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Abstract— The process of capturing a well-composed photo is
difficult and it takes years of experience to master. We propose a
novel pipeline for an autonomous agent to automatically capture
an aesthetic photograph by navigating within a local region in
a scene. Instead of classical optimization over heuristics such as
the rule-of-thirds, we adopt a data-driven aesthetics estimator
to assess photo quality. A reinforcement learning framework is
used to optimize the model with respect to the learned aesthetics
metric. We train our model in simulation with indoor scenes,
and we demonstrate that our system can capture aesthetic
photos in both simulation and real world environments on a
ground robot. To our knowledge, this is the first system that can
automatically explore an environment to capture an aesthetic
photo with respect to a learned aesthetic estimator. Source code
is at https://github.com/HadiZayer/AutoPhoto

I. INTRODUCTION

Cameras are now widely accessible to most people, but
taking a well-composed photo is a difficult task that requires
significant practice and experience. With advances in au-
tonomous agents, there is an increasing interest in leveraging
drones or robots to reduce human effort in various domains.
For example, automatic camera planning can be used to
capture sports events [1], and drones can be used to cre-
ate cinematographic videos [2]–[4]. Autonomous agents are
also well-suited for use in remote, dangerous, or otherwise
difficult-to-access locations (like caves, forests, or, in an
extreme case, other planets like Mars). In real estate, mar-
keting properties requires carefully composed photographs
that showcase indoor architecture and layouts. The process of
cataloguing different properties is time intensive for a human
agent, and physical access to properties may be limited (due
to, for example, the recent COVID-19 pandemic). Finally, an
autonomous photography system can also be used to guide
novice photographers towards better composed photos.

Our goal is to build an autonomous system that can capture
aesthetically pleasing photographs. Relying on heuristics is
one way to compose aesthetic photographs. For example,
the rule of thirds is a heuristic in which important objects
of interest are aligned with imaginary lines that divide
an image into thirds along horizontal and/or vertical axes.
However, heuristics do not fully capture human aesthetics
preferences. Indeed, recent work [5]–[10] has focused on
learning subjective preferences for aesthetics directly from
humans. These aesthetics models can implicitly understand
what makes well-composed photographs beautiful, but this
understanding cannot be easily decomposed into explicit
rules like the rule of thirds.

1All of the authors are with the Department of Com-
puter Science, Cornell University, Ithaca NY 14850, USA
{ha366,hl2247,kb97}@cornell.edu.

Fig. 1: Photos Captured By AutoPhoto. Left: The Au-
toPhoto system deployed on Clearpath Jackal robot. Right:
Photos autonomously captured by AutoPhoto. See Fig. 4 for
comparisons against initial environment views.

In this work, we present AutoPhoto, a system that sequen-
tially takes actions to explore an environment, with the end
goal of capturing an aesthetic photograph. Two important
branches of work in autonomous aesthetic composition are
(a) image cropping [5], [6] and (b) drone cinematography
[2], [11]. Image cropping is a limited form of “pseudo-
photography” with a fixed viewpoint and known environment
(i.e., the original uncropped image is the environment from
which the cropped photo should be captured). In this work,
we are interested in a more general setting in which the
photographer must explore an unknown environment via dif-
ferent viewpoints. Although autonomous cinematography is
also concerned with varying viewpoints in unknown environ-
ments, it is constrained by tradeoffs between smooth motion
planning, temporal constraints, and the final aesthetics of the
film. Further, cinematography is not strictly concerned with
aesthetic view capture; instead, it is focused on capturing
events or telling a story [12], [13]. As a result, some existing
work simplify aesthetic estimation by leveraging heuristics
like shot templates or optimizing rule of thirds with respect
to actors in a scene [2], [14]–[16]. In this paper, we are
interested in optimizing image aesthetics with respect to data-
driven aesthetics models to better capture human preferences.

A challenge with photo viewpoint optimization with re-
spect to a learned aesthetic function is that it is difficult to
formulate analytically (contrast this with the rule of thirds
which can be directly optimized given an object of interest,
e.g. [14], [16]). As such, we use reinforcement learning
to learn a controller that can navigate to views that are
aesthetic with respect to a learned aesthetic model. A second
challenge lies in the aesthetic function itself. Existing work
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in learning image aesthetics has focused primarily on its
application in cropping [5], [6] where models are trained
to compare crops from within the same image. However, the
task of photo capture requires views from different parts of
an environment to be compared, and the aesthetics function
should be robust to variations that may naturally arise such
as minimal camera translation, and a change in camera expo-
sure. We propose an aesthetics model which is better suited
for this task than existing cropping-based aesthetics models.
Given this aesthetics model, we demonstrate that we can
learn to navigate an environment to capture aesthetic photos.
Our system is trained in simulation with realistic indoors
reconstructed scenes using the Gibson dataset [17] with AI
Habitat [18]. Our experiments demonstrate generalization to
unseen scenes across simulation and real life.

This paper is organized as follows. First, we review related
work in Section II. We describe our problem formulation in
Section III. Then, we describe our reinforcement learning
pipeline in Section IV. We propose an improved aesthetics
estimator in Section V suited for the task of photo capture.
We cover implementation details in Section VI. Finally, we
present the results for our AutoPhoto system in Section
VII, with quantitative evaluations in simulation and real life,
including evaluation against human preferences.

Our contributions are:
• A novel reinforcement learning pipeline for a gener-

alized photo capture problem which includes (a) an
unknown environment, (b) photographer movement and
rotation, and (c) optimization against a learned aesthet-
ics estimator that models human preferences better than
heuristics.

• An aesthetics model that is consistent with human
preferences across diverse viewpoints, and is robust to
variances encountered while taking photographs.

• Experimental validation that demonstrates successful
navigation in unseen environments across both simula-
tion and real life to capture aesthetically pleasing pho-
tos. We deploy the system autonomously on a Clearpath
Jackal UGV.

II. RELATED WORK

a) Image Aesthetics: Understanding human judgements
of image aesthetics has a long history in psychology and
neuroscience, and photographers follow well-known rules to
capture aesthetic images [19]. For automatic view selection,
such rules can be captured by heuristics like the rule of
thirds and template matching [2], [14]–[16]. Computer vision
models have also been developed to estimate the aesthetics of
images [19]. Modern aesthetics models are trained on large
numbers of human judgements, and can generalize better to
scenes where no clear heuristics can be applied. Recent work
learns to rank the aesthetics of pairs of images [5], [6]. In
[6], the model is trained to rank images against random crops
of the same image. The assumption is that the composition
of professional images are well-balanced while a random
crop is less balanced. Alternatively, learning directly from
human preferences is possible given datasets of aesthetic

score judgements of crops or images [5], [9], [10]. Aesthetic
models can also learn personal preferences, where the scores
can vary from user to user [7], [8].

b) Automatic Photo Composition: Existing work on
automatic photo composition primarily focuses on image
cropping, where the composition of photos are improved
post-capture. Both common heuristics like the rule of thirds
and visual balance [16] and learned aesthetic scores [5], [6]
are used for automatic image cropping.

To be able to use the rule of thirds and visual balance
for image composition, one needs to specify an object of
interest. [16] extracts salient objects from the image, then
automatically composes the photo by using the saliency mask
to compute scores for the rule of thirds, visual balance, and
diagonal dominance. Creatism [20] mimics the pipeline of a
professional landscape photographer by cropping and post-
processing panoramas from Google Street View.

On the other hand, a learned aesthetics model is able to
capture more nuanced composition rules that are not captured
by explicit heuristics. To compose photos using a learned
aesthetic model, [6] uses a sliding window with various
aspect ratios to select the crop with the highest aesthetic
score. Since a sliding window approach is computationally
expensive, [21] uses a reinforcement learning model to
sequentially adjust the crop window.

c) Drone Cinematography: Autonomous cinematogra-
phy and camera planning have received increasing attention
in recent years [1]–[4], [22]. One way to compose videos is
to optimize paths between key frames. These key frames can
be predefined by a user [23], [24] or sampled intelligently
from a set of template shot types [2], [22]. [25] automatically
records videos of two subjects by matching the view with
predefined templates for scenes with two actors. Instead of
defining key frames, imitation learning [26] can be used
to learn camera trajectories directly from films. [4], [11]
apply imitation learning to learn from human-created films
while [3] focuses on learning from examples for computer-
animated cinematography. Recent work has also explored
semantic control over the emotions evoked by clips by
learning from annotated video clips [27].

A key challenge in cinematography lies in temporal
consistency – the aesthetics of the final video depends
on frames captured in real-time. This challenge limits the
ease of integrating learned aesthetics models into drone
cinematography. As such, a common property of the many
autonomous cinematography works is that the captured video
focuses on tracking human subjects [1], [2], [4], [11], [22],
[25]. Commercial drones (such as Skydio) also focus on
autonomous cinematography for a single user by filming
them during activities like skiing or mountain biking. By
focusing on human subjects, heuristics for framing human
actors can be readily applied instead of optimizing for
aesthetics in a general setting.

III. PROBLEM SETUP AND PIPELINE

Our objective is to autonomously explore a local region
within an environment to capture an aesthetic photo.
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Fig. 2: Illustration of the Pipeline and Runtime Execution. Left: AutoPhoto is composed of an aesthetics model that
extracts features from the current view, a common MLP+LSTM backbone that processes these features, and two separate
layers that parameterize the actor and critic. The actor selects an action to take and the critic estimates the current state
value. We iteratively run multiple episodes to sample action and state value pairs to optimize the model parameters. Right:
During inference, the model takes a sequence of movement actions until the agent (actor) selects the capture action.

To take a photo, a photographer assesses a view through
the camera viewport, and then iteratively adjusts the compo-
sition through movement and rotation of the camera. When a
balanced composition is achieved, the photographer captures
the photo. Our goal is to create an agent that can achieve
this functionality. This process can be described as a series
of actions: (a) observe the current view, (b) move the camera
if the view can be improved and repeat from (a), or (c)
capture the photo if the view is sufficiently well-composed
and terminate. To judge the quality of the image, we assume
that we have oracle access to an aesthetic value function φ
that maps an image to its aesthetic score. Our objective is
to optimize the aesthetic score of the final captured image,
so that the aesthetic score of the final image achieves some
threshold. To generalize to a variety of scenes, we introduce
an aesthetic score threshold that is scene dependent and
invariant to the scene size. This threshold is based on the
estimate of the mean of aesthetic scores and score variations
in the local region to make the threshold independent from
the scene size. We discuss how an aesthetics model can be
learned (Section V), and how it can be used in practice to
set the threshold (Section VI-B).

We formulate the problem as a partially observable
Markov decision process (POMDP) – the environment is not
fully observable as the agent only has access to partial views
of the environment through the camera viewport. The actions
are camera movements and photo capture. In Section IV, we
discuss this formulation in detail.

In Fig. 2 we demonstrate our RL-based pipeline. On the
left we show the architecture details to perform a single
step, and on the right we show the action sequence taken
by the agent at runtime. To train our model, we run multiple
episodes and compute the reward function after every step
to sample state-action reward pairs, then we train the Actor
based on the current Critic state value estimates, and train
the Critic using the collected state-action reward pairs.

IV. RL FOR AESTHETIC IMAGE CAPTURE

We describe the objective, state space, action space, and
reward functions such that maximizing the objective corre-

sponds to capturing an aesthetically pleasing photo. We will
detail our architecture and implementation in Section VI.

The objective is to find a policy that maximizes the
expected sum of discounted rewards. Specifically, denote π
to be a policy that maps to a distribution over actions given
a state st, and let ρπ be the probability distribution over
possible reward realizations R = r0, r1, ..., rT−1 based on
the state-action trajectories given π. Formally, the objective
is to find an optimal policy π∗ that satisfies

π∗ = argmax
π

E
R∼ρπ

[

T−1∑
t=0

γtrt] (1)

where γ is a discount factor in [0, 1] that reduces the weight
of rewards far in the future.

a) State and Action Space: We set the state to be the
current camera view and an LSTM memory cell. Memory
enables RL-based solutions for a POMDP [28] by allowing
the agent to utilize information from its exploration history to
make decisions. A memoryless agent makes decisions based
only on the current view, which can lead to sub-optimal
decision making as it might re-explore regions with low
aesthetics, and potentially lead to a non-terminating loop.

Our action space consists of the following actions: forward
and backward for 0.25m, and turning right and left by 10◦,
30◦, and 90◦, and finally the CAPTURE action to take the
photo and terminate the episode. A composition of these
actions allows the agent to navigate to any position and
orientation in the search space, modulo the regions which lie
between the discretizations of the actions defined above. The
values of 0.25m translation and 30◦ rotations are the default
in [18]. We introduced more turning angles to allow better
control between fine turns to adjust the view composition
and large turns to quickly explore the scene.

b) Objective and Rewards: The objective is to capture
a final view sT that has a high aesthetic score according
to an aesthetic estimator φ (i.e., φ(sT ) > τaes). τaes is set
according to the aesthetics of the local region (see Section



VI-B). We set the reward for the CAPTURE action to be:

r(sT ,CAPTURE) =

{
+1 φ(sT ) > τaes

−1 otherwise
(2)

However, a final reward is not sufficient to train the RL
agent on its own since it is sparse, and does not take into
consideration the number of steps taken to capture the photo.
It is important to learn an efficient policy which takes as few
steps as possible. If efficiency is not of concern, one could
run an exhaustive grid search to find a view that maximizes
the aesthetic score, but this is impractical in general. For
movement actions where a 6= CAPTURE, we define the step
reward as:

r(st, a) = φ(st+1)− φ(st) + 0.1Γ(ζ)− βt (3)

(φ(st+1)−φ(st)) is the score difference between the current
and next view to encourage the agent to move towards
regions with increasing aesthetic score. Γ(ζ) is an exponen-
tially decaying exploration reward where ζ is the number of
steps since training has started (in contrast, t is the number
of steps in the current episode). The exploration reward
encourages the model to explore and avoid terminating
during the early stages of training; this is similar to intrinsic
curiosity rewards as in [29]. Finally, β is a time step penalty
to discourage the model from taking too many steps. In our
experiments, the exploration reward Γ(ζ) is 0.9999ζ and we
set the time step penalty β to be 0.005. As we show in our
ablation studies in section VII-E, the step reward for non-
terminal actions is critical for good performance.

V. AESTHETICS MODEL

We now describe the aesthetics model we use to model
human aesthetics preferences. This model will be used to
generate rewards for the RL agent during training.

a) Ranking Views: The task of photo capture requires
estimating the aesthetics of images across different view-
points. Existing aesthetics models are typically trained for
cropping, and do not learn to rank images with different
viewpoints [5], [6]. The Aesthetic Visual Analysis (AVA)
dataset [9] contains scores for images of different content
and view points. However, existing work [5] has shown
that models trained solely on AVA struggle to perform
well on cropping benchmark datasets such as Comparative
Photo Composition (CPC), a dataset that contains rankings
of different crops of each image. This suggests that AVA
and CPC may contain complementary information about
human aesthetics preferences, so we use both datasets. For
AVA, photos are categorized into different genres, such as
landscape and portrait. Because it is difficult to meaningfully
rank images from different genres, the model is trained to
rank pairs of images from the same genre. We use the
standard pairwise ranking loss used in [5], [6]. Let s1 and
s2 be two images where s1 should have a higher aesthetics
score than s2. The loss is:

`rank(s1, s2) = max(0, φ(s2)− φ(s1) + 1) (4)

b) Improving Robustness: We also consider losses to
increase the robustness of the model to camera translation
and exposure. Small translations are common as noise in
camera movements is inevitable during real world deploy-
ment, and images should not be scored differently based on
very small translations. To train the model to generate similar
scores for similar images, we minimally crop images and
minimize the Mean Square Error (MSE) between the score
of the original image and the minimally cropped image. It
is also useful for the model to rank well-exposed images
better than over-/under-exposed images. Camera exposure
can vary as lighting changes when a photographer navigates
an environment. Since CPC and AVA only include well-
exposed images, we introduce over-/under-exposed images
by increasing/decreasing the brightness of the images. For
an image s, the robustness loss is:

`robust(s) = λsim`sim(s) + λexpo`expo(s) (5)

where `sim(s) =
1

2
(φ(s)− φ(smin crop))2

`expo(s) = `rank(s, spoorly exposed)

Our full loss function for the aesthetic model is:

Laes(s1, s2) = λ`rank(s1, s2) + (1− λ)`robust(s) (6)

s is selected from {s1, s2} uniformly, and we set λ = 0.6,
λsim = 0.875, and λexpo = 0.125.

VI. IMPLEMENTATION

In this section, we describe the implementation of our
system. Training in simulation is necessary since the model
has to interact with the environment for a large number of
steps. There are different simulations that can be used such
as AirSim [30] and AI Habitat [18]. We choose AI Habitat
in our experiments due to its high frame rate and support for
realistic indoor datasets like Gibson [17] and Replica [31].

In Section VI-A, we describe the aesthetics model. In
Section VI-B we describe the actor-critic RL model.

A. Aesthetic Model Implementation

a) Architecture: We use ResNet18 with a single scalar
aesthetic score output. Modern CNNs are inherently sensitive
to small pixel translations, so we adopt an antialiasing
solution [32] by adding a blur layer during max pooling to
increase robustness to small translations.

b) Training Details: Each image batch is drawn from
CPC or AVA with equal probability. Minimally cropped
images are created by randomly cropping images between 1
and 5 pixels for each side. Over-/under-exposure is generated
by multiplying brightness by 4 and 0.5 respectively. The
model is trained for 210,000 iterations with batch size 32.

B. RL Model Implementation

a) Architecture: We use an actor-critic setup [33] for
the RL agent, illustrated in Fig. 2. The aesthetic model is
used as a feature extractor for the camera view. The camera
view features are computed by average pooling the output



of each of the four residual blocks and concatenating them
together. These features are given to an MLP with an LSTM
layer which serves as a common backbone for the actor and
critic layers. The output from the MLP+LSTM backbone is
a combination of the current view and the memory state in
the LSTM, and thus forms a representation of the current
state. We use one classification layer for the actor to output
a distribution over actions, and one layer for the critic to
estimate the current state value. To optimize the architecture
parameters, we use PPO [34] using the stable-baselines
implementation [35] with default hyper parameters.

b) Aesthetic Score Threshold: The terminal reward
depends on an aesthetic score threshold τaes that captured
images should overcome. This threshold is set adaptively
based on local regions within each scene, as aesthetics can
vary across scenes and across sub-regions within a scene.

We define a local region in an environment by a set of
points near the agent’s starting location. First, assume we
have uniformly sampled some set of N points (and their cor-
responding views) across the environment. For any starting
location, the K nearest neighbors define a local region. The
physical neighborhood defined by the KNN views depends
on the density of the N sampled points. The target aesthetics
threshold for a local region is set by considering the scores of
the KNN views to the starting camera position. Specifically,
we use the mean aesthetic score of the KNN views µ and
the standard deviation of their scores σ and set the threshold
to be:

τaes = µ+ σ (7)

The objective is to capture an image sT such that φ(sT ) >
τaes. This corresponds to the top 16% views in the local
region assuming the scores follow a normal distribution.

c) Training Details: We train the model using realistic
reconstructions of indoor scenes from Gibson [17] with
Habitat to run the simulation. We use a subset of the Gibson
dataset that was filtered by [18] to include only high quality
reconstructions, and we remove any scenes that include
reconstruction artifacts that affect the scene aesthetics. We
split the subset of the Gibson dataset into 61 environments
for training and 20 environments for evaluation. For each
scene, we sample 2,000 random views, and we compute
the aesthetic threshold using nearest 100 samples to the
position of the initial camera. On every run, we sample a
random navigable position and random orientation to set for
the initial camera state and re-sample if the score of the
initial view is too low (more than a standard deviation below
the mean of the entire scene). This is because a low-score
initialization is likely in a region with poor aesthetics, and the
model is unlikely to learn useful policies from such regions.
Initialization re-sampling is not done during evaluation. We
train the model for 1.5 million steps, using a batch size of
8, and change the associated scene of each element in the
batch after every 250 episodes to minimize the overhead of
switching between simulated scenes.

TABLE I: Aesthetics Model Performance. Compared to [5],
our model performs similarly well in assessing aesthetics of
image crops (CPC). However, our model performs better on
cross-view ranking (AVA), ranks under-/over-exposed images
below well-exposed images more often, and assigns more
similar scores to nearly identical images. The latter properties
are important for assessing aesthetics of different viewpoints
under realistic conditions.

Task Aesthetics
(CPC)

Aesthetics
(AVA) Exposure

Minimal
Cropping

(MSE)
VEN [5] 75.8 62.2 81.0 0.29
Ours 72.2 84.4 99.7 0.03

VII. RESULTS

In the video, we include additional visualizations of initial
and final view pairs, and clips of agent behaviors.

In this section, we evaluate both our aesthetics model
and the AutoPhoto system that is trained with our aesthetics
model. In Section VII-A, we compare the performance of our
aesthetics model to an existing model [5]. In Section VII-B,
we describe the baseline policies that we compare AutoPhoto
against. In Sections VII-C and VII-D, we evaluate the be-
havior of AutoPhoto on unseen environments in simulation.
In Section VII-D, we evaluate AutoPhoto in real life with
human judgements. Finally, we include ablation studies to
verify AutoPhoto design decisions in Section VII-E.

A. Aesthetic Model Evaluation

We evaluate the accuracy of rankings crops from CPC,
as well as accuracy of rankings photos of different views
(but the same genre) from AVA in Table I. We also include
translation robustness results as measured by MSE of scores
between images and their minimally-cropped counterparts,
and evaluate ranking accuracy with respect to under- or over-
exposure. For reference, we compare our model to a state-
of-the-art aesthetics model [5]. With respect to ranking crops
from the CPC dataset, our model performs a bit lower than
[5]. However, the tradeoff is that our model performs better
on cross-view ranking on AVA, and is far more robust to
minimal translation and unflattering camera exposure.

B. Baseline Policies for Photo Capture

We describe several baseline policies inspired by existing
work. As discussed, existing work in autonomous compo-
sition during the capture phase cannot be directly applied
as they focus primarily on video, and assume predefined
objects of interest. For a fair comparison, we limit the total
number of steps to 16 steps for the Key Frame Selection
and Greedy policies to match the median number of steps
taken by our method, as an unlimited number of steps would
trivially achieve high accuracy. The policies are:

a) Random: uniformly samples actions.

https://youtu.be/RV830dZpQ-E


b) Rule of Thirds: aligns an object of interest on the
lower-left or lower-right third of the image. Since we do
not have a predefined object, at each time step we compute
the salient objects of the scene (similar to [14], [16]) using
saliency detection network BASNet [36]. If a salient object
satisfies the rule of thirds, then CAPTURE is selected.
Otherwise the agent takes a small turn, or moves to adjust
the salient object position towards the lower-left or lower-
right third of the frame. If no salient object is found, the
agent takes a large turn to explore the environment as it is
likely that the camera is facing a wall or featureless scene.

c) Imitation Learning: learns actions directly from
demonstrations [26]. We adapt [4] to our setting, whose
model is trained to predict camera actions for cinematog-
raphy. We generate demonstrations by sampling paths that
lead to a local aesthetic maxima. Only demonstrations where
the captured image exceeds the threshold for the current
region are considered. Note that memory is important for
modelling actions conditioned on paths. Since our proposed
model already contains LSTM memory, we utilize the same
architecture for this policy (except no critic branch). The
model is trained on 17K demonstrations from Gibson with
Adam, initial learning rate 1e-4, and exponential learning
rate decay γ=0.95. We found 50 epochs to be sufficient, with
500+ epochs yielding no further improvements.

d) Key Frame Selection: explores the scene, and back-
tracks to the most aesthetic view seen. This is reminiscent
of key frame selection for video summarization [37], [38].
Since we do not have a predefined object of interest to track
and scenes may be static, we cannot apply cinematography
work [2]–[4], [11] to generate trajectories. The agent instead
explores the environment uniformly.

e) Greedy: selects an action at each position by execut-
ing every possible movement action, undoing that action, and
finally selecting the action that improves the aesthetic score
the most. If all movement actions would reduce the aesthetic
score, CAPTURE is selected. Due to the large number of
actions that the policy needs for a single effective step, this
policy is very inefficient, but can eventually reach a local
maxima if enough steps are executed.

TABLE II: Accuracy in Achieving the Aesthetic Thresh-
old. We show the percentage of photos selected by each
policy that achieve the aesthetic threshold. Refer to main
text for descriptions of the baseline policies. (±σstderr)

Metric φ(sT ) > τaes (%)
Dataset Gibson Replica

Random 13.3 ± 0.8 14.3 ± 0.8
Rule of Thirds [14], [16] 19.1 ± 0.9 17.3 ± 0.9
Greedy 56.6 ± 1.1 56.2 ± 1.2
Key Frame Sel. [37], [38] 56.8 ± 1.1 56.6 ± 1.2
Imitation Learning [4] 57.8 ± 1.2 51.9 ± 1.1
Our Method 81.7 ± 0.9 77.8 ± 1.0

C. Evaluation in Simulation

To ensure that the model can generalize to unseen scenes,
we evaluate performance on 20 unseen scenes from Gibson

Fig. 3: Simulation Visualizations. We visualize photos
captured by our method AutoPhoto against the strongest
baselines on the Replica dataset. Note that AutoPhoto tends
to better frame furniture compared to other methods.

[17]. We also evaluate on 18 scenes from Replica [31] to
measure generalization to a different dataset. We show the
quantitative evaluation results on Gibson and Replica in
Table II. Our model performs significantly better than the
baselines. The low performance of the Rule of Thirds policy
suggests that careful selection of objects of interest by human
experts instead of automatic selection through saliency is
important. Further, the rule of thirds does not fully model
human aesthetics preferences (which are better captured by
the aesthetics model). While both Key Frame Selection and
Greedy can achieve strong performance given unlimited time,
their performance is limited by inefficient exploration of the
environment. The accuracy achieved by these methods is
below that of our method when the number of steps taken is
set to be similar as our method is more efficient in finding
aesthetic views. Note that the performance of our method on
Replica is close to the performance on Gibson, indicating that
our model generalizes well to views from a different dataset.
In Fig. 3 we show some qualitative results against the Key
Frame Selection and Greedy baselines on the Replica dataset.
AutoPhoto tends to take well-composed photos of furniture
and other appropriate objects in the photo.

D. Deployment in Real Life

We deployed our system in real-world settings on a
Clearpath Jackal UGV (shown in Fig. 1), and used it to
collect 64 photos of indoors environments. We attached a
webcam to the Jackal at 1.5m above ground to approximately
match the camera angle that would be typically used by
human photographers. The input image is fed to the RL
model to decide on which action to take, and then the
command is sent to the robot through ROS. If the suggested
action would lead to a collision, then the RL model is queried
again until the proposed action is valid. Since the model
contains a memory module, it is able to learn that repeated



Fig. 4: Real World Visualizations. AutoPhoto transfers from
simulation to real life to capture well-composed photos.

actions with no change in state means another action should
be selected. In Fig. 4 we show sample photos that illustrates
the initial views for the robot and the photos it captured.

Since it is not feasible to densely sample photos in real-
life to estimate an aesthetic threshold, we conducted a user
study on Amazon Mechanical Turk (AMT) to measure how
often humans prefer the photos taken by AutoPhoto over
the initial view of the environment. Users are shown pairs
of images, where each pair consists of an initial view and
the final view captured by AutoPhoto. To reduce bias, both
the order of pairs as well as images within each pair are
shuffled. Users are asked to select which image is more
aesthetic, or to select a “tie” option if both images are equally
preferred. We select high quality workers through AMT’s
qualification system by only releasing the study to workers
with a Master Qualification, over 95% approval rate, and
over 1000 previously approved tasks. For additional quality
control, we included three sentinel pairs where the images
within each pair are identical to each other. We only keep
results from workers who correctly select “tie” for these
sentinel pairs, and spend more than 1 second (median) per
judgement across all pairs.

We compute a preference score as: 1 if the user preferred
the AutoPhoto image, 0 if the user preferred the initial image,
and 0.5 if both images are equally preferred. Aggregating
scores across 1792 judgements (28 valid user surveys), the
mean preference score is 0.63 ± 0.01 (standard error). A t-
test with null hypothesis being 0.5 rejects the null hypothesis
with p < 0.05, indicating that humans prefer the images
taken by AutoPhoto.

E. Ablation Studies

We ran ablation studies for (a) the reward function and
(b) the model architecture and (c) model actions. For the
reward function, the non-terminal terms are ablated (Eq.
3). Specifically, the effect of the exploration term Γ(ζ) and
the aesthetic score differences term (φ(st+1) − φ(st)) are
measured. For the architecture, we verify the importance

TABLE III: Ablation Results. Our reward function terms,
architecture design, and additional rotation actions are im-
portant for good performance. (±σstderr)

Metric φ(sT ) > τaes (%)
Dataset Gibson Replica

Reward
w/o Score Diff. , Explor. 69.3 ± 1.0 58.4 ± 1.2
w/o Score Diff. 74.4 ± 1.0 66.7 ± 1.1
w/o Explor. 72.1 ± 1.0 67.7 ± 1.1

Architec. w/o LSTM 62.7 ± 1.1 55.4 ± 1.2
w/o Multilayer Feats. 62.3 ± 1.1 62.1 ± 1.1

Actions w/o 10◦, 90◦ Rotation 73.7 ± 1.0 72.8 ± 1.0
Our Full Method 81.7 ± 0.9 77.8 ± 1.0

of including LSTM memory in the model, and compare
the performance multilayer input features for the agent
versus only features from the last layer of the aesthetic
model. For the model actions, we verify our decision to
include fine and large rotation actions. In Table III we
show the results of the ablations on Gibson and Replica.
We observe that the exploration and score difference terms
are equally important for performance, and removing them
both causes the performance to degrade further. Regarding
the architecture, we note that removing either memory or
multilayer feature extraction lowers performance. Without
an LSTM layer, actions cannot depend on the past, making
scene exploration to assess the aesthetics of the local region
impossible. With regards to input features, using multilayer
features provides the agent with both high level and low
level information encoded by the aesthetic model, leading to
a boost in performance compared to only using the features
extracted from the last layer. Finally, the addition of fine
rotations (10 ◦) and large rotations (90◦) allows the agent to
better adjust view composition and explore the environment.

VIII. CONCLUSIONS

In this work, we formulate the problem of photography as
a POMDP and train an RL model to automatically capture
aesthetically pleasing photos. We demonstrate our AutoPhoto
system captures aesthetic photos in unseen scenes across
simulation and real life. While our approach can generalize
to domains beyond indoor scenes, it depends on having high
quality simulated environments which could be harder to
get for some domains than others. It is also important to
select the aesthetic function appropriately as it influences the
system behavior significantly. To extend our work, a possible
future direction is to expand the action space to a full 6
degrees of freedom on an aerial drone. Another interesting
future direction is to include a user in the loop to ensure that
photos taken capture the user intent.
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