
Ontology-Assisted Generalisation of Robot Action Execution Knowledge

Alex Mitrevski†§, Paul G. Plöger†, and Gerhard Lakemeyer‡

Abstract— When an autonomous robot learns how to execute
actions, it is of interest to know if and when the execution policy
can be generalised to variations of the learning scenarios. This
can inform the robot about the necessity of additional learning,
as using incomplete or unsuitable policies can lead to execution
failures. Generalisation is particularly relevant when a robot
has to deal with a large variety of objects and in different
contexts. In this paper, we propose and analyse a strategy for
generalising parameterised execution models of manipulation
actions over different objects based on an object ontology. In
particular, a robot transfers a known execution model to objects
of related classes according to the ontology, but only if there
is no other evidence that the model may be unsuitable. This
allows using ontological knowledge as prior information that is
then refined by the robot’s own experiences. We verify our
algorithm for two actions - grasping and stowing everyday
objects - such that we show that the robot can deduce cases
in which an existing policy can generalise to other objects and
when additional execution knowledge has to be acquired.

I. INTRODUCTION

When acting in everyday environments, autonomous
robots need to be able to minimise the possibility of failures
during execution. Failures are, however, rather likely to
occur when a robot generalises its behaviour to scenarios
unseen during learning, often because the robot is not even
aware that its current knowledge may be insufficient or even
inappropriate for performing a particular action. To deal with
this problem, it is necessary to have a strategy based on
which experiences of attempted generalisations are used for
determining when the existing knowledge can be reused and
when additional knowledge has to be acquired. This, in turn,
requires a structured knowledge base that a robot can adapt
as it incorporates more knowledge about its own actions.

One well-known strategy for knowledge representation
and generalisation is using an ontology [1], [2], [3], [4],
which allows encoding knowledge about objects and more
generally about environments. Ontologies include relation-
ships between objects, which can be informative about when
an action that is useful in one context can also be useful in
another context.1 Ontological models are, however, static in
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to deduce that cups and glasses, which are related objects, should be pushed
away in a similar way, while cups and screwdrivers, which are unrelated
objects, need to be pushed away differently. An ontology can be used to
encode and/or infer such knowledge.

Fig. 1: When generalising execution knowledge between
objects, a robot should be able to consider (i) any known
object relations and (ii) previous generalisation experiences
that provide information about the (un)suitability of the
existing execution knowledge in a given context

general; this makes them suitable for representing encyclo-
pedic knowledge2, but potentially less so for dynamically
changing properties of the world. In addition, ontology-
based generalisation depends on the richness of the ontology
model: the more complete the ontology is, the more appro-
priate the behaviour of a robot using the ontology would be.
For a more intelligent generalisation, the knowledge stored in
the ontology needs to be augmented with the experiences of
a robot itself, as this would reduce the limitations introduced
by the incompleteness of the ontology model.

Data-driven models, particularly those based on neural
networks, such as [6], [7], have been shown to generalise
well to different, even unseen, objects; however, on its own,
such generalisation is usually only based on sensory features
rather than inherent knowledge about objects and their under-
lying contexts. While sensory features are sufficient in some
applications, the applicability of learning-based methods in
real-world, human-centered scenarios is generally limited,
as generalisation failures are difficult to analyse without
assigning a semantic meaning to the robot’s decisions.

In this paper, we address the problem of generalising
action execution policies over different objects, such that we

2An illustrative example of the extent to which encyclopedic knowledge
can be specified is given in [5].
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combine a plain object ontology with a probabilistic graph
that indicates whether generalisation over objects is possible
and likely to lead to successful execution of a particular
action, such as grasping. The learned graph is derived from
the object ontology, but includes edge weights that indicate
the generalisation strength between object classes. We show
that such a representation can be useful to determine when
already learned models can be reused and when additional
learning is needed. We analyse the method with learned
execution models of parameterised skills as in [8] using a
Toyota HSR [9] manipulating objects in two common domes-
tic scenarios - grasping everyday objects and stowing them
in a drawer. The results show that a robot can often reuse
knowledge about objects it has manipulated before when
dealing with new object classes, but also that feedback about
failures can allow it to adapt its generalisation accordingly.3

II. RELATED WORK

Most methods that allow object generalisation are de-
signed for a specific action, such as grasping or pushing, and
are built without an ontological layer, such that generalisation
is done based on extracted sensory features. Stüber et al. [10]
model a pushing action for rigid objects; the model is gen-
eralised to previously unseen objects by first using a learned
density to sample contact points that most closely resemble
the contacts seen in the training data and then predicting the
motion of the object using a learned motion model. Liu et al.
[11] develop a network-based grasping model which, given
a grasp candidate and a context description, calculates the
probability that the grasp candidate is suitable for the given
context; the proposed architecture combines object features
with contextual object and task information, which allows the
method to generalise reasonably well to new objects. A sim-
ilar grasping method is presented by Song et al. [12], where
the action is modelled as a hybrid Bayesian network that
encodes relationships between the task for which grasping
is performed, object features, action parameters, and grasp
constraints; by appropriate conditioning, the model can be
used for object generalisation, but only to known objects. In
principle, our method could be used in conjunction with any
of these action-specific models, although we aim to reduce
the data requirements of such models by leveraging prior
information about objects and their relations.

From a perceptual point of view, knowledge-assisted gen-
eralisation over objects and lifelong object learning have
been addressed in different contexts. Denninger and Triebel
[13] present a lifelong learning-based object classification
method which modifies the trees in a random forest as
new object classes appear; a random forest is used so that
new classes can be incorporated without retraining from
scratch. In [14], Young et al. propose a method for infer-
ring categories of unknown objects encountered in everyday
scenes; the likely category of an unknown object is inferred
using information about the object’s context - represented
through its surrounding objects - and querying a concept

3Accompanying video: https://youtu.be/gBiYwjUTWQ8

ontology, which finds the most related concept among a set
of candidate concepts. Schoeler and Wörgötter [15] introduce
a method for recognising objects from point clouds based
on affordances, which are modelled through object parts and
part relations; an ontology of tools based on their functions is
also defined, which allows recognising the function of unseen
tools. As our proposed method depends on a meaningful
object grounding, the above methods are complementary to
ours: in particular, [13] and [14] are required for incorporat-
ing new objects, while the inclusion of affordances as in [15]
would enrich the execution models of particular actions, for
instance as demonstrated in [16] in the context of tool use.

Conceptually, our work is most closely related to ap-
proaches for object and action model learning. Bauer et al.
[17] propose an approach that allows generalising actions
between different objects, where the objective is to find a
posterior distribution of the probability of an action effect
(with a particular grounding) given a set of previous expe-
riences of similar actions; here, actions are represented by
Probabilistic Action Templates [18], where different effects
are associated with probabilities, such that two instantiations
are considered similar if (i) the actions use the same template
and (ii) if all parameters (symbols) of the actions have a
shared parent. Sushkov and Sammut [19] present a Bayesian
active learning framework based on which a robot can
identify the properties of an object or another system by
testing informative actions, observing their outcomes, and
updating the belief about its hypotheses of the properties;
by repeating the process multiple times, the belief would
converge to the correct model hypothesis. Sanan et al.
[20] describe a demonstration-based method for learning the
model of an object that a robot may need to translate and/or
rotate around a given axis; once such a model is learned,
it can be used in a parameterised skill for manipulating
the object in a particular way. Ivaldi et al. [21] analyse
a strategy using which a robot can acquire object models
by combining perceptual features with exploratory actions,
performed either by the robot itself or by human teachers. As
in [17], we essentially generalise actions to objects that share
common parents, but we aim for adaptive generalisation,
since, as shown in our experiments, having a shared parent
is not a sufficient condition for successful generalisation.
Similar to [19], our method explores different generalisation
hypotheses, such that we aim to either converge to a valid
hypothesis or conclude that more knowledge needs to be
acquired. As in [20], we learn and then generalise object-
specific models, but, unlike [20], we do not constrain our
method to regular polyhedra. Finally, our model learning
method is somewhat similar to the learning procedure in
[21], but our main objective is to additionally learn when
the learned models can be transferred between objects.

III. BACKGROUND
A. Action Execution Models

This work builds upon [8], where a representation of action
execution models was proposed based on which a robot
jointly learns a relational model of success preconditions, or

https://youtu.be/gBiYwjUTWQ8


a collection of such models for multiple qualitative modes,
as well as a continuous model that maps action parameters
and execution constraints to predicted execution success. An
execution model is learned from labelled execution data,
such that the relations used for representing the relational
model are defined per action, and the continuous model
is represented by a Gaussian process so that prediction
uncertainty can be encoded. For execution, action parameters
that satisfy the relational model under a given qualitative
mode are sampled from the learned success model.

During model acquisition, a robot will typically encounter
a few object classes4, but may also need to work with other
object classes when using a learned model during execution;
in this case, the learned model needs to be generalised to
classes other than the ones seen during training. In this paper,
whenever we refer to generalisation, we mean applying a
model Mo, which is known to be applicable for an object
class o, to another object class o′.

B. Object Ontology

We use an ontology O = (T ,A) for generalisation over
objects, where T is the TBox, which encodes object class
definitions, relations between those classes, as well as object
property definitions, and A is the ABox, which consists of
class and property assertions, namely ground objects that
belong to specific object classes and properties of those,
respectively. For concreteness, we assume an ontology in
the Web Ontology Language (OWL)5, although our method
is not limited to OWL ontologies since we only leverage
the encoded relations between object classes under the
assumption that the class hierarchy represents a tree. We
only consider generalisation over the TBox, although the
presented algorithm can be extended to the ABox as well,
but at an expected higher computational cost.

IV. EXECUTION MODEL GENERALISATION

For generalising execution models between objects intel-
ligently, a robot that needs to perform an action with a given
object, such as pulling the object to a target region, needs to
be aware of whether it has manipulated that particular object
or similar objects before. If an explicit execution policy for
an object class is not known, the robot has to decide how it
could generalise its existing knowledge to the new situation.

In this paper, we propose a method for ontology-assisted
execution model generalisation that involves two concepts:
(i) based on the ontology, a subset of related object classes is
identified, namely classes whose execution models (if already
known) are useful to consider when executing an action with
an object for which there is no known execution model, and
(ii) a probabilistic model is created for the related classes,
which indicates whether an execution model learned for a

4For instance, for the experiments in [8], we learned an object pulling
model with only one type of object - a yogurt cup. Even such a simple
model can be generalised to other object classes since there are other objects
that have similar physical properties as a yogurt cup, but a robot does not
necessarily know this.

5https://www.w3.org/OWL/

given action and a particular object class is suitable when
used for executing the same action for another object class.

The objective of the subset of related classes is twofold:
first of all, it constrains the search for execution models that
may be reused to a computationally manageable level, but
more importantly, it prevents generalisation between object
classes that are unrelated according to the ontology model,
thereby reducing the possibility of execution failures due to
inappropriate generalisation.6 The probabilistic model also
has a dual purpose: it weighs the relations encoded by the
ontology in order to reinforce meaningful generalisations and
allows experience-based acquisition and improvement based
on the resulting outcomes of attempted generalisations.

A. Model Selection for Generalisation

Our proposed method for ontology-based generalisation is
based on the idea of what we call a suitability graph, which
encodes the relatedness and suitability concepts discussed
above. A suitability graph is derived from an object cluster,
which is defined separately for each object class o.

Definition 1: Given an ontology O and an object
class o, an object cluster Co is the set of ancestor,
sibling, and children classes of o in O, such that there
is an execution model Mõ for every õ ∈ Co.

A cluster Co represents a set of direct and indirect relations
between classes in an ontology, namely an object class o is
directly related to its parents and children, and indirectly to
its siblings and ancestors. The reasoning behind this defi-
nition is as follows: (i) considering ancestor classes allows
knowledge transfer from a general case to a specific case, (ii)
children classes are exactly the opposite, as knowledge could
be transferred from a specific case to a more general case,
and (iii) since sibling classes have shared parents, they may
also transfer knowledge between each other. Fig. 2 illustrates
the notion of an object cluster for kitchen objects.

Given Co, we know which object classes may be con-
sidered for generalisation during execution, but not how
appropriate each individual generalisation would be. We
represent the probability that the model of an object class
õ is selected for executing an action a under a qualitative
mode q by a weighted probability distribution of the form

Pt+1(õ|o, S) = η s(o, õ)P (S|õ, o)Pt(õ|o, S) (1)

where s(o, õ) represents the similarity between o and õ in the
ontology, P (S|õ, o) is the probability that selecting the model
of õ leads to successful execution (S is thus a Bernoulli
variable), η is a normalising constant, and Pt(õ|o, S) is a
recursively updated value, such that P0(õ|o, S) is uniform. It
should be noted that all probabilities above are additionally
conditioned on an action a and a qualitative mode q, but
we have omitted these for simplifying the notation. This

6Our assumption here is that related object classes have similar physical
characteristics, which is useful prior knowledge for a robot to have. Our
method is still applicable if this does not hold for a given ontology, but a
robot may need to perform more generalisation trials in that case.

https://www.w3.org/OWL/


(a) Example class hierarchy in
an ontology

(b) Induced object cluster for a
given object

Fig. 2: Illustration of an object cluster in an ontology. The
blue node is the object class o whose cluster Co is being
extracted. The green edges indicate object classes that could
be considered for generalisation if an execution model for o
is not known. Gray nodes are classes for which an execution
model is not known, and thus do not belong to Co.

distribution defines a probabilistic model that weighs the
relations between the classes in Co; we call this weight
suitability, and the model itself a suitability graph.

Definition 2: For an object class o and an action
a, which is potentially executed under a qualitative
mode q, a suitability graph Go,a models a distribution
P (õ|o, S, a, q) for every õ ∈ Co, which represents
the probability that using the execution model of õ to
execute a with o will result in successful execution.

Suitabilities are composed of two major components - the
success probability distribution P (S|õ, o) and the similarity
coefficient s(o, õ) - which are described below.

a) Success probability distribution: We model the prob-
lem of estimating P (S|õ, o) as a sequence of Bernoulli trials
with an unknown success probability. Similar to [17], the
success probability is found by estimating the parameters of
a beta distribution Beta(αoõ , βoõ), whose density is given as

p(θ) = γθαoõ
−1(1− θ)βoõ

−1 (2)

where γ is a normalising constant. Given αoõ and βoõ ,
we use P (S = 1|õ, o) ∼ Beta(αoõ , βoõ) to represent
the success probability when applying õ’s model to o. To
indicate the robot’s initial ignorance about the suitability
of õ’s model, P (S = 1|õ, o) ∼ Beta(α0, β0) before any
attempted generalisations, where α0 = β0. The parameters
of the beta distribution are subsequently modified according
to the results of the action executions. In particular, following
[22] and denoting by No,õ the number of times the action
has been performed for object class o using the model of õ,
the posterior parameters of the beta distribution are given as

Beta(αoõ , βoõ) = Beta
(
α0 +N+

o,õ − 1, β0 +N−o,õ − 1
)
(3)

where N+
o,õ =

∑
iX

o
õ,i with Xo

õ,i = 1 if the i-th execution
was successful and 0 otherwise, and N−o,õ = No,õ−N+

o,õ. In
practice, to estimate P (S = 1|õ, o), we draw a collection of

Algorithm 1 Execution Model Selection and Action Execu-
tion With the Selected Model

1: function GENERALISEEXECUTIONMODEL(o, Xo, t)
2: Mo ← getModel(o)
3: if Mo 6= ∅ then
4: executeAction(Mo, o)
5: return
6: Co ← getObjectCluster(o)
7: for õ in Co do
8: Pt+1(õ|o, S) = η s(o, õ)P (S|õ, o)Pt(õ|o, S)
9: o∗ ← argmax

õ∈Co

Pt+1(õ|o, S = 1)

10: Mo∗ ← getModel(o∗)
11: outcome ← executeAction(Mo∗ , o)
12: Xo

o∗ ← Xo
o∗ ∪ outcome

samples B from Beta(αoõ , βoõ) rather than a single sample
and then set P (S = 1|õ, o) =

∑
i Bi

|B| .7

b) Object similarity: To find the similarity between
two classes in an ontology, we use the Wu-Palmer (WUP)
similarity introduced in [23]:

s(o, õ) = 2
depth (LCS(o, õ))

depth(o) + depth(õ)
(4)

where depth : O → N is the depth of an object class in the
hierarchy induced by the ontology and LCS : O × O → O
is the least common subsumer of o and õ, namely the most
specific class that is a common ancestor of o and õ.8 The
WUP similarity corresponds well to G as it considers (i)
siblings to be more similar to each other than nodes among
different levels of the hierarchy, which puts an intuitive prior
preference on generalisation between sibling classes and (ii)
classes with higher depths in the hierarchy to have higher
similarity to each other than classes near the top of the
hierarchy, which encodes the principle that class similarity
increases with the specificity of the ontology model.

c) Model selection: Given the posterior values
Pt+1(õ|o, S) for each õ ∈ Co, an execution model Mo∗ is
selected for the object class o∗ that maximises the posterior:

o∗ = argmax
õ∈Co

Pt+1(õ|o, S = 1) (5)

If there are multiple models that maximise the posterior, all
of them are considered to be equally applicable, so one of the
models is chosen at random.9 The model selection process
is summarised in Alg. 1.

Let us now briefly consider how the distribution in Eq. 1
will evolve over time. Given an object class o and before
incorporating any evidence about attempted generalisations,
classes closer to o in O will clearly be preferred for generali-
sation, as the expression is dominated by s(o, õ); however, as
the robot attempts to generalise its knowledge throughout its

7We use a mean estimator instead of the expected value α
α+β

to
encourage small random exploration over close posterior values in Eq. 1.

8s(o, õ) ranges between 0 and 1, with s(o, õ) = 1 when o = õ.
9If |Co| = 1, the posterior of the only related object will always be 1.



lifetime, its own experiences will start having a more promi-
nent role in the distribution. This will counteract potentially
misleading information encoded in the ontology, thereby
allowing a robot to exhibit lifelong learning capabilities. Our
experiments demonstrate this for some of the objects for
which multiple candidate models were available.10

B. Model Generality and New Model Acquisition

As models are generalised among objects throughout a
robot’s lifetime, the robot will acquire knowledge about their
applicability for different object classes. This may lead to
different outcomes regarding the extent to which a model
is applicable: (i) a model can be reliably generalised to all
sibling classes, and hence to a parent class, or (ii) existing
models are not appropriate for a specific object class, so
a robot needs to perform additional learning experiments to
acquire a new model for that class. We propose two heuristics
to control the generalisation and specification of models.

Generalisation heuristic: A model Mo is general
enough to be transferred to a parent class if, for every
sibling class õ of o, P (S = 1|õ, o) ≥ τ , where τ is a
predefined certainty threshold.

Specification heuristic: A new model Mo for an object
class o has to be learned if either |Co| = 0 or, ∀õ ∈ Co,
P (S = 0|õ, o) ≥ τ .

Both of these heuristics have a single hyperparameter: the
certainty threshold τ . The definition in Eq. 3 guarantees that
the belief of S = 1 and S = 0 will increase smoothly with
the number of execution successes and failures respectively,
such that a reasonably high τ will prevent premature deci-
sions about the (un)suitability of a model. For instance, using
α0 = β0 = 1 and τ = 0.8 means that a model Mo can be
generalised to a parent class if at least three successful and no
failed executions have been observed for all sibling classes,
but at least eight successful executions will be required if
at least one failed execution is observed. This behaviour
is rather intuitive and desirable: the more inconclusive the
generalisation results are, the more investigation a robot
needs to do before drawing conclusions about the need for
generalising or specifying a model.

V. EXPERIMENTS

We evaluate our method for ontology-assisted generalisa-
tion by considering various domestic objects in the context of
two actions performed by a Toyota HSR: grasping an object
for subsequent transportation and stowing a grasped object
in a drawer. The experimental setup is illustrated in Fig. 3.

For the experiments, we use a subset of object classes from
the YCB object set [24], shown in Fig. 4, in particular fruits

10One thing to note is that s(o, õ) could, in principle, be incorporated in
Eq. 1 through the initial parameters of the beta distribution, but keeping it
as an outside multiplicative factor makes it easier to incorporate changes
in the ontology hierarchy, as those would only be reflected in the value of
s(o, õ) without disrupting previously collected generalisation experiences.

(a) Grasping an object (b) Object stowing in a drawer

Fig. 3: Illustration of the setup for the experimental use cases

Fig. 4: Objects used in the experiments

(banana, apple, orange, strawberry), food and drink contain-
ers (chips can, tomato can, cracker box, sugar box, mustard
container, mug, wine glass, pitcher), and balls (tennis ball,
baseball, racquetball).11 We use an OWL ontology similar
to KnowRob [1] for organising the object classes, such that
most YCB classes and other common domestic objects are
included in the ontology12; we do not directly use KnowRob
because some of the YCB classes are not included there.

For both actions, we learn dedicated execution models
(using guided learning as in [8]) for each of the following
objects in order to have a reasonable variety of models: apple,
chips can, sugar box, mug, and tennis ball. Each model is
learned using 25 executions of the action; the remaining
objects are used for testing the generalisation. For testing,
we perform 10 trials for each action and test object, such
that P (S|õ, o) is updated after every execution based on the
outcome and Pt(õ|o, S) is updated according to Eq. 1.13,14

A. Object Grasping

In the grasping experiment, the robot is placed in front
of a table and, for every trial, a single object is placed on
the table, which the robot needs to find and grasp. A Faster

11As we do not have access to the actual YCB objects, we use local
objects that closely resemble the YCB objects.

12The ontology used in the experiments can be found at
https://github.com/b-it-bots/mas_knowledge_base/
blob/devel/common/ontology/apartment.owl

13The data from our experiments are available at https://zenodo.
org/record/4551725

14Implementation of Alg. 1 available at https://github.com/
alex-mitrevski/explainable-robot-execution-models

https://github.com/b-it-bots/mas_knowledge_base/blob/devel/common/ontology/apartment.owl
https://github.com/b-it-bots/mas_knowledge_base/blob/devel/common/ontology/apartment.owl
https://zenodo.org/record/4551725
https://zenodo.org/record/4551725
https://github.com/alex-mitrevski/explainable-robot-execution-models
https://github.com/alex-mitrevski/explainable-robot-execution-models


R-CNN model [25] trained on the YCB subset is used for
object detection and recognition.15,16 The grasping action is
parameterised by the grasping pose, which is represented by
(i) the relative gripper position with respect to the center
of the object’s bounding box and (ii) the relative wrist
orientation with respect to an estimated object orientation
(in the range

[
−π2 ,

π
2

]
). The robot executes a grasp at the

selected pose and the outcome is evaluated by a teacher.17 To
allow generalisation to differently sized objects, the position
parameters are normalised to the range [−1, 1] for all axes
in the learned model (motivated by [26]).

For simplicity of the experimental setup, the robot attempts
a sideways grasping strategy for all objects; this also il-
lustrates the limited generalisability between objects more
clearly. To estimate the object’s position and size before
grasping, we find the largest point cloud cluster within the
2D bounding box of the detected object; the center of the
cluster is then taken to be the object’s position, while the
span of the points represents the object’s size. To find the
planar orientation of the object with respect to the robot, we
use a RANSAC-like procedure [27] that finds the direction of
2D lines fitted to randomly selected points from the object’s
point cloud; the average of these line orientations is taken to
represent the object’s orientation.18

The relational model of the grasping action is extracted
from the following relations (similar to [8]):

in front ofx,y(p,B) := px,y < min(Bx,y)

behindx,y(p,B) := px,y > max(Bx,y)

above(p,B) := pz > max(Bz)

below(p,B) := pz < min(Bz)

centeredx,y,z(p,B) :=
∣∣px,y,z −Bx,y,z∣∣ ≤ ε

perpendicular to(θo, θp) := |θo − θp| ≈
π

2
parallel to(θo, θp) := |θo − θp| < θ

Here, rela1,...,an means that the relation rel is defined for
each of the axes a1, ..., an, p is the grasping pose, B is
the object’s bounding box, min /max are the minimum
and maximum coordinates along a given axis, θo and θp
are the object’s planar orientation and the wrist orientation,
respectively, ε is a distance threshold set to 5cm, and θ is
an orientation threshold set to 25o, which is a conservative

15Available at https://github.com/b-it-bots/mas_
models/tree/master/perception_models/detectors/ycb

16We used real fruits in the experiments, except for a plastic strawberry;
this was due to the fact that real strawberries seemed to be too small for
the detector. The model is also unable to recognise the wine glass and
the racquetball as such, but recognises them as a chips can and apple
respectively; in the generalisation trials with these two objects, we treated
them as if they were recognised correctly by the model since this does not
affect the results of the experiments.

17A grasp is considered successful if the object remains in the gripper
when the robot retracts the arm back after grasping.

18We estimate an object’s orientation using subsets of the object’s point
cloud instead of the full point cloud for computational reasons: particularly
for larger objects, processing the full point cloud at once takes several
seconds, which is not very practical.

value to allow for noisy angle estimates.

B. Object Stowing

For the stowing experiment, the robot is positioned in
front of an open drawer and an object is placed in the
robot’s gripper; the robot needs to throw the object in the
drawer in an orderly fashion, namely without damaging the
object and so that the drawer can be closed afterwards. As
in the grasping case, throws are evaluated by a teacher.19

For repeatability, the object is held by the robot in a similar
orientation for all trials; this corresponds to the orientation
in which the object is held in the successful grasps of
the grasping experiment. Before throwing, the drawer is
identified by handle detection (using the same detection
model as in [8]); the drawer itself is represented as a box with
a known size. The action is parameterised by the throwing
pose, which is represented by (i) the relative gripper position
with respect to the bounding box of the drawer20 and (ii)
the absolute wrist orientation when throwing the object. The
position relations used for the grasping model are also used
for the relational model of the stowing action; the orientation
predicates are used as well, but they evaluate the absolute
gripper orientation at which the object is thrown.

C. Results

The number of successful learning trials for each action
and training object is shown in Table I.

TABLE I: Successful executions in the data used for learning
object-specific execution models (out of 25)

Object Grasps Stows
Apple 9 11
Chips can 11 8
Mug 9 4
Sugar box 15 7
Tennis ball 17 15

As could be expected, several of the learning trials failed
due to the fact that execution parameters were selected
randomly (position parameters within the object and drawer
bounding boxes respectively, throwing height up to around
30cm from the top of the drawer, and arbitrary grasping and
throwing orientations). Most grasp failures were caused by
objects slipping out of the gripper or by the robot attempting
to grasp a bit too far from the object. Failed throws were
caused either by the object being thrown near the edges of
the drawer or by an unreasonably large throwing height.

The results of the generalisation experiments for the two
actions are shown in Table II. We report (i) the size of the
object cluster Co (as we only learned models for five objects,

19Throws from large heights are evaluated as unsuccessful for some of the
objects, such as the mug, even if the object ends up in the drawer. Similarly,
throws that prevent the drawer from closing afterwards or in which the
object falls into the drawer after a lucky bounce off the edges are evaluated
as unsuccessful.

20To account for the fact that some part of an object may be extended
below the gripper, the average extended length in the successful grasp trials
is added to the relative height.

https://github.com/b-it-bots/mas_models/tree/master/perception_models/detectors/ycb
https://github.com/b-it-bots/mas_models/tree/master/perception_models/detectors/ycb


|Co| varies between 1 and 2 for the test objects21), (ii) the
number of attempted models for generalisation (in case of
multiple available models), (iii) the object class o∗ whose
model generalises best to each object class o if ∃o∗ ∈ Co
for which P (S = 1|o∗, o) ≥ τ , and (iv) the total number
of successful executions N+ over the test trials. During the
experiments, we used α0 = β0 = 3 as prior values for the
success distribution; we use τ = 0.6 to decide if any of the
existing models can be generalised to a test object.22

a) Grasping: As the results of the grasping experiment
show, the learned models can be reliably generalised to
some of the test objects, but the acquired knowledge is
not sufficient in general. As expected, the model of the
tennis ball can be generalised to both other balls, but the
racquetball was pushed away in a few of the attempts as it is
considerably lighter. Similarly, the apple grasping model can
be generalised to the orange, although the orange slipped in a
few attempts, and surprisingly to the strawberry. As expected,
the model cannot be generalised to the banana, for which a
top-down grasping strategy would be more suitable (as in
Fig. 1); some of the banana grasping attempts succeeded as
well, but the banana was deformed in all cases due to an
inappropriate grasp approach direction.

The results are more interesting for the containers. Neither
of the sugar box and chips can models can be generalised to
the cracker box, pitcher, and mustard container. In the case of
the cracker box, the sugar box model was successful in half
of the attempts, but does not lead to reliable generalisation
as its mostly symmetric shape does not provide enough
coverage for constraining the grasping orientation, which
is important for the elongated cracker box. The mustard
container and the pitcher could also not be grasped using the
known models due to being quite slippery and also elongated.
The tomato can is grasped reliably, but, surprisingly, using
the model of the sugar box and not that of the chips can.
This is because both the sugar box and the chips can are
equally similar to the tomato can based on the ontology and
the sugar box model was initially chosen by chance, such that
there was no need to attempt the chips can model due to the
mostly successful executions using the sugar box model.

b) Stowing: According to the results of the stowing
experiment, stowing is considerably simpler than grasping,
as the learned models can be generalised to most of the test
objects. The model of the tennis ball is reliably generalised
to the other balls, except for a single failure with the
racquetball, which bounced out of the drawer. The model of
the apple can generally be reused for the banana and orange;
the model can also be reused for the strawberry, but not as
successfully, as the strawberry is sometimes thrown from a
large height that would damage the fruit.

As in the grasping case, the container results are more

21If Co was not used, all training objects could be considered for
generalisation; this increases the number of trials required for identifying
an appropriate model and does not scale with the number of objects.

22α0 = β0 = 3 and τ = 0.6 means that at least seven successes in
10 executions are needed to conclude that a model can be generalised to
another object class.

interesting to consider. The sugar box model is reused for
both the cracker box and the pitcher, but the execution failed
a few times due to the objects being thrown upright, which
means that the drawer could not be closed afterwards, or too
close to the drawer edges and bouncing out as a result. The
sugar box model is also reused for the tomato can; as in the
grasping case, the sugar box was chosen by chance initially,
such that the box model is quite reliable for the tomato can
since the objects have similar masses. The model of the chips
can was only reused for the mustard container, initially by
chance and then successfully, with only a single failure due
to the object being thrown from a large height. Finally, as
could be expected, the wine glass requires delicate treatment,
so the model of the mug cannot be generalised to it.23

VI. DISCUSSION AND CONCLUSIONS

Our method, represented by the notion of what we refer to
as a suitability graph, allows a robot to use relations between
objects encoded in an ontology as well as its own experiences
in order to generalise its action execution knowledge to
object classes that have not been manipulated before. In
particular, the ontology serves as a prior that guides the
generalisation between classes when the robot does not have
sufficient experiential information, but the robot’s behaviour
will be dominated by its own experiences as it interacts
with objects throughout its lifetime. As the experiences are
treated as annotations over the ontology, the result is a
generalisation strategy suitable for explainability and failure
analysis. Additionally, due to the probabilistic nature of the
model, a robot can determine that its existing knowledge is
insufficient for execution in a given context, which enables
a form of lifelong acquisition of execution knowledge.

Our method is based on the assumption that new object
classes which have to be manipulated are already present
in the robot’s ontology, which means that generalisation to
objects that are not encoded in the ontology cannot be done
directly; for that, it would be necessary to grow the ontology
as completely new objects enter the domain, using methods
such as [14], [28]. Related to this and an aspect that we
did not address in this paper is that of how to adjust the
learned suitabilities if the object cluster is expanded with a
new model for a related object class, as this means that there
is no generalisation information about that class; future work
should investigate strategies to include such models with-
out disrupting the previously learned suitabilities. Another
important assumption, which is reflected in the definition
of an object cluster, is that only classes that belong to the
object’s family are included in the cluster, although it might
sometimes also be desirable to allow a robot to discover
object relations that are not directly encoded in the ontology;
one possible strategy for this would be to expand the object
cluster by utilising information about object affordances
[2], [15], [29] or object materials [11]. The generalisation
between objects obtained using our method is also defined
per action; however, similar objects will generally be treated

23In fact, a few wine glasses were broken during the experiment.



TABLE II: Generalisation results for the test objects after 10 executions. We include the size of Co, the number of attempted
models during generalisation, the object class o∗ whose model is selected for generalisation (or / in case P (S = 1|õ, o) < τ
∀õ ∈ Co), and the total number of successful executions N+ over the 10 executions.

Action Object Banana Orange Strawberry Cracker box Can Container Pitcher Wine glass Baseball Racquetball
|Co| 1 1 1 2 2 2 2 1 1 1

Grasp
#models 1 1 1 1 1 2 2 1 1 1
o∗ / apple apple / sugar box / / mug tennis ball tennis ball
N+ 4 7 9 5 8 2 1 8 8 7

Stow
#models 1 1 1 2 1 1 1 1 1 1
o∗ apple apple apple sugar box sugar box chips can sugar box / tennis ball tennis ball
N+ 9 10 7 7 9 9 8 1 10 9

similarly across actions, so already learned relations could
potentially be transferred between actions as well, which
is an aspect that needs to be investigated in future work.
Even though our method is not limited to a specific action,
it would be desirable to perform a direct comparison with
other existing methods, for instance [6] for grasping. Finally,
in this paper, we used the representation in [8] to model
actions; however, it should be noted that the suitability graph
is not limited to a specific action representation, which allows
different policy models to be combined if desired.
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