k(T, r, c) − mean(St−k(T )),
Br,c(T ) = St(T, r, c)−mean(St(T )), r is the submap row,
c is the submap column, and T is the transformation from
St−k to St used to only compare the shared region between
the submaps.

Specifically, we estimate the transformation along the x-
direction of the robot’s motion. This is obtained by solving

TABLE I: Validation losses for different GPR models (cm)

Dataset
Model type gates g nsh b nsh h Combined

engineered 97.66 88.07 100.24 95.33
zeroth 17.81 137.97 23.30 59.49
linear, corr-feat 14.81 2.88 3.90 7.40
nonlinear, corr-feat 14.96 3.09 4.06 8.97

the optimization that maximizes the correlation from Eq. 9,

zt−k,t = K argmax
T

(r(A(T ), B(T ))) (10)

where, K is a constant that converts submap pixel space to
robot motion space.

C. GPR factor learning

We now evaluate the performance of different GPR models
to be used in the factor graph. Table I compares losses for the
baseline engineered models against our learned GPR sensor
model discussed in Section IV-B for different choices of net-
work architectures. The loss here is the mean-squared error
that we saw in Eq. 6 against ground truth transformations.
We use the Huber loss function for robustness to outliers.
engineered is the baseline correlation approach discussed
in Section V-B which resembles prior work [4]. zeroth
is a zeroth-order model that predicts the average relative
transform of the training dataset. corr-feat are acquired by
concatenating the argmax values of the discrete cost curves
from the spatial correlation of autoencoder activation maps
as described in Section IV-B. linear and nonlinear refer to
the linear and nonlinear activation functions in the fully-
connected layers.

The engineered model has notably high losses as there
can be many false positive matches since the GPR image
data often has similar amplitude with subtle features. In
comparison, we see that the different learned GPR model
architectures have much lower losses, with linear, corr-feat
model type having the best performance. We also found that
spatial correlation features corr-feat generalized much better
than using vectorized autoencoder feature maps directly.

D. Factor graph optimization

We finally demonstrate the effect of the GPR sensor
model on odometry drift correction through a qualitative
and quantitative evaluation. The best performing model from
Table I, linear, corr-feat, was selected as the learned model
in this evaluation. We compare the engineered and learned
model with the ground truth trajectory and the results from
an oracle model. The oracle model predicts the ground truth
relative pose transformation, representing the lower error
bound of the GPR factor. The covariance parameters in the
graph are fixed and the same across sequences.

Qualitative Evaluation: Both trajectories in Fig. 5 were
collected in a modern parking garage with homogeneous
and repetitious subsurface features, making the test chal-
lenging for our GPR system. Additionally, non-deterministic
reflections from nearby cars and walls were present in the
dataset. As shown, the sensor model relying on engineered
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Fig. 7: RMSE ATE over time. (a) Corresponds to the trajectory from
Fig. 5(a). (b) Corresponds to the trajectory from Fig. 5(b). In both cases,
loop closure events reduce the accumulation of odometry error.

features identifies incorrect transformations by comparing
processed submaps directly, causing substantial drift. This is
also reflected in Fig. 7, where incorrect loop closures cause
the engineered model to have greater error than odometry
alone. We see that the learned model recovers the robot’s
poses close to the true trajectory and matches the oracle
performance closely.

Quantitative Evaluation: Fig. 6 shows the RMSE of
the absolute trajectory error described in [30]. Errors were
computed over 7 sequences in gates g, 5 sequences in
nsh b, and 3 sequences in nsh h (15 sequences overall).
Odometry measurements had greater error in the gates g

set since loops and turns were more common. To better
compare sensor models, an oracle provided identical loop
closure observations to both engineered and learned models.
The learned model outperformed the engineered model in
all sequences. The engineered model would often produce
false detections in sparsely featured environments, causing
a large variance in performance. Repetitive structures and
noise in the processed image caused the engineered model
to perform poorly. The learned sensor model performed
consistently better by decomposing the image into feature
activation maps, containing prominent structures and edges
in the data that are easier to compare. The learned model
nearly performs as well as the oracle detector, the model’s
lower error bound.

VI. DISCUSSION

We presented a GPR-based localization system that uses
a learned sensor model to position a robot in a unknown,
GPS-denied environment. We accomplished this by com-
bining GPR measurements to create individual submaps,
which were provided to a transform prediction network to
predict a relative pose transformation. These transformations
were then incorporated as measurement likelihoods in a
factor graph, where the GPR measurement corrected for
accumulated drift from proprioceptive measurements. We
validated our system in three distinct environments, where



we have shown improved localization performance over
existing correlation-based approaches.

Prior work has relied on sophisticated multi-channel array
GPR systems to perform localization. In this evaluation,
we demonstrate that a low-cost, off-the-shelf, single-channel
GPR system can be used for localization. While our evalu-
ation was performed with a ground-coupled GPR system,
our work can generalize for air-launched GPR systems,
improving the viability for real world deployment.

Our learned sensor model is trained using data collected at
a single point in time and is not currently equipped for long-
term prior map registration, since measurements are affected
by changes in subsurface moisture content. In the future, we
would like to extend this work by using data collected from
highly accurate, multi-channel GPR systems during different
seasons and weather conditions to improve the robustness of
prior map registration.

Current GPR-based localization systems must revisit ex-
plored locations to correct for accumulated drift. Future
work will investigate methods to attenuate this require-
ment by modeling the typical relationships of continuous
subsurface structures (eg. pipes, subsurface mines, natural
caves), enabling more robust GPR-based state estimation in
a broader range of settings where revisitation is not practical.
We hope to build on this work and move towards general
representations for GPR data needed to enable robust, real
world deployment of localizing GPR systems.
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