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Abstract— In this work, we focus on improving the robot’s
dexterous capability by exploiting visual sensing and adaptive
force control. TeachNet, a vision-based teleoperation learning
framework, is exploited to map human hand postures to a multi-
fingered robot hand. We augment TeachNet, which is originally
based on an imprecise kinematic mapping and position-only
servoing, with a biomimetic learning-based compliance control
algorithm for dexterous manipulation tasks. This compliance
controller takes the mapped robotic joint angles from TeachNet
as the desired goal, computes the desired joint torques. It is
derived from a computational model of the biomimetic control
strategy in human motor learning, which allows adapting the
control variables (impedance and feedforward force) online
during the execution of the reference joint angle trajectories.
The simultaneous adaptation of the impedance and feedforward
profiles enables the robot to interact with the environment
in a compliant manner. Our approach has been verified in
multiple tasks in physics simulation, i.e., grasping, opening-
a-door, turning-a-cap, and touching-a-mouse, and has shown
more reliable performances than the existing position control
and the fixed-gain-based force control approaches.

I. INTRODUCTION

It is a major goal in robotic manipulation research to
augment robots with human-like dexterous and compliant
behaviour for many tasks in everyday life. In recent years
numerous attempts have been published towards this goal,
but some issues are still not fully addressed yet, especially
for grasping and manipulation with a multi-finger robot hand
[1], [2], [3]. Most of the state-of-the-art works in robotic
grasping mainly focused on object recognition or grasping
motion planning (see, e.g., [4], [5], [6]), and the robotic
hand was controlled in a binary way–closing fingers to grasp
the object. The task dynamics during the grasping process
were often neglected. This kind of control strategy is not
suitable for a complex task in which a fine-tuned grasp
posture and compliance fingers motions are needed. Yet, we
humans can spontaneously adapt our hand pose and force
to interact with environments in a compliant manner during
daily manipulation tasks. Consequently, if we would like to
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Fig. 1: The pipeline of the proposed learning-control approach.
The human demonstrator guides the robot hand to complete a task
through the vision-based teleoperation. A camera is used to track
the hand pose during the demonstration. The TeachNet model is
used to map the human hand pose to the robot hand joint angles.
Unlike our previous work which sends position commands to the
robot hand directly, this work develops a force predictor to generate
the desired force commands to control the robot hand in an online
manner.

endow a robot with human-like skills, one promising solution
is therefore to develop adaptive control strategies that allow
the robot to compliantly deal with physical and dynamical
interactions with the environment.

Teleoperation is considered as an efficient way for the
robot to imitate manipulation behaviours from humans. Re-
cently, markerless vision-based teleoperation offers several
advantages for multi-finger robots such as a low cost and
no obstructions due to measurement devices. In a typical
teleoperation system, the human demonstrator’s behaviours
are captured through a motion tracking device and then
mapped into the robot’s motion policies in the Cartesian
space or joint space. In this case, the robot is often re-
quired to be controlled under the position control mode.
As a matter of fact, several studies have revealed that
force control strategies could obtain good performances for
robot compliant manipulation (see, e.g., [7], [8]). Thus, it
is reasonable to integrate an adaptive force control strategy
into a vision-based teleoperation system such that we can
bring their advantages together for the manipulation of the
multi-fingered robotic hand.

In this work, we propose a learning-control approach
combining a vision-based teleoperation system with adaptive
force control, allowing us to take an image as the input and
output the desired force commands for the robot hand. The
pipeline of the proposed approach is shown in Fig. 1. For
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the learning part, we employ the end-to-end model TeachNet
developed in the previous work [9] to learn the mapping
relation between the human hand pose and the joint angles
of the Shadow robot hand. At runtime, a camera is used to
collect a depth image of the hand, and the TeachNet estimates
the desired robot joint angles based on the image. To deal
with task dynamics during hand grasping and manipulation,
we develop an adaptive force control strategy which can
predict the next-step desired control force command based
on the desired joint angles and the robot current states.
Our force controller is derived from the computation model
inspired by the human motor learning principles. The control
variables in the controller, i.e., impedance and feedforward
terms are simultaneously adapted online and combined to
generate the force/torque commands which are subsequently
sent to the robot hand in the joint space. We need to
mention that the proposed controller does not exploit tactile
feedback, but is a biomimetic-inspired open-loop compliance
method. Even so, the physics simulation experiments show
that the grasp stability with proposed approach is better than
the existing position control and the fixed-gain-based force
control approaches.

II. RELATED WORK

A. Markerless vision-based teleoperation

Vision-based teleoperation systems have been widely used
for robots learning skills from human demonstrations [1],
[10], [11]. Typically, a human demonstrator and a robot
together constitute a human-in-the-loop leader-follower sys-
tem, in which a motion-tracking device (such as LeapMotion
and Kinect) is usually utilized to capture the human demon-
strator’s movements. Then, the demonstrated motion is fur-
ther mapped to the robot’s workspace to enable the imitation
of the human behaviours. Compared with wearable device-
based teleoperation techniques (such as a data glove or a
marker-based tracking system) [12], [13], [14], markerless
vision-based approaches allow for natural and unrestricted
demonstrations due to non-invasiveness.

A core issue in this teleoperation system is how to map the
human hand pose to the robot hand pose. Since deep learning
(DL) techniques offer the advantages of learning highly
non-linear relations, several DL-based hand pose estimation
methods have been proposed recently. In [15], [16], the
authors proposed to track keypoints of the human hand, then
use retargeting methods (e.g., inverse kinematics) to control
the robot. Nevertheless, they usually suffer the time cost of
the retargeting post-processing. Thus, our previous work [9]
proposed a neural network model that permits end-to-end
efficient mapping from the 2D depth image representing the
human hand pose to the robot hand joint angles. This work
aims to extend [9] to further enable the mapping from the
image to the desired force commands, which achieve better
performances, as observed in the experiments in Section IV.

B. Grasping and manipulation based on force/torque control

An impedance-model based force controller has been used
in robotic manipulator control for a number of physical

interaction tasks (see, e.g., [17]). However, so far it has
not been fully investigated yet to control multifingered robot
hands for grasping and manipulation tasks. Recent studies
illustrate that force control strategies increase the grasping
stability and robustness [18], [19], and achieve a good grasp
stability [20] and in-hand manipulation [21] with haptic
exploration of multi-finger robotic hand.

In [22], an object-level impedance controller has been de-
veloped and shown the effectiveness and robustness for robot
grasping. Li et al. improved the controller by decomposing
the impedance into two parts: one for stable grasping and an-
other for manipulation. Furthermore, the desired impedance
is estimated using supervised learning based on the data
collected from the human demonstration in advance [23].
Pfanne et al. proposed an object-level impedance controller
based on in-hand localization, which improved the ability to
avoid contact slippage through adjusting the desired grasp
configurations [24]. Garate et al. proposed to regulate the
control of the grasping impedance (stiffness) by regulating
both the robot hand pose and the finger joint stiffness. By
adaptating the magnitude and the geometry of the grasp
stiffness, the desired stiffness profile could be achieved to
adapt the hand configuration for stable grasping [25].

However, these force controllers may not be suitable for
our use in a vision-based teleoperation system, where the
controller needs to dynamically and quickly respond to the
changes of the human hand pose to predict the desired force
commands. Consequently, the contribution of this work is to
explore the regulation of the impedance (stiffness) and the
feedforward term online during the process of robot grasping
or manipulation, which cannot be learned in advance or
through exploration.

C. Biomimetic compliant control for robot manipulation

Recently, the biomimetic control strategy inspired by the
findings of human motor learning in the muscle space has
been developed and proved to be an effective way for
robot compliant manipulation [26]. It has been discovered
in neuroscience that humans can simultaneously adapt the
arm impedance and feedforward force to minimize motion
error and interaction force with external environments, under
a certain set of constraints [27]. Based on this principle, a
biomimetic force controller was first proposed in [28] which
allowed the robots to deal with both stable and unstable
interactions through the adaptation of the impedance and
feedforward term in the force controller. Li et al. further
improved this controller and implemented it to deal with
several physical interaction tasks such as cutting and drilling
by a redundant robot manipulator [7]. However, until this
work the biomimetic control strategy has not been utilized
for a dexterous robot hand with multiple DOFs. Another
contribution of this work is to extend the biomimetic force
controller to enable compliant grasping and manipulation
from human hand teleoperation.



III. METHODOLOGY

In this section, we will first briefly introduce how to
estimate the robot hand posture (i.e., joints) by teleopera-
tion. Then, we will elaborate how to generate the desired
force/torque control variables based on the estimated hand
pose.

A. Estimation of robot joint angles from vision-based tele-
operation

The goal of this part is to find a proper mapping function
fm from the human hand posture to the joint angles (qr)
of the Shadow robot hand. Here, the human posture at each
time step is represented by a 2D image (Ih) collected by a
camera. Therefore, we have

fm : Ih ∈ R2 → qr ∈ RNr , (1)

where Nr denotes the number of DOFs. In order to determine
the function fm, we utilize the neural network architecture
named TeachNet to learn the highly nonlinear mapping
correlation between Ih and qr.

Here, we briefly summarize the basic utilization procedure
of the end-to-end TeachNet architecture, please refer to [9]
for more details. Firstly, we proposed a novel criterion for
generating human-robot pairings based on the human hand
dataset Hand2.2M [29], controlling the robot, and collecting
joint angles and images of the robot in simulation. In order to
imitate the human hand pose from Hand2.2M, we matched
the Cartesian position and the link direction of the Shadow
hand with the human hand pose and the proper handling of
self-collisions based on an optimized mapping method. In
the end, we collected a pairwise human-robot hand dataset,
which includes 400K pairs of depth images, as well as
corresponding joint angles of the robot hand.

Unlike common data-driven vision-based methods which
get the 3D human hand pose first and then map the locations
to the robot, TeachNet directly predicts robot joint angles
from depth images of a human hand. This end-to-end fashion
gets rid of the time cost of post-processing but brings the
regression challenge due to the different domains of the
human hand and the robot hand. TeachNet tackles this
challenge by using a two-branch (robot branch and human
branch) structure and by introducing a consistency loss. The
robot branch in TeachNet plays the role of teacher and the
human branch that of student because the mapping from
the robot image to the joint angles is more natural as it
is exactly a well-defined hand pose estimation problem. At
training time, we feed the pairwise human-robot images
to the corresponding branch and the consistency loss en-
courages the hand feature in the human branch to be as
consistent as the hand feature in the robot branch. Once the
TeachNet is learned, the mapping function fm is thereby
determined. At inference time, only the human branch is
needed, accordingly, TeachNet takes an image of a human
hand as input and then outputs the estimated joint angles qr
of the robot hand.

Algorithm 1: Online force control command gener-
ation based on the image input via teleoperation

Input:
The learned optimal TeachNet model fm;
The constant coefficients: Qk, Qd, Qv , and π;
The Gaussian basis vector g.
begin

Initialize the parameters θk, θd, and θv;
while task not done do

Sense an image of the human hand pose Ih;
Calculate the desired robot hand pose through

Eq. (1);
Get the robot current states;
Calculate the sliding error ε;
Update θk, θd and θv using Eq. (14);
Generate the desired force control command
τc;

Send the force command to the robot.
end

end

B. Prediction of the desired force commands based on the
biomimetic control strategy

We consider that the robot hand is controlled under the
force (i.e., torque) control mode in the joint space. According
to the biomimetic control strategy in [28], the control input
τc is split into two parts including a feedforward force v and
an impedance term u. Therefore, we have

τc = −u− v. (2)

The impedance term is given by

u = Kse+Kdė, (3)

with {
e = q − qd
ė = q̇ − q̇d

, (4)

where Ks ∈ RNr×Nr and Kd ∈ RNr×Nr respectively
represent the stiffness and damping matrix. e ∈ RNr×1 and
ė ∈ RNr×1 are joint angle and velocity errors. qd ∈ RNr×1

and q̇d ∈ RNr×1 represent the desired joint angle and desired
velocity1, respectively. q ∈ RNr×1 and q̇ ∈ RNr×1 are the
corresponding current states.

In this work, we propose to represent all the compliant pro-
files including the feedforward, stiffness and damping terms
in the parametric space. Each of them can be individually
coded as the inner product of a set of basis functions and
corresponding parameters. Namely, we have

Ks = diag{θTk g}, Kd = diag{θTd g}, v = θTv g, (5)

where θk ∈ RNr×N , θd ∈ RNr×N , θv ∈ RNr×N are the
parameters corresponding to each of the compliant profiles

1In this work, the desired velocity value of each DOF, q̇d,i is set to zero.



Fig. 2: The schematic illustration of the real-sim experimental
setup.

mentioned above. And g ∈ RN×1 is a Gaussian basis vector
and each of its element is calculated by

[g]n =
ωn(s)∑N
n=1 ωn(s)

, (6)

with
ωn(s) = exp(−0.5hn(s− cn)2), (7)

where s is a phase variable determined by ṡ = −s. cn and
hn are the centers and widths of the basis, and N is the
total number of the Gaussian models which is manually set
in advance.

To predict the desired control force at each time step, we
need to adapt the parameters θk, θd and θv in an online
manner, based on the robot current states. To this end, we
derive the updating laws according to the following cost
functions.

Firstly, the widely used cost function in robotic control is
used to minimize the motion tracking error as follows

Je =
1

2
εTM(q)ε, (8)

where the sliding error is calculated by ε = ė + πe with a
positive constant coefficient π, and M(q) ∈ RNr×Nr is the
inertia matrix.

Based on the principles in human motor learning control
[28], [7], [30], the following cost is then considered to enable
the convergence to the desired parameters, i.e., θ∗k(t), θ∗d(t),
and θ∗v(t) that model the interaction dynamics,

Jc =
1

2
Φ̃TQ−1Φ̃, (9)

where

Φ̃ = Φ− Φ∗ = [θ̃Tk , θ̃
T
d , θ̃

T
v ]T , (10)

with
Φ = [θ̄Tk , θ̄

T
d , θ̄

T
v ]T , (11)

and

Φ∗(t) =[θ̄∗Tk , θ̄∗Td , θ̄∗Tv ]T , (12)

Fig. 3: The final grasping configurations for the (a) cube wood, (b)
cylinder wood, (c) ball, and (d) can, under the adaptive fore mode.
Three fingers (TH, FF and LF) are used in the grasping task.

Fig. 4: The screenshots of the grasping ball task with (upper row)
and without (lower row) adaptive force control. Left to Right: initial
configuration, the TH contacts the ball, and final configuration.

where (̄.) denotes the row average vectors of the correspond-
ing parameters. The matrix Q is defined by

Q = diag(Qk ⊗ I, Qd ⊗ I, Qv ⊗ I), (13)

where Qk ∈ RNr×Nr , Qd ∈ RNr×Nr and Qv ∈ RNr×Nr

are symmetric positive-definite matrices,
The updating goal is therefore to minimize the overall cost,

i.e., min ‖Jc +Je‖. Finally, a standard derivation procedure2

is employed to obtain the following updating laws for the
nr-th (nr ∈ [0, · · · , Nr]) DOF,

θ̇Tk,nr
= Qk,nr

εnr
enr

g

θ̇Td,nr
= Qd,nrεnr ėnrg

θ̇Tv,nr
= Qv,nr

εnr
g.

(14)

The procedure of the generation of force control com-
mands with the proposed approach is summarized in Algo-
rithm 1.

IV. SIMULATION EXPERIMENTS

A. Real-Sim simulation setup

A real-sim setup is established for the simulation experi-
ments (see Fig. 2). During each task, the human demonstrator
adjusts the hand pose to guide the simulated robot hand to
complete the task under the visual feedback. A camera (Intel
RealSense F300) is used to capture the depth images of the
human hand, based on which the desired robot hand pose can

2Let the derivative of the cost equal to zero to obtain the updating laws
θ̇k , θ̇d, and θ̇v . For simplicity, we omit the detail in this paper.



Fig. 5: The initial and final configurations during the opening-door
task from the (a) side and (b) top view, respectively.

Fig. 6: (a) The upper row shows the normalized angle changes of
the door with respect to the word frame, the lower row represents
the general trend of the changes of the demonstrated joint angles
from TeachNet. For the sake of better visualization, the door angles
are normalized to [0, 1], and joint angles of the robot are reduced
to one dimension using PCA. (b) shows the positions of the contact
points under the position (upper row) and force (lower row) control
modes.

be estimated via the TeachNet model3. The virtual Shadow
Motor Hand in the Gazebo simulator with the ODE engine
is utilized for our experiments, based on the ROS package4

provided by the Shadow Robot Company. This robot hand
is equipped with five fingers, i.e, the thumb (TH), the first
finger (FF), the middle finger (MF), the ring finger (RF), and
the little finger (LF). TH and LF have five DOFs each, and
the other three fingers have four DOFs each. Moreover, the
wrist joint has another two DOFs. In our usage, the Shadow
robot hand is torque-controlled under the TEACH mode. The
simulation environment is run on the Ubuntu 18.04 system
with a CPU Intel Core i5-8500 and a NVIDIA 1050 Ti GPU.
The average updating time at each time step is 0.036s.

B. Experimental results

To validate whether the proposed adaptive force control
could yield better performances, we compare the proposed
force control with position control on four tasks i.e., grasp-
ing, opening-a-door, turning-a-cap, and touching-a-mouse.

3https://github.com/TAMS-Group/TeachNet_
Teleoperation

4https://github.com/shadow-robot/sr_core

Fig. 7: The screenshots of the turning-a-cap task. (a), (b) and (c)
denote the initial, middle and final configurations.

Fig. 8: The online learned compliant profiles including stiffness
(stiff.) and feedforward (FF) force along the execution of the joint
angles in the turning-a-cap task. All the profiles are reduced to the
2D space using PCA, the first and second components shown in (a)
and (b), respectively. The reference and real curves mean the joint
angles estimated from the TeachNet and collected from the robot
hand, respectively.

The experimental video is available at https://www.
youtube.com/watch?v=xL9BvPGIKxE.

Under the position control mode, the position commands
from TeachNet model are directly used to control the robot
hand. Notely, while virtual environments are dominated by
physics (e.g. object weights and surface frictions) the absence
of the force feedback makes the tasks rather challenging [31],
as even slight inaccuracies on joint angles from TeachNet
may result in failure interactions.

Grasping task: In this task, the robot hand is controlled
to grasp four objects through teleoperation by a human
demonstrator, i.e., a cube wood, a cylinder wood, a can,
and a ball. Three fingers (i.e., TH, FF and LF) are used
during the grasping process. The grasping strategy is as
follows: first, the demonstrator guides the thumb to contact
the target object; Then, the thumb slightly adjusts the pose
of the object in the hand space; finally, the other two fingers
contact the object and thus grasp the object stably. The final
grasping configurations for grasping these four objects with
the adaptive force control are shown in Fig. 3. Conversely,
the position control mode easily causes unstable behaviours
after the initial contact, hence resulting in grasping failures.
The unstable behaviours are mostly oscillations between the
hand and the object in the simulation due to the contact
force’s rigidity, see Fig. 4 as an example.

Opening-a-door: The second task is that the human

https://github.com/TAMS-Group/TeachNet_Teleoperation
https://github.com/TAMS-Group/TeachNet_Teleoperation
https://github.com/shadow-robot/sr_core
https://www.youtube.com/watch?v=xL9BvPGIKxE
https://www.youtube.com/watch?v=xL9BvPGIKxE


Fig. 9: The positions of the contact points in the x−z plane during
the turning process, under the (a) position control and (b) adaptive
force control modes, respectively.

demonstrator guides the robot hand to open a door by pulling
the handle in the x direction. All these five fingers are used
in this task. Since the base and the wrist of the Shadow
hand are fixed, we can only rely on the fingers’ interaction
with the handle to open the door. We find that the robot
can open the door smoothly, with the proposed adaptive
force control strategy, as depicted in Figs. 5 and 6. On the
other hand, under the position mode, the teleoperator only
can occasionally open the door and fails to make the door
open as wide as under the force control mode. Fig. 6(b)
shows the positions of the contacts between the robot hand
and the door handle in the x− y plane. Under the adaptive
force control mode, we can see the contact points are almost
evenly distributed along the x axis, which suggests the stable
interaction between the robot hand and the handle during
the execution of the task. This maybe because our control
strategy can well deal with the interaction dynamics of the
Gazebo simulator.

Turning-a-cap: In this task, the robot hand is teleoperated
by the human demonstrator to turn a cap using five fingers.
The frame of the cap is fixed in the Gazebo world, and
the cap can be rotated in the x − z plane. In a real-world
task like turning a cap, humans need to adapt the motion
of both arm and hand coordinately to complete this task.
More importantly, the rotation of the wrist joint plays a
key role during the turning process. In our teleoperation
system, however, the fixed base and wrist of the Shadow
hand make this task more challenging than usual. The robot
hand is guided to make contact with the cap using a proper
configuration and then to adapt the movements of all the
fingers to turn the cap. We observe that the fingers can
move coordinately and cooperate well with each other to
complete the task using the proposed force control strategy
(see Fig. 7 as an example). Then we analyse the compliant
profiles including the stiffness and feedforward force learned
online with the execution of the task. For better illustration,
we reduce the stiffness and the feedforward force of all
joints to the 2D space using the PCA algorithm. The results
visualized in Fig. 8 indicate that the robot hand (the reference
curves) can track the human hand (the real curves) with
the online adaptation of the stiffness and feedforward force
profiles based on the pose difference between the human
and the robot hands. Under the direct position control mode,

Fig. 10: The screenshots of the touching-a-mouse task. (a), (b) and
(c) denote the initial, middle and final configurations.

however, the robot hand fails to turn the cap due to the lack
of coordination and dexterity. Furthermore, the distribution
of the contact points obtained under the adaptive force mode
is more caplike (see Fig. 9).

Touching-a-mouse: To further explore the compliance with
the adaptive force control, we investigate the performances
when the robot hand contacts with a curved surface by
touching a mouse, as shown in Fig. 10. We mainly focus
on achieving stable contacts between the hand and the
mouse surface with small contact forces. Namely, we expect
that the robot hand is able to touch the surface of the
target object in a more human-like manner. To evaluate the
impact of the adaptive control strategy, the task is conducted
under three different control strategies: (a) with the proposed
adaptive control; (b) with force control but with a fixed-gain-
based impedance controller which has been often applied
in robotics; and (c) the position control mode. Under each
condition, the task is repeated ten times. During each test,
the contact points and forces are recorded for evaluation of
the performances.

Fig. 11 manifests that under the control condition (a)
the contact points of each local region are distributed in a
more clustered way than that under the other two control
conditions, with comparatively low contact forces. Under
condition (c), there are obvious slippery points with larger
contact forces, due to the rigid interaction with the mouse
of the robot hand. Condition (b) obtains a moderate per-
formance with several slippery contact points, although the
contact forces are smaller than the case under the direct
position control mode. We collect the contact forces from
these tests under each control condition, and calculate the
maximum and average forces. The results (Fig. 12) demon-
strate significantly lower average as well as maximum forces
with our proposed control strategy.

V. CONCLUSION AND FUTURE WORK

This work proposes a novel approach for robotic compliant
grasping and manipulation based on an adaptive force control
strategy through teleoperation. Our approach takes a depth
image of the human hand as the input and predicts the desired
force control commands, instead of outputting the motion
control policies directly. To enable grasping and manipula-
tion in a dexterous manner, the robot hand is controlled under
the force/torque control mode. The proposed strategy adapts
the compliant profiles (impedance and feedforward) in the
force controller online, based on the pose difference between



(a) (b) (c)

Fig. 11: The distribution of the contact points and the contact force during the touching process under the (a) adaptive force control, (b)
fixed-gain based force control, and (c) position control conditions, respectively. The upper row show the results in the 3D space, and the
lower row shows the corresponding results which are projected to the x− z and y − z planes.

Fig. 12: The max and average contact forces during the touching
phase under the three control conditions.

the human hand and the robot hand step-by-step. Four types
of tasks in the simulation environment Gazebo (i.e., gasping,
opening-a-door, turning-a-cap, and touching-a-mouse) have
been conducted to verify the effectiveness of our approach.
The results show that it achieves better performances than
the position control and the fixed-gain-based force control
modes.

In future work, we will implement our approach on a real
Shadow motor hand that has been equipped with the interface
for force/torque control in the joint space. Since the joints of
the real Shadow hand are driven by tendons, the predicted
torques from the controller need to be mapped properly to
the strain values of the tendons. This might be achieved by
learning a regression model to find the mapping between
them. It is also worth noting that our model-free approach
can be applied to other torque-controlled robot hands. One
limitation of our approach is the lack of tactile feedback. The
interaction force between the robot hand and its environment
can be estimated from tactile signals collected from the
tactile sensors mounted on the tips of the Shadow motor
hand. The estimated force information can then be included

in the control loop as a feedback variable to improve the
interaction dexterity.
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