Spatial Action Maps Augmented with Visit Frequency Maps

for Exploration Tasks

A THESIS
SUBMITTED TO THE FACULTY OF THE
UNIVERSITY OF MINNESOTA
BY

Zixing Wang

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

Nikolaos Papanikolopoulos, Adviser

Dec 2021

(©) 2021 IEEE. Reprinted, with permission, from Zixing Wang, Spatial Action Maps
Augmented with Visit Frequency Maps for Exploration Tasks, 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 9/2021

ACKNOWLEDGEMENTS

The author would like to thank Doctor Nikolaos Papanikolopoulos for his help. This
material is based upon work partially supported by the Minnesota Robotics Insti-
tute and NSF through grants #CNS-1439728, #CNS-1531330, #CNS-1544887, and
#CNS-1939033. USDA/NIFA has also supported this work through grant 2020-
67021-30755.

ABSTRACT

Reinforcement learning has been widely applied in exploration, navigation, manipula-
tion, and other fields. Most of the relevant techniques generate kinematic commands
(e.g., move, stop, turn) for agents based on the current state information. How-
ever, recent dense action representations based research, such as spatial action maps,
pointing way-points to the agent in the same domain as its observation of the state
shows great promise in mobile manipulation tasks. Inspired by that, we make the
first step towards using a spatial action maps based method to effectively explore
novel environmental spaces. To reduce the chance of redundant exploration, the visit
frequency map (VFM) and its corresponding reward function are introduced to direct
the agent to actively search previously unexplored areas. In the experimental section,
our work was compared to the same method without VFM and the method based
on traditional steering commands with the same input data in various environments.

The results show conclusively that our method is more efficient than other methods.

ii

Contents

List of Tables
List of Figures

1 Introduction

2 Related Works

3 Methods
3.1 Problem Formulation 0L
3.2 State and Action Representation
3.3 Rewards and Penalties L.
3.4 Neural Network

4 Experiments
4.1 Training L
4.2 Metrics Lo

4.3 Performance and Ablation Analysis
5 Conclusions

References

iii

iv

List of Tables

4.1 Average and Standard Deviation of GRERs 17
4.2 Average and Standard Deviation of CEs 17
4.3 Average and Standard Deviation of PEs 17
4.4 Number of Failures in Exploration 17

iv

List of Figures

1.1

3.1

Occupancy map on the left encodes the explored area (white), unex-
plored area (black), obstacles (black), and walls (black). The VFM in
the middle encodes the number of times each pixel is visited by the
agent. Each color represents a specific frequency number. We cap-
ture the egocentric local maps including VFMs and other maps to a
double DQN to generate commands on a spatial action map (right),
where each pixel holds the Q-value of the corresponding command.
The agent moves to the position with the highest Q-value. In this im-
age, the pixel marked by a green star, whose corresponding position in
the real environment is marked by a red dot, is the destination of the
agent. (Note that we reduce the scanning frequency for better visu-
alization and showing the shape sensing range. The Figure 3.1 shows

more details about the approach.)

Each channel of state representation. All of these channels are defined
in the same domain. From left to right: overhead map, robot position

map, VFM, and shortest path map.

LisT OoF FIGURES

3.2 The left graph shows spatial action maps. The star indicates the po-

4.1

sition with the highest Q-value. The action space of it is all the free
area, which covers all the possible movements in the local map. The
right graph shows the 18-direction steering commands, whose size of

the action spaceisonly 18.

The GRER, CE, and PE scores of SAM-VFM-SIG, SAM-VFM, SAM
and ST-COM over 200 testing episodes. SAM-VFM-SIG outperforms
SAM-VFM, SAM, and ST-COM among all metrics. The spatial action
maps based methods show great advantage over the steering commands
based method. Note that we sorted each method’s scores from low to
high, so scores of different methods at the same x-axis position cannot

be directly compared with (These plots share the same legend).

vi

11

18

Chapter 1

Introduction

Exploration serves as one of the fundamental tasks in the field of robotics, and it also
widely covers different applications including autonomous vehicles, space exploration
robots, etc. Gul et al. (2019). There are many categories of exploration and navigation
algorithms which have been proposed to achieve the goal of going to a location.
For example, there are deterministic methods including neural networks, fuzzy logic,
etc., and non-deterministic method including genetic algorithms, swarm optimization,
etc. Gul et al. (2019). In recent years, reinforcement learning based visual navigation
methods Gao et al. (2017); Chen et al. (2018); Mnih et al. (2015); Gupta et al. (2017);
Pfeiffer et al. (2017); Ross et al. (2013); Silver et al. (2018); Levine et al. (2018) have
achieved remarkable success. They generally use a neural network with visual state
observation as input to generate commands for agents to achieve different objectives.

One of the common points of the aforementioned methods is that they use steering
commands to direct agents to reach their goals. Common steering commands as
shown in Figure 3.2 control agents by giving moving direction and distance (e.g.,
going straight for 0.16 meters). Comparing with all the possible navigation points,
the action space of steering commands is relatively limited. If we consider the steering
command setting’s step size to be fixed, the action space is the number of candidate

directions. For example, a 18-direction fixed step size steering commands system’s

CHAPTER 1. INTRODUCTION 2

A 4

AS B

Occupancy Ma Visit Frequency Ma Spatial Action Map
pancy vlap q y Map

Figure 1.1: Occupancy map on the left encodes the explored area (white), unexplored
arca (black), obstacles (black), and walls (black). The VFM in the middle encodes
the number of times each pixel is visited by the agent. Each color represents a specific
frequency number. We capture the egocentric local maps including VFMs and other
maps to a double DQN to generate commands on a spatial action map (right), where
each pixel holds the Q-value of the corresponding command. The agent moves to
the position with the highest Q-value. In this image, the pixel marked by a green
star, whose corresponding position in the real environment is marked by a red dot, is
the destination of the agent. (Note that we reduce the scanning frequency for better
visualization and showing the shape sensing range. The Figure 3.1 shows more details
about the approach.)

CHAPTER 1. INTRODUCTION 3

action space is 18 in each movement. Except for limited action space, it is hard for a
single steering command to generate a complex path, such as a zigzag path to avoid
obstacles, because the fixed dimension of the output includes limited information.

Wu et al. Wu et al. (2020) proposed a new action command representation for
mobile manipulation: spatial action maps (Figure 1.1) to solve the aforementioned
limitation of steering commands. An agent associated with it was compared with the
traditional method of mobile manipulation: agents need to push as many cubes as
possible to the receptacle area in the testing environments where we have obstacle
cubes and dividers. Their results show that the spatial action commands have much
better performance than the steering commands.

The spatial action maps are developed so that action commands can be represented
as pixels on a map, whose action space is much larger than the low dimensional
steering commands. Since the command only serves as a navigation endpoint, the
agent can arrive to the corresponding position through linear or non-lincar trajectories
generated by the shortest path planner in Wu et al. (2020). It is worth noting that the
spatial action maps lie in the same domain as state observations, and each pixel in the
map encodes the corresponding Q)-value if the agent chooses it as the end navigation
point, so it is easier for the neural network to learn and predict the Q-value of each
point based on the features of the state representation.

In this work, we employ modified spatial action maps for the exploration task
to evaluate their performance. Exploring a new environment is an important task
for robots. Taking a foraging robot as an example, before it finds target objects
and transports them to the designated position, it will keep exploring the previously
unseen area and build maps for later use Winfield (2009). This kind of task requires
that agents explore the environment as efficiently as possible, which means agents
should explore as much new area as possible and reduce the frequency of revisiting

already explored areas. We mimic this setting in simulated environments as the

CHAPTER 1. INTRODUCTION 4

Figure 1.1 shows.

There are three main contributions of this work. First, we introduce the spatial
action maps to the exploration tasks. Second, VFMs (Figure 1.1) are added to the
state representation to urge agents to explore new areas. Finally, a sigmoid penalty

function is designed for VFMs.

Chapter 2

Related Works

Steering commands based learning methods are currently one of the main stream
choices to train an agent. AI2-THOR Kolve et al. (2017), MINOS Savva et al.
(2017), House3DWu et al. (2018), Gibson Virtual Environment Xia et al. (2018), and
Matterport-3D Anderson et al. (2018) are popular simulated indoor environments
to train vision based reinforcement learning navigation methods. Lowe et al. Lowe
et al. (2017) proposed a method to learn policies for multi-agent coordination. Chen
et al. Chen et al. (2019) study a method that enables agents to navigate 3D envi-
ronments without the rewards structure associated with tasks. Gupta et al. Gupta
et al. (2017) proposed cognitive mapping and planning mechanisms that convert a
first-person view to a top-down view map and plan a path towards the destination on
that map. Chen et al. Chen et al. (2018) present an approach to enable wheel-legged
robots to navigate in complex and dynamic environments by mapping the observa-
tions of the environment height to the action space. Gao et al. Gao et al. (2017)
introduce a two-level approach including intention-net map commands to the image
and a path planner to generate trajectories in 2D domain. Bellemare et al. Bellemare
et al. (2016) propose to encourage agents to explore “novel” states. Chen et al. Chen
et al. (2020) use an end-to-end method to enable agents to navigate in dynamic en-

vironments where obstacles are not stationary. These and other related work apply

CHAPTER 2. RELATED WORKS 6

different architectures to the exploration tasks and allow different types of robots to
navigate the diverse environments. However, the control loop and types of action
commands are similar: the agent acquires observations of the most recent state from
on-board sensors, then feeds the observation to neural networks, then execute the
generated commands, which are mostly low-dimensional, and repeats the loop by
start observing new states.

Zeng et al. Zeng et al. (2018) use dense action representations in pick-and-place
tasks as their system infers probability maps (top-down view) so that each pixel
represents the affordances for different primitives associated with grasping. Song et
al. Song et al. (2020) use a similar approach. Their grasping model predicts the
future states for all possible actions to maximize the cumulative reward based on an
action-view simulation. Moreover, Wu et al. Wu et al. (2020) introduce the spatial
action maps as a new action representation and space that enable mobile robots to
learn to navigate and manipulate by selecting navigational point on a map of local
state observation. Xia et al. Xia et al. (2020) proposed ReLMoGen, whose deep Q-
Learning variant is similar to spatial action maps. Their work enables robotic arms

to navigate and manipulate.

Chapter 3

Methods

Our work is implemented in PyBullet Coumans and Bai (2017), a physics simulation
tool for various applications including robotics, reinforcement learning, etc. The
training and testing environment is a 3 X 3 meters square playground enclosed by walls
with a random number (1 to 20) of randomly positioned 0.1 x 0.1 meters unmovable
obstacles (cubes) and a 0.044 x 0.044 meters target cube. A running time image of it is
shown in Figure 1.1. The agent is equipped with a simulated depth camera with a 0.25
meter sensing range and a degree of 90 field of view facing in the moving direction.
There is no prior information available to the agent, so it needs to incrementally build

a map over time based on point clouds generated by the depth sensor.

3.1 Problem Formulation

As most reinforcement learning based methods, our method can be modeled as a
sequential decision process. At the beginning of a task, the agent’s position and pose
are randomly initialized inside this environment. The agent explores the environment
until the target object is found (any part of the target cube is within the sensing range
of the depth camera). At each time ¢, given a representation of the current state s;,

a policy 7 is employed to provide an action command a; for the agent to execute as

3.2. STATE AND ACTION REPRESENTATION 8

follows:
ap = 7T(St) .

Once a; is finished at timestamp ¢+ 1, the agent receives a reward r; and observes
the updated state to get the new representation s;,;. The agent is expected to max-
imize the y-discounted cumulative future reward (Q-value) until the task is finished,

v € [0, 1]:
Q(st,a¢) = Z’Y(i_t)ﬁ-
i=1

Using a Q-learning Mnih et al. (2015) algorithm, the optimal Q-function can be

approximated in an iterative way by the Bellman equation:

Q(s1,a1) =714 + 7 max Q(5¢41, Apq1).
a4

In order to get a higher Q-value in s;,;, we trained a policy 7 to choose the a;;
that maximizes the Q-function:
apy1 = argmax Qo(Sey1, A1),
at+1
where 6 is the weight of the neural network (Q-network). Similar to Wu et al.
(2020), the agent is trained by a double DQNVan Hasselt et al. (2015) to minimize
the loss at each iteration i:
L=lr+ 7@9;(5t+17 arg max Qy, (¢11, ar1)) — Qo, (81,)l
a¢4+1

where 0’ represents the weights of the target-network.

3.2. STATE AND ACTION REPRESENTATION 9

Figure 3.1: Each channel of state representation. All of these channels are defined in
the same domain. From left to right: overhead map, robot position map, VFM, and
shortest path map.

3.2 State and Action Representation

State Representation. The current state of the environment and the agent are
represented by egocentric local maps based on the new observations and the already
built map of the agent. The state representation consists of 4 top-down view channels
as Figure 3.1 shows in the same domain encoding different pieces of information:
overhead map, robot position map, VFM, and the shortest path on the agent map.
All of these maps are cropped and rotated so that the agent’s facing direction is always
vertical up. The overhead maps represent the pixel-wise occupancy and segmentation,
which allow the agent to avoid collisions and recognize the target object. The robot
position map is a simple binary image representing the robot’s location in the general
local maps. The shortest path on the agent map holds the shortest path distance
from the agent to each pixel in the local map of the current state. The VFM encodes
the number of times each pixel is scanned by the depth sensor, which directs the
agent to explore more unseen areas. All of these channels except the robot position
map are empty at the beginning of a task and are updated over time as the depth
sensor captures new environmental structure data, which is a typical online-SLAM
behavior.

This setting is similar to the work of Wu et al. Wu et al. (2020). Their state

representation is the same as our method but they use the shortest path to recep-

3.2. STATE AND ACTION REPRESENTATION 10

tacle map instead of the VFM to execute a mobile manipulation task. Except the
tasking difference, these two state representations reflect different situational settings.
As stated in the paper Wu et al. (2020), their settings illustrate the situation that
the agent has access to the state observation by the sensor, the coordinates from
an outside positioning system, egocentric local mapping, and the task-related goal
coordinates. For comparison, our settings reflect the situation that the agent has
access to the state observation by the sensor, the SLAM-based visit frequency record,
and the local mapping, which simulate the situation that an agent is sent to a novel
environment without the support of a global map and a positioning service.

Action Representation. We use an identical dense action representation as
the spatial action maps Wu et al. (2020) defined in the same domain as the state
representation. Each pixel belonging to the floor (an agent is unable to reach to
points above obstacles or walls) represents an action at a location (the location can
be viewed as a potential way-point in the current movement of the agent). After the
process of state representation by a neural network, each pixel holds a Q-value, and
the agent goes to the point where the pixel has the highest value as the Figure 3.2
shows.

When executing spatial action commands, there are many options, such as a
straight line and a shortest path moving primitives, adaptive and fixed step size, etc.
In the original paper, the effects of these options were comprehensively evaluated.
So we follow the evaluation results and employ the best combination of the available
options: our agent will use the shortest path moving primitive without the limitation
of the step size to execute the spatial action commands.

In addition to these 4 channels, an occupancy map, which is an overhead map
without segmentation, is generated by the system. The shortest path from agent
map and the path to execute the shortest path moving primitive are computed based

on this map. Any area that is unexplored in this map will be treated as free space.

3.3. REWARDS AND PENALTIES 11

a .

Spatial Action Maps 18-Direction Steering Commands

Q-value

Figure 3.2: The left graph shows spatial action maps. The star indicates the position
with the highest Q-value. The action space of it is all the free area, which covers
all the possible movements in the local map. The right graph shows the 18-direction
steering commands, whose size of the action space is only 18.

3.3 Rewards and Penalties

Reward Function. The reward system encourages the exploration of new areas
and penalizes revisits. When a previously unseen area A is found, the agent will be

rewarded by the pixel size of it:
r = size(A).

For instance, a 4 x 4 square newly found area will reward the agent with a value
of 16. It worth noting that finding the target cube is not rewarded since there is no
target related information available to the agent. The agent’s policy only affects the
relative efficiency of finding the target cube.

Penalty Function. The most intuitive penalty function design is calculating the
pixel size or scaled pixel size of revisited areas:

Z§1Z6<Ae) f@
- size(Q)

where size(A.) represents the pixel size of a previously explored area revisited by

3.4. NEURAL NETWORK 12

the agent, f; is the number of times a pixel has been visited inside A., and size(G) is
the pixel size of the whole experimental environment, which is a scale factor.
However, this penalty function has two critical disadvantages. First, there is
no upper limit on the penalty value, but newly explored areas can only reward the
agent once. This would cause penalty explosion: an unreasonably high penalty value.
Second, since the penalty value for non-movement and collision is limited, the agent
would stuck around walls or obstacles if visiting a nearby area would receive a higher

penalty value than the normal one. So we propose a sigmoid penalty function:

size(Ae) 9

P= 2 e

This function has two main advantages. First, the max number penalty that a
pixel can penalize an agent is 2. This can avoid the aforementioned two shortcomings.
Second, from our observations we noticed that some areas (e.g., a channel connecting
multiple areas) would be unavoidably visited more than once by the agent. Our design
would tolerate and penalize the first several times of visiting these pixels. We also
compared these two penalty functions in Section Chapter 4. In addition, collisions and
non-movement also negatively affect the whole process, so the agent will be penalized
by 15000, which is the double of maximum possible sigmoid penalty of a revisit in
a single action under the setting of our experimental environment, if such behaviors

occur.

3.4 Neural Network

We leverage the same network architecture and strategy as the original spatial ac-
tion maps method Wu et al. (2020). The ResNet-18 He et al. (2016) without batch
normalization layers serves as the backbone network of the fully convolutional neural

network, which takes the aforementioned 4-channel state representation, and then

3.4. NEURAL NETWORK 13

generates a command on the spatial action maps. In order to obtain outputs whose
size are the same as the inputs, there are 3 convolutional layers, which use 1 x 1
kernels, at the end of the backbone network replacing the AvgPool and the fully
connected layers. In addition, there are 2 bilinear upsampling layers (scale factor:
2) inserted in the 3 convolutional layers. Since the area of our environment is larger
than the original setting, the size, 128 x 128 of our local map (agent’s observation of
the state) is larger than 96 in order to ensure there is an adequate receptive field for

the fully connected network.

Chapter 4

Experiments

In this section, we evaluate and report the performance of the spatial action maps with
the VFM and the sigmoid penalty function (SAM-VFM-SIG) on an exploration task,
the same method with the incremental penalty function (SAM-VFM), the spatial
action maps (SAM) without VEM, the traditional steering commands based method
(ST-COM) taking the same 4-channel state representation as the SAM-VFM and
SAM-VFM-SIG in Section 4.3, and the random method (RAND) that randomly picks
a destination within the local state space map. Note that we provide the RAND
results only for reference since the input of it is totally different from the other
methods. The evaluation metrics and model training details are in Section 4.2 and
Section 4.1.

Regarding ST-COM, we modified the neural network so that it does not generate
spatial action maps but traditional steering commands. The action space of ST-COM
is 18, which means there are 18 possible directions that the agent can move along,

and the step length (25c¢cm) of each action is fixed.

14

4.1. TRAINING 15

4.1 Training

In our experiments, we run a 1000 transitions of the random policy to fill the replay
buffer (6000) with initial experience. Then we train our neural network for 35000
iterations with a stochastic gradient descent (SGD) optimizer whose learning rate,
momentum, and decay are 0.01, 0.9 and 0.0001. The training environment will be
reset when an episode is finished or reached the maximum steps allowed for an episode,
which means the target is found by the agent. The training is implemented on a RTX
TITAN X 11GB GPU.

4.2 Metrics

GRER: Global Repetitive Exploration Rate (lower is better). The GRER evaluates
the efficiency of the exploration: the lower the GRER is, the less a unit size area has

been visited. This metric is calculated by the formula:

Size(V) f . J
_ 1 v
GRER = size(V) 7

where V' is the global VEM, f is the value of ecach pixel on V', and J is a matrix
of ones whose shape is the same as V. Each f; is reduced by 1 since we only pay
attention to the numbers of the revisit frequency.

CE: Command Efficiency (Higher is better). The CE evaluates the average new
area explored by each command. This metric is calculated as:

size(E)

E =2
¢ num(C')’

where E represents the explored area and num(C') represents the number of com-

mands generated before the target cube is found.

4.3. PERFORMANCE AND ABLATION ANALYSIS 16

PE: Path Efficiency (Higher is better). The PE evaluates the quality of a gen-
erated path in a global view by calculating the average new area explored per unit
length of path. This metric is calculated as:

_ size(F)
length(D)’

where E represents the cumulative explored area and length(D) represents the
cumulative distance the agent travelled before the target cube is found. Note that we
only calculate the cases that length(D) > 1 in order to reduce the offset.

FR Failure Rate (Lower is better). In some environmental settings some methods
arc unable or take too long time to cventually finish the task. It is worth noting
that if we add those data points to the final results, the average value will be greatly
affected. So we mark a task lasting longer than 10 minutes as failed and add the data
points at 10 minutes to the final average results calculation.

We evaluated all candidate methods for 200 episodes. For each episode they are
run in a randomly generated environment, whose basic setting is the same as the
training environment except that the number and positions of the obstacle cubes are
different. We ensure the environment settings are the same for each of these methods
by applying the same random seed. Agents in all experiments are with an e-greedy

policy whose ¢ = 0.01.

4.3 Performance and Ablation Analysis

The detailed experimental results are reported in Tables Table 4.1 to Table 4.4, and
the result trends of methods are illustrated in Figure 4.1. In summary, SAM-VFM-
SIG shows better performance on all metrics and the performance is quite stable in
all testing episodes. In addition, SAM-VFM has more stable performance for some

metrics.

4.3. PERFORMANCE AND ABLATION ANALYSIS

W(GRER) o(GRER)
SAM-VFM-SIG | 0.502 0.452
SAM-VFM 0.839 0.470
SAM 1.659 1.738
ST-COM 1.151 1.421
RAND 3.420 2.603

Table 4.1: Average and Standard Deviation of GRERs

W(CE) o(CE)
SAM-VFM-SIG | 2906.379 890.254
SAM-VFM 1847.799 377.058

SAM 1882.847 995.570
ST-COM 1437.152 406.720
RAND 834.312 576.124

Table 4.2: Average and Standard Deviation of CEs

W(PE) _ o(PE)
SAM-VFM-SIG | 6479.335 2380.952
SAM-VFM 5402.662 2076.554

SAM 4326.754 2914.199
ST-COM 5480.642 2281.578
RAND 3083.404 1763.122

Table 4.3: Average and Standard Deviation of PEs

Failure Cases
SAM-VFM-SIG 0 / 200
SAM-VFM 0 / 200
SAM 2 /200
ST-COM 4 /200
RAND 7 /200

Table 4.4: Number of Failures in Exploration

4.3. PERFORMANCE AND ABLATION ANALYSIS 18

GRER

The GRERs of SAM-VFM, SAM, and ST-COM over 200 Testing Episodes

— saM
— stcom
—— SAM-VFM-SIG

SAM-VFM

0 25 50 75 100 125 150 175 200
The GEs of SAM-VFM, SAM, and ST-COM over 200 Testing Episodes

e

4 25 50 75 100 125 150 175 200
The PEs of SAM-VFM, SAM, and ST-COM over 200 Testing Episodes

Figure 4.1: The GRER, CE, and PE scores of SAM-VFM-SIG, SAM-VFM, SAM
and ST-COM over 200 testing episodes. SAM-VFM-SIG outperforms SAM-VFM,
SAM, and ST-COM among all metrics. The spatial action maps based methods show
great advantage over the steering commands based method. Note that we sorted each
method’s scores from low to high, so scores of different methods at the same x-axis
position cannot be directly compared with (These plots share the same legend).

4.3. PERFORMANCE AND ABLATION ANALYSIS 19

Effect of the VFM. By comparing the performance of SAM-VFM-SIG and
SAM-VFEM with SAM, we are able to recognize the effect of the VFM. Based on the
results, the VFMs are able to help spatial action maps based methods improve the
exploration efficiency by reducing the frequency of redundant revisits and generate
commands that explore many more previously unseen areas. It is worth noting that
the performance of SAM-VFM-SIG and SAM-VFM is also more stable, which shows
the adaptability brought by the VFM to the different environmental settings. We
conjecture that there are two reasons for the better performance. The first is that
the VFM can penalize agents heavier for undesirable behavior. The second is that
even though all the pixels on a local state map are explored, their corresponding visit
frequency values are different. So the agent can still be directed to a place where the
penalty is relatively low. However, this cannot be achieved in SAM. So it is hard
for the agent to make reasonable decisions and highly possible that it just randomly
chooses a position without concrete reasoning. It is worth noting that ST-COM
equipped with VFM even outperformed SAM with respect to the GRER and PE,
which conclusively demonstrated the fundamental impact on reducing the revisiting
instances by VFMs.

Effect of the Sigmoid Penalty. Regarding the performance of GRER, CE, and
PE, the sigmoid penalty function brought considerable advantages to SAM-VFM-SIG
over SAM-VFM. The main reason behind this, based on our observations, is that the
agent with the sigmoid penalty acts more closely to what we desire. At the early
stages of a task, the agent dares to explore low-visit-frequency areas. Though these
visits would bring some penalty, which is minor, they supply the agent with the
ability to pass through less explored areas to reach unvisited places. On the contrary,
SAM-VFM with the incremental penalty function has no such flexibility.

Effect of the Spatial Action Map. There is a great performance advantage
of SAM based methods over the ST-COM based method when they have the same

4.3. PERFORMANCE AND ABLATION ANALYSIS 20

inputs. We believe that it is the difference between the spatial action map commands
and the steering commands that lead to these results. We assume that the input
and output defined in the same domain helps the neural network better understand
the spatial relation between state observation and action space. In addition, we
noticed that in many situations agents with the ST-COM move following a circular
trajectory and never get out of it until the system execution is suspended. Regarding
this we conjecture the reason is that the action space of the ST-COM is only 18 with
fixed step size, so it keeps trying to reach a position that is always showing in the
local observation with higher rewards or lower penalty, but due to the limited action

options, the agent can never reach that point.

Chapter 5

Conclusions

We make the first step towards using spatial action maps to perform exploration
tasks and introducing the VFM and the corresponding rewards structure to help the
agent effectively explore diverse environments. The results show that our methods
are more efficient than traditional steering commands based methods, and the VFM
is able to help the agent reduce the frequency of revisiting places. Additionally, the
use of VFM provides a source of meaningful rewards for training the agent without
requiring additional information from the simulation environment. This is appealing

when considering deployment of reinforcement learning systems to real environments.

21

References

Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M., Stinderhauf, N., Reid,
I., Gould, S., and van den Hengel, A. (2018). Vision-and-language navigation:
Interpreting visually-grounded navigation instructions in real environments. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3674-3683.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R.
(2016). Unifying count-based exploration and intrinsic motivation. Advances in

Neural Information Processing Systems, 29:1471-1479.

Chen, G., Pan, L., Chen, Y., Xu, P., Wang, Z., Wu, P., Ji, J., and Chen, X. (2020).
Robot navigation with map-based deep reinforcement learning. arXiv preprint

arXiw:2002.04549.

Chen, T., Gupta, S., and Gupta, A. (2019). Learning exploration policies for naviga-
tion. arXiww preprint arXiv:1903.01959.

Chen, X., Ghadirzadeh, A., Folkesson, J., Bjorkman, M., and Jensfelt, P. (2018).
Deep reinforcement learning to acquire navigation skills for wheel-legged robots in

complex environments. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3110-3116. IEEE.

Coumans, E. and Bai, Y. (2017). Pybullet, a python module for physics simulation

in robotics, games and machine learning.

22

REFERENCES 23

Gao, W., Hsu, D., Lee, W. S.; Shen, S., and Subramanian, K. (2017). Intention-net:
Integrating planning and deep learning for goal-directed autonomous navigation.
In Levine, S., Vanhoucke, V., and Goldberg, K., editors, Proceedings of the 1st An-

nual Conference on Robot Learning, volume 78 of Proceedings of Machine Learning

Research, pages 185-194. PMLR.

Gul, F., Rahiman, W., and Nazli Alhady, S. S. (2019). A comprehensive study for
robot navigation techniques. Cogent Engineering, 6(1):1632046.

Gupta, S., Davidson, J., Levine, S., Sukthankar, R., and Malik, J. (2017). Cognitive
mapping and planning for visual navigation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2616-2625.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770-778.

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L., Herrasti, A., Gordon,
D., Zhu, Y., Gupta, A., and Farhadi, A. (2017). Ai2-thor: An interactive 3D
environment for visual Al. arXiv preprint arXiv:1712.05474.

Levine, S., Pastor, P.; Krizhevsky, A., Ibarz, J., and Quillen, D. (2018). Learning
hand-eye coordination for robotic grasping with deep learning and large-scale data

collection. The International Journal of Robotics Research, 37(4-5):421-436.

Lowe, R., Wu, Y. 1., Tamar, A., Harb, J., Abbeel, O. P., and Mordatch, 1. (2017).
Multi-agent actor-critic for mixed cooperative-competitive environments. In Ad-

vances in Neural Information Processing Systems, pages 6379-6390.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

REFERENCES 24

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-
level control through deep reinforcement learning. Nature, 518(7540):529-533.

Pfeiffer, M., Schaeuble, M., Nieto, J., Siegwart, R., and Cadena, C. (2017). From
perception to decision: A data-driven approach to end-to-end motion planning for

autonomous ground robots. In 2017 IEEE International Conference on Robotics

and Automation (ICRA), pages 1527-1533. IEEE.

Ross, S., Melik-Barkhudarov, N., Shankar, K. S., Wendel, A., Dey, D., Bagnell, J. A,
and Hebert, M. (2013). Learning monocular reactive UAV control in cluttered

natural environments. In 2013 IEEE International Conference on Robotics and

Automation, pages 1765-1772. IEEE.

Savva, M., Chang, A. X., Dosovitskiy, A., Funkhouser, T., and Koltun, V. (2017).
Minos: Multimodal indoor simulator for navigation in complex environments. arXiv

preprint arXiv:1712.03931.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., et al. (2018). A general reinforcement

learning algorithm that masters chess, shogi, and go through self-play. Science,

362(6419):1140-1144.

Song, S., Zeng, A., Lee, J., and Funkhouser, T. (2020). Grasping in the wild: Learn-
ing 6DOF closed-loop grasping from low-cost demonstrations. [EEE Robotics and
Automation Letters, 5(3):4978-4985.

Van Hasselt, H., Guez, A., and Silver, D. (2015). Deep reinforcement learning with
double qg-learning. arXiv preprint arXiv:1509.06461.

Winfield, A. (2009). Foraging Robots, pages 3682-3700. Springer New York.

REFERENCES 25

Wu, J., Sun, X., Zeng, A., Song, S., Lee, J., Rusinkiewicz, S., and Funkhouser, T.
(2020). Spatial action maps for mobile manipulation. In Proceedings of Robotics:

Science and Systems (RSS).

Wu, Y., Wu, Y., Gkioxari, G., and Tian, Y. (2018). Building generalizable agents
with a realistic and rich 3D environment. arXiv preprint arXiv:1801.02209.

Xia, F., Li, C., Martin-Martin, R., Litany, O., Toshev, A., and Savarese, S. (2020).
Relmogen: Leveraging motion generation in reinforcement learning for mobile ma-

nipulation. arXiv preprint arXiv:2008.07792.

Xia, F., Zamir, A. R., He, Z., Sax, A., Malik, J., and Savarese, S. (2018). Gibson env:
Real-world perception for embodied agents. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 9068-9079.

Zeng, A., Song, S., Yu, K.-T., Donlon, E., Hogan, F. R., Bauza, M., Ma, D., Taylor,
O., Liu, M., Romo, E., et al. (2018). Robotic pick-and-place of novel objects in
clutter with multi-affordance grasping and cross-domain image matching. In 2018
IEEFE International Conference on Robotics and Automation (ICRA), pages 3750~
3757. IEEE.

