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Few-leaf Learning: Weed Segmentation in Grasslands

Ronja Giildenring, Evangelos Boukas, Ole Ravn and Lazaros Nalpantidis

Abstract— Autonomous robotic weeding in grasslands re-
quires robust weed segmentation. Deep learning models can
provide solutions to this problem, but they need to be trained
on large amounts of images, which in the case of grasslands are
notoriously difficult to obtain and manually annotate. In this
work we introduce Few-leaf Learning, a concept that facilitates
the training of accurate weed segmentation models and can lead
to easier generation of weed segmentation datasets with minimal
human annotation effort. Our approach builds upon the fact
that each plant species within the same field has relatively
uniform visual characteristics due to similar environmental
influences. Thus, we can train a field-and-day-specific weed
segmentation model on synthetic training data stemming from
just a handful of annotated weed leaves. We demonstrate the
efficacy of our approach for different fields and for two common
grassland weeds: Rumex obtusifolius (broad-leaved dock) and
Cirsium vulgare (spear thistle). Our code is publicly available
at https://github.com/RGring/WeedAnnotator.

I. INTRODUCTION

Precision farming can pave the way towards more sustain-
able agricultural production. While different robots are being
deployed in the fields to handle crops or control weeds, what
the vast majority of those robots have in common is that
they employ deep learning-based computer vision systems
for plant detection. Deep learning constitutes a strong tool
for detection, but comes at a significant cost: large amounts
of annotated training data are required. In crop cultivation,
plants are clearly separable from soil by means of simple
color thresholding or by considering near-infrared (NIR)
imagery that has higher reflectivity on chlorophyll content.
However, this is not an option in grassland farming, as
foreground vegetation (weeds) and background (grass) share
similar color and chlorophyll content. Manual annotation of
grassland data becomes an extremely laborious task and thus,
such publicly available datasets are scarce. To the best of
our knowledge, there is no real-world grassland dataset with
pixel-level annotations publicly available.

This work introduces the concept of Few-leaf Learning
which can generate field-and-day-specific segmentation mod-
els from just a handful of weed leaves. But how can training
with just a few leaves, as shown in Fig. 1, lead to accurate
weed segmentation? We build upon the observation that the
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Fig. 1: Few-leaf Learning: A segmentation model can be
trained on a very small number of manually annotated leaves.

visual appearance—phenotype—of plants belonging to a spe-
cific species—same genotype, captured within one field and
one day, has relatively low variance. This is mainly, because
plants within the same field have been exposed to the same
environmental variations, which restrains the expression of
phenotypic plasticity and thus results in similar leaf color,
size, shape and thickness. As an example, Fig. 1 shows
nine randomly drawn leaves from one of our data collection
sessions, providing similar features in shape, texture and
color. We train semantic segmentation models on synthetic
data generated using standard image composition techniques.
Hereby, a very small number of weed leaves needs to be
manually annotated and then pasted on weed-free grassland
background images, generating numerous combination of
images. The model learns obviously relevant weed features,
but also learns to separate those features from the variety of
possible background features occurring in other plants, grass
and mud. Despite our intended naming similarity, Few-leaf
Learning is not related to the well-known Few-shot Learning,
because in our case the network can and should be trained on
a rather large number of synthetic training samples—though,
just using only a few leaves to generate them.

Our work can significantly simplify the creation of an-
notated grassland datasets. We show that each time a data
collection session has been performed on a field, Few-
leaf Learning can be applied to predict the majority of
weed occurrences within that session. Afterwards, the human
annotator can additionally perform corrections or further
annotations, as needed. We hope that our approach will en-
courage more publications of high-quality grassland datasets
in the future, which is also our own ambition.

The contributions of this work are summarized as follows:

o We experimentally show, that nine manually annotated
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leaves seem to be sufficient for the proposed Few-leaf
Learning.

e We refine the mask predictions from the Few-leaf
learning by applying GrabCut in an automatic manner
(i.e. no user input is required). This leads to a notable
performance improvement of ~7% for the Intersection
of Union as well as the Boundary F1 score.

« We show generalizability of our final Few-leaf Learning
pipeline by applying it to four different data collec-
tion sessions of different locations, days and plants,
i.e. Rumex obtusifolius (broad-leaf dock) and Cirsium
vulgare (spread thistle).

e« We make our code publicly available at https://
github.com/RGring/WeedAnnotator.

II. RELATED WORK
A. Agricultural Datasets

The automated detection of weeds in grassland has been
investigated in agricultural robotics since the early 2000s,
e.g. [1]-[5]. However, the proposed approaches are difficult
to compare, because the research groups evaluated the ap-
proaches on their own unpublished datasets. In total three
relevant published grassland/weed datasets were identified:

o Rumex Ancenis dataset [6] including monochrome im-
ages of Rumex obtusifolius with bounding box annota-
tions. The images have been collected during one day
and field under controlled lighting conditions.

o GrassClover dataset [7] including synthetic grass-clover
images using image composition.

o DeepWeeds dataset [8] including 8 common Australian
weeds in their natural environment. The annotations are
on a classification level.

None of above provide pixel-level annotations on real-
world images. This is a clear gap. In contrast, publicly avail-
able crop field datasets are of higher quality and most of them
include annotations on a pixel-level which is relevant infor-
mation for the weeding process, like e.g. cauliflower/broccoli
crop dataset [9], sugar beet crop dataset [10] and carrot crop
dataset [11].

B. Semi-automatic Annotation

The objective of semi-automatic annotation is to reduce
the amount of human input, while maintaining the same
annotation quality. This can especially save a significant
amount of time on pixel-level annotations.

In interactive segmentation, masks are predicted based
on negative and positive input provided by the annota-
tor. Ideally, it requires only a few clicks to obtain high
quality segmentation masks. GrabCut [12] is one of the
pioneering works, formulated as an optimization problem. It
requires bounding box input in order to generate a pixel-level
annotation. The initial annotation proposal can be further
refined with additional user input in form of scribble lines.
More recently, interactive segmentation using deep learning
techniques outperformed previous approaches, such as Deep
Extreme Cut [13], f-BRS [14] and Inside Out Guidance [15].

Finally, another way of automating the annotation process
is to automatically generate object proposals. The model
generates them based on unlabeled or weakly-labeled data.
Finally, the annotator corrects and complements the given
object proposals to conclude the annotation process [16],
[17].

C. Synthetic Image Generation

Synthetic images are artificial images, that have been
generated programatically. The great advantage of using syn-
thetic data is the cost-efficiency of generating large amounts
of data. There is no need of collecting data in the real world
and more importantly there is no need of annotating the
generated data.

Using image composition, new images are generated
by pasting foreground objects to new background images.
Dwibedi et. al. [18] pastes kitchen objects in new scenes.
Their focus is patch-level realism, i.e. handling pasting arti-
facts. Tripathi et. al. [19] tackles global realism by extending
the basic image composition with a GAN-network that learns
where to position the foreground object in the scene. In
agriculture, image composition has been successfully applied
in the area of seed phenotyping [20], leaf segmentation and
counting [21], [22] and clover-grass segmentation [7].

Another way of generating synthetic images is to render
samples from a simulation environment, e.g. Cicco et. al.
[23] simulate sugar beet leaves as kinematic chain, com-
bining with real world textures. Building up such realistic
simulations is complex and needs expert knowledge. There-
fore, the costs might be shifted from manual annotation to
creating appropriate simulation environments. Furthermore,
the unrealistic appearance of rendered image is still a major
issue. Domain Randomization [24], [25] as well as Domain
adaptation (mainly GANs [26]-[28]) are popular approaches
to close the the simulation-to-reality gap.

III. PROPOSED PIPELINE

Our Few-leaf Learning pipeline consists of three main
steps:

A Generation of synthetic data by pasting a small number
of weed leaves on top of weed-free background images.

B Generation of weed mask predictions using a semantic
segmentation model trained on the synthetic data only.

C Mask prediction refinement using GrabCut [12] in an
automated manner.

A. Synthetic image generation

First, synthetic images are generated using image compo-
sition methodologies. As input, we provide a small number
of precisely segmented leaves L and background field images
B that do not contain the targeted plant. Additionally, plant
parameters are required like the range of number of leaves
[p1, ] and the maximum distance to the root center d,.
Finally, the synthetic images are composed according to the
procedure described in Algorithm 1. We do not consider
pure background images (np > 0) because the generated
foreground images include already a significant amount of
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Fig. 2: Examples of synthetic image compositions. Left two: Rumex obtusifolius, Right two: Cirsium vulgare

Algorithm 1 Image composition procedure

Input: Field background images B
Input: Upwards pointing leaves L
Input: range of number of leaves [p;, p.], max root center dist
d

Output: Composed image

B; < random_select(B) > Background image
B; < random_flip(random_scale(random_rotate(B;)))
n, <= random_select([1, 2, 3, 4]) > Number of plants

for i = 0 to n, do
x;,1y; < random _select_position(B;)
n; < random_select([pi, ..., pu])) > Number of leaves
for j =0 ton; do
L; < random_select(L)
d, <= random_select([0, ..., d.])
6, < random_select([0, ..., 360])
Paste L; to B; with angle 0, and distance d, to [x;, ;]
Optional: Apply blending method
end for
Optional: Add distractor objects to B;
end for

background pixels. In Fig. 2, example synthetic images are
presented for both weeds — Rumex obtusifolius and Cirsium
vulgare.

Previous studies showed, that local pasting artifacts can
reduce the performance of detection methods [18], [19].
Gaussian filters smooth the sharp object boundaries. Further-
more, Poisson image blending [29] keeps the edges from the
source patch, but adapts the colors from the target image
(mode: Normal). An extension is to keep the stronger edges
from either the source or the target (mode: Mix). We consider
two variants of Poisson image blending. In variant Poisson
Normal, we simply apply Poisson image blending in mode
normal to the segmented leaf and the background image. In
variant Poisson Mix + Normal, we first blend the leaf as a
bounding box in mode mix and secondly add the segmented
leaf in mode normal. This merges the grass structure of the
target batch with the grass structure of the source image,
while keeping the proper texture of the leaf. Figure 3 shows

the global and local effects of both Poisson blending variants.
In order to avoid that blending artifacts are associated

with the targeted weed, negative objects are pasted to the
image [18], [19]. As a consequence, blending artifacts will
be present both in background and foreground. We consider
two types of distractor objects. The grass distractor is a

Poisson Mix +
Normal

.

Poisson Normal

Raw

global

local

Fig. 3: Effects of Poisson blending [29]. Globally, both
Poisson blending variants adapt to the color ambience of the
background image. Locally, variant Poisson Mix + Normal
merges the grass textures of the source patch and the target
image.

randomly selected grass leaf object, that will be added to the
image composition. The shape distractor [19] has the shape
of one of the input leaves, but contains the texture and color
of a random cutout in another randomly selected background
image. A positive side-effect of adding distractor objects is
the generation of partially occluded foreground objects.

B. Model Training

We use the PSPNet network architecture [30] with
Resnet18 [31] as backbone to train a semantic segmentation
model on the synthetically generated images. We restrict the
model size with a Resnetl8 in order to avoid overfitting to
the small number of different leaves.

C. Mask refinement

We investigate the usage of two classic interactive segmen-
tation algorithms GrabCut [12] and marker-based watershed
[32] to refine the model predictions. Originally, classic inter-
active segmentation algorithms expect the user to manually
provide information about background and foreground re-
gions. Instead, we use the prediction generated by the trained
PSPNet to initialize background and foreground areas. This
removes the necessity of user inputs and automates the
methods. Concretely, our mask refinement consists of two
steps as shown in Figure 4: (1) Mask shrinking by applying
morphological erosion to the background and foreground
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Fig. 4: The mask refinement consisits of two steps: 1. The
predicted mask will be shrunk by applying morphological
erosion to background (black) and foreground (blue), result-
ing in a third unknown area (yellow). 2. The eroded mask
initializes classical interactive segmentation algorithms like
GrabCut [12] or watershed [32] to fill the unknown area.

area of the model prediction; (2) Applying classical interac-
tive segmentation like GrabCut [12] or marker-based water-
shed [32] to the eroded mask and the corresponding image.
Finally, we remove noise using morphological closing.

IV. EXPERIMENTAL SETUP
A. Data Acquisition

For this work, we have collected four sets of data. Each
collection has been gathered on one field within one hour, so
that we can expect relatively low variance of leaf features,
which makes the proposed Few-leaf Learning applicable. The
images were acquired using a 8-megapixel 1/3-inch camera
with a resolution of 2448 x 3263 pixels while freely moving
through the field. As a consequence, the collected images
contain different levels of blur.

In data collection (dc) 1, 2 and 3 the weed Rumex
obtusifolius has been manually annotated per leaf, i.e. for
each leaf an individual instance has been created. In data
collection 4, the weed Cirsium vulgare has been annotated
per plant, as the plants are quite dense and it is most often
infeasible for the annotator to identify all single leaves.
Table I gives an overview of the data collections. For each
gathering, the number of images containing instances of the
considered weed (FG—foreground) and the number of weed-
free field images (BG—background) is provided, as well as
the average leaf/plant pixel size as a percentage of the whole
image pixel size. In the case of dc4, the average object size
is significantly bigger, as the annotation was performed per
plant, rather than per leaf.

For the generation of synthetic training images, a pool of
complete non-occluded leaves is extracted from the training
split (see # leaf pool in table I). Hereby, blurry leaves
are discarded. The synthetic training images are generated
by randomly drawing n number of leaves from that pool
and composing them with the background images from the
training split. Validation and test results are reported on the
real data, that has been annotated manually.

B. Metrics

Three standard metrics are considered to evaluate the
semantic segmentation performance. The global accuracy
(GAcc) computes the pixel accuracy over the dataset. Its

TABLE I: Summary of the four data collections (dc)

D | del | de2 | de3 | do4
Weed Rumex obtusifolius Cirsium
vulgare
Date Sep. 20, 2020 Sep. 03, 2020 Sep. 12, 2020 Sep. 20, 2020
Location 55°44°43.7°N 55°46°25.6"N 55°47°20.3"N 55°44°44.1°"N
12°22°53.9”E 12°32°16.2”E 11°56’40.5”E 12°26°10.3"E
# FG imgs 73 109 43 72
(train/val/test) (36/18/19) (54/27/28) (7/18/18) (6/33/33)
# BG imgs 120 120 59 99
(train/val/test) (60/30/30) (60/30/30) (27/16/16) (50/24/25)
Annotation leaf-based plant-based
# Objects 589 619 329 125
# leaf pool 75 93 58 25
Ve 051 % 030 % 0.52 % 2.64 %
object size

main disadvantage are misleading scores on imbalanced
datasets. Also, we consider the widely known Intersection
over Union (IoU) only for the foreground objects and call
it therefore Plant loU. While the IoU adresses the region
similarity, the Boundary F1 score (BF score) [33] evaluates
the contour similarity per image. Figure 5 shows example
cases of the IoU and BF-score for different mask predictions.

C. Training configuration

For all experiments the same training configuration is
applied. The Resnetl8 backbone of the PSP-Network is
initialized with weights, pre-trained on ImageNet [34]. The
network is trained on 50 synthetically generated images
(downscaled to 612x 816 pixels) for 300 epochs. It is updated
using the Adam Optimizer [35] with a learning rate =
0.0001 and the Lovasz Loss [36]. The following image-
based augmentations were applied: random flip, random
scale, random rotate, random crop and motion blur. Note,
that during validation the last model state (at epoch 300)
will be considered. Likewise, during application of Few-
leaf Learning, there will be no ground-truth validation split
available to perform early stopping to prevent overfitting.

V. EXPERIMENTAL EVALUATION

We have conducted four experiments to evaluate the
proposed Few-leaf Learning. In the first three, we are
considering just the training- and validation- split of data
collection 1 to define the best set of hyperparameters. This
collection provides leaf-based annotations, allowing in-depth
evaluations. Then, in the the fourth experiment, we are using
these outcomes and apply our pipeline to the test splits
of all four data collections to evaluate the generalization
capabilities over different fields, days and plants.

A. Blending Methods: Ablation Study

In this experiment, the effect of different blending methods
is investigated. We are considering the methods discussed in
Sec. III-A, as well as a number of combinations of those,
where each leaf has been blended with a certain probability:
- Blending MixI: [R: 0.5, GB: 0.5, Pn: 0.0, Pa+n: 0.0],

- Blending Mix2: [R: 0.33, GB: 0.33, Pn: 0.0, Paryn: 0.34],
- Blending Mix3: [R: 0.25, GB: 0.25, Pn: 0.25, Py4n: 0.25].
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Fig. 5: ToU and BF-score for predictions of different mask qualities. Note, that the framed mask represents the ground truth
(IoU=BF=1) with over-segmentations to the left and under-segmentations to the right.

We have used 9 segmented leaves to generate 50 image
compositions with the different considered blending meth-
ods and additional distractor objects. Table II shows our
considered metrics (GAcc, Plant IoU and BF) obtained for
the different blending methods. Most blending methods do
not have a significant influence on the model performance.
Considered in isolation, Poisson Mix + Normal performs
best but mixing it with raw pasting and Gaussian edge
smoothing leads to even better performance. Thus, in all
further experiments, Blending Mix2 will be used.

TABLE II: Results on the validation split of data collection
1 for models trained on image compositions with different
blending methods.

Blending method | GAcc | Plant IoU | BF

Raw (R) 0.984 0.598 0.651

Gaussian Blur (GB) 0.984 0.585 0.627
Poisson Normal (Py) 0.979 0.467 0.432
Poisson Mix + Normal (Pas4n) 0.985 0.617 0.670
Blending Mix1 0.984 0.594 0.646
Blending Mix2 0.985 0.624 0.684
Blending Mix3 0.985 0.620 0.657
Blending Mix2 + shape distractor | 0.984 0.610 0.666
Blending Mix2 + grass distractor | 0.985 0.619 0.686

B. How few leaves are required?

In this experiment, the minimum required number of
leaves is determined in order to predict the majority of the
foreground objects. From the leaf pool of intact leaves (see
table 1), we draw randomly n = 1,3,9,15,21 leaves to
generate synthetic image compositions. For each number of
n leaves, we repeat the experiment 10 times. Figure 6 shows
the mean and variance of Plant IoU and BF-score over the
drawn number of leaves. The Plant IoU and BF-score both
increase with increasing number of leaves and saturate at
some point—this appears to be 9 leaves.

C. Effectiveness of mask refinement

In this experiment, we want to show the impact of the
mask refinement step, where we apply GrabCut as well as
watershed to the mask predictions generated by PSPNet.
A model trained with 9 different leaves with an average
performance (Plant IoU = 0.632) is used here. The predicted
masks are refined, as described in Sec. III-C. The results
of Table III show that GrabCut improves the performance
significantly. Both, the Plant IoU as well as the BF-score

0.8
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0.51

0.41

score

0.31

0.2 1

—eo— |oU
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0.0 — T T ; T
1 3 9 15 21

number of leaves
Fig. 6: Mean Plant IoU and BF score (each averaged over 10
iterations) for models trained on synthetic images generated
with various numbers of randomly drawn leaves.

TABLE III: Performance results for the mask refinement
step using GrabCut or watershed, compared to using no
refinement.

Post-processing ‘ GAcc ‘ Plant ToU ‘ BF

method
None 0.985 0.632 0.685
GrabCut 0.988 0.703 0.751
Watershed 0.978 0.559 0.567

have improved by approximately 7%. On the contrary, the
marker-based watershed is shown to have a negative effect
on the overall pipeline performance.

In Fig. 7, we illustrate qualitative results using GrabCut
in the mask refinement. Even if the model predictions tend
to under-segment the detected leaves (second column), those
under-segmentations are often corrected by GrabCut (third
column), with the trade-off of losing small-scale predictions,
like e.g. in the second row.

D. Generalizability over different fields, days and plants

In this last experiment, the final pipeline is applied to
the test splits of all four data collections (dc) to evaluate
the generalization capabilities. As an outcome of the three
previous experiments, our final pipeline (i) applies Mix2
image blending, (ii) randomly draws 9 segmented leaves,
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Fig. 7: Qualitative examples of model predictions without
and with GrabCut refinement. GrabCut generally improves
large detections but suppresses small ones.

TABLE 1IV: Performance of the Few-leaf training pipeline
on the four different data collections, specified in Table 1.

Data Collection | GAcc | Plant IoU | BF

1 0.986 0.701 0.704
2 0.991 0.585 0.592
3 0.989 0.745 0.726
4 0.989 0.723 0.729

and (iii) uses GrabCut for post-processing.

Table IV contains the obtained experimental results and
shows clearly that the Few-leaf training pipeline generalizes
over different days (dcl vs. dc2 vs. dc3), different fields (dcl
vs. dc2 vs. dc3) and different plants (dcl/dc2/dc3 vs. dc4).
Though, the performance on data collection 2 is noticeably
worse. This is due to the fact that it contains smaller plants,
with an average leaf size significantly smaller compared to
the average leaf size of data collection 1 and 3 (see again
Table I).

The proposed Few-leaf training becomes especially rele-
vant when it comes to the creation of high-quality grassland
datasets. We picture it as a tool, that can be applied after each
data collection session to generate labels for the majority
of plant occurrences. The intention is to reduce the manual
labeling labour, leaving the human annotator with only a
few additional annotations and corrections. We want to get
an intuition of how big is the proportion of sufficiently
predicted weeds, respectively of how much work remains
for the human annotator. We determine for each predicted
mask mzi, corresponding to image ¢ the subset of its ground

plant pixel ratio

plant pixel ratio
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Fig. 8: Plant pixel ratio over IoU for the test sets of the
four different data collections (dcl - dc4). The plant pixel
ratio represents the ratio of ground truth pixels that has been
predicted within the pre-defined IoU ranges, shown by the
bars. The continuous line represents the cummulative plant
pixel ratio.

truth instances S; that results in the maximum IoU between
m; and S;. We refer to this maximum value as JoU,qz. ;.
As a consequence, we know for each ground truth instance
the IoU it has been predicted with; it is ToU = IoUp,aq.i-
Finally, we can determine the overall percentage of ground
truth weed pixels in the whole dataset that are predicted with
a certain IoU. In Fig. 8, we show the ratio of ground truth
pixel (named “plant pixel ratio”) that has been predicted
within given ranges of IoUs. The predominant portion of
pixels is predicted with an IoU > 0.6 and depending on
which label precision is targeted, one can decide if Few-leaf
Learning could support during the process of annotating.

VI. CONCLUSION

Our work manifests how domain knowledge—in our case
plant phenotyping observations—can lead to meaningful
simplifications of demanding computer vision problems.
More precisely, we were able to use just 9 random leaves to
synthetically generate multiple images and ultimately train
accurate weed segmentation models. The mask predictions
are further refined by applying GrabCut in an automated
way. The proposed pipeline has been evaluated on different
days, different grassland fields and for two different weeds
(Rumex obtusifolius, Cirisium vulgare) exhibiting good gen-
eralization capabilities. The presented results show that a
significant amount of effort can be saved during annotation
using Few-leaf Learning. Hopefully, this will allow for the
creation of new and more detailed grassland weed datasets
that will enable autonomous robotic weeding. Nevertheless,
we believe that our pipeline can be also applied to other do-
mains by properly adapting the domain-specific composition
procedure.
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