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Minimizing Safety Interference for Safe and Comfortable Automated
Driving with Distributional Reinforcement Learning

Danial Kamran®, Tizian Engelgeh?, Marvin Busch?, Johannes Fischer! and Christoph Stiller!

Abstract— Despite recent advances in reinforcement learning
(RL), its application in safety critical domains like autonomous
vehicles is still challenging. Although punishing RL agents for
risky situations can help to learn safe policies, it may also lead
to highly conservative behavior. In this paper, we propose a
distributional RL framework in order to learn adaptive policies
that can tune their level of conservativity at run-time based
on the desired comfort and utility. Using a proactive safety
verification approach, the proposed framework can guarantee
that actions generated from RL are fail-safe according to the
worst-case assumptions. Concurrently, the policy is encouraged
to minimize safety interference and generate more comfortable
behavior. We trained and evaluated the proposed approach
and baseline policies using a high level simulator with a
variety of randomized scenarios including several corner cases
which rarely happen in reality but are very crucial. In light
of our experiments, the behavior of policies learned using
distributional RL can be adaptive at run-time and robust
to the environment uncertainty. Quantitatively, the learned
distributional RL agent drives in average 8 seconds faster
than the normal DQN policy and requires 83% less safety
interference compared to the rule-based policy with slightly
increasing the average crossing time. We also study sensitivity
of the learned policy in environments with higher perception
noise and show that our algorithm learns policies that can still
drive reliable when the perception noise is two times higher than
the training configuration for automated merging and crossing
at occluded intersections.

I. INTRODUCTION

Reinforcement learning (RL) has gained more attention
recently in order to solve complex decision making problems
in robotics. Specifically for self-driving vehicles, long term
optimal policies are learned using this approach for multiple
scenarios such as lane changing or merging in highways
[1]-[3] or yielding at unsignalized intersections [4]-[8].
Benefitting from the high representational power provided
by neural networks to learn the future return of each action,
learning-based policies can provide optimal behavior which
is more generic and scalable compared to POMDP-based
approaches like [9] and also more intelligent than rule-based
approaches [10], [11].

Safety is one of the most important challenges for
learning-based policies in critical applications like automated
driving. Although the learned policies are prevented to
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Fig. 1: Overview of the merging scenario and the proposed
distributional reinforcement learning framework for auto-
mated navigation at similar occluded intersections (back-
ground image source: [12]).

generate risky behavior during training by receiving big
punishments for having collisions [4], [5] or being in risky
situations [6], [8], there is no guarantee that the learned
policy is always safe after training. Another important chal-
lenge for the learning-based policies is to apply them in
environments which are more challenging than the training
environment due to higher sensor noise in perception or more
severe sensor occlusions. Although one can try to learn a
policy which reduces the amount of risk to be still safe in
more challenging scenarios like [8], such a policy often is
too conservative when the uncertainty is high. This dilemma
between more conservative but slower policies and risky but
faster policies is nicely elaborated by Isele et. al in [6] where
higher timeout punishments as part of the reward function
resulted in a faster but more risky policy. The origin of
this problem lies in the difficulty of shaping the reward
to guarantee having safe policies in gradient based learning
approaches as discussed in [2].

Another approach to address safety for RL policies is
to utilize a safety layer which filters out unsafe actions
as proposed in [1], [13], [14]. This safety layer must be
easily verifiable without any black boxes such as deep neural
networks inside its architecture which are hard to verify [15].
In [1] authors used safety constraints in order to prevent
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unsafe lane changes from a RL agent. As the fail-safe action,
the automated vehicle will keep the lane whenever lane
change actions are unsafe and in order to prevent unnecessary
lane changes, the RL agent will receive punishments for
every lane change decision. In [13], the authors showed that
safety verification can also help the RL agent to converge
faster in addition to guaranteeing safety. They studied the
effect of applying the safety layer before or after the RL
agent as preemptive and Post-Posed Shielding mechanisms
and also specifying penalties for every safety intervention
on the performance of the learned policy.

In the context of automated driving, uncertainties due to
perception noise or ambiguous behavior of other partici-
pants need to be considered inside the safety verification
constraints. However, there is a trade-off between the level
of safety that is guaranteed and efficiency [16]. Assuming
that always the worst case perception noise exists and other
drivers are all distracted will result in unnecessary safety
interruptions which actually prevent the RL agent to utilize
its learning skills. On the other hand, one can increase the
capability of intervention (e.g. deceleration with -10 m/s?)
and only prevent unsafe actions just before a hazardous event
is going to happen which will result in rare interventions but
with uncomfortable feelings for the passengers.

Our contribution is to address safety, scalability and
comfort as the main intertwined challenges for automated
driving under uncertainty. We introduce safe distributional
RL which considers maximum uncertainty and capability
inside safety verification layer. During training the RL agent
is punished for every safety intervention similar to [13],
[14]. However, the main difference is it learns distributions
instead of expected values for each action return which helps
to provide risk-aware policies that are able to adapt their
conservativity according to the existing uncertainty in the
environment. This feature makes the learned policy generic
and applicable for high uncertainty levels that can rarely
happen in realistic applications, for example when the sensor
range is severely occluded due to a parked vehicle or it has
high uncertainty.

After explaining preliminaries of our work in section II,
we describe the proposed worst-case based safety verification
layer in section III and the safe distributional RL framework
in section IV. Finally, efficiency of the proposed method
is compared with a regular RL and a rule-based agent as
baseline policies in section V.

II. PRELIMINARIES
A. Reinforcement Learning

Reinforcement learning problems are typically formulated
as a Markov Decision Process (MDP) (S, A, P, R,~) [17].
In this framework, the environment is described by a state
s¢ € S and the agent chooses an action a; € A at each
discrete time step ¢t. The action selection process is described
by a policy 7 which is a mapping from states to actions (or to
distributions over actions). The distribution of the successor
state sy, 1 is defined by the transition model s;11 ~ P(s¢,a)
based on the current state and chosen action. In every step

the agent receives a reward r, = R(sy,a;) and its goal is
to maximize the cumulative discounted reward (also called
return) E;ﬁ 0 ~try, where future rewards are discounted by
the factor v € [0,1).

In many real-world applications the agent does not have
full knowledge of the environment’s state but instead receives
only noisy observations of some state variables. Such situ-
ations can be described by a Partially Observable Markov
Decision Process (POMDP) (S, A, O, P, Z, R, ), where the
agent receives an observation o; € O at each time step.
The observation depends on the current state and chosen
action and is distributed according to the observation model
ot ~ Z(st,at). The agent’s goal is still to maximize the
return but with the additional challenge of an unknown
environment state. Since each observations contains only
limited information on the true environment state, policies
for a POMDP therefore also depend on previous actions and
observations.

A famous approach to find the optimal RL policy is Q-
learning [18] which tries to maximize the expected future
return defined as:

Q" (st,ar) = Eg,np
k=1

R(sy,ar) + Z'YkR(5t+ka7T(5t+k))‘| ;

by choosing action a, in state s, and following policy 7 for
the next states [19]. Using the Bellman equation [20], the
optimal value function can be represented as:

Q" (s1,01) = Eg,op [R(s1,01) +ymax Q" (si41,0'))|

In Deep Q networks (DQN) [21], deep neural networks
are utilized to learn the Q values for each state and action
over samples from a replay buffer. We use DQN as one of
baselines in our experiments.

B. Distributional Reinforcement Learning

Distributional Reinforcement Learning [22] tries to
learn return distribution Z7(sy, ay) 2 R(st,at) +
> re i V¥ R(s¢4k, m(se4x)) instead of its expected value.
Note that here 2 indicates equality in distribution. The value
distribution can be computed using dynamic programming
based on the distributional Bellmann equation [22] :

Z"(s,a) 2 R(s,a) + 727 (5", A"), (1)

where S’ and A’ are distributed according to P(.|s,a) and
m(.|s"), respectively. This equation is shown in [22] to be a
contraction in the Wasserstein metric.

Similar to the regular RL, the Distributional Bellman
optimality equation is applied:

TZ(s,a) 2 R(s,a) +~Z(S' arg maﬁ]EZ(S', a)),
a’'e

with S’ distributed according to P(-|s,a). In order to learn
the optimal return distribution, Bellemare et al. parameter-
ized it as a categorical distributions over a fixed set of
equidistant points [22]. Their approach, called C51, mini-
mizes the Kullback-Leibler divergence to the distributional
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Fig. 2: Proposed Deep sets architecture for extracting permu-
tation invariant and scalable features for the distributional RL
network.

Bellman targets, which, however, was not a contraction in
the Wasserstein metric. Later Dabney et al. proposed to
learn return distributions through Quantile Regression (QR-
DQN) on a fixed set of quantiles, minimizing the Wasserstein
distance to the distributional Bellman targets [23]. In a
newer approach, Dabney et al. introduced Implicit Quantile
Networks (IQN) [24] to approximate the quantile function
F*(r) for the random variable Z. Assuming 7 ~ U ([0, 1]),
the return distribution can then be sampled from F,'(7)
as samples from implicitly defined return distribution. The
main advantage of IQN is that any distortion risk measure
B :10,1] — [0,1] can be incorporated to compute distorted
expectation of Z:

Qp(st,at) = Ervv (o)) [Zo(r) (51, )] s

and the risk-sensitive greedy policy:
mg(sy) = arg max Qs(st,a).

In this paper we utilize IQN implementation of distributional
RL since it allows to explore risk-sensitive policies 7g during
training which helps us to learn a family of risk-averse
policies using only one neural network.

C. Observation and State Model

As proposed in [8], we can represent the whole situation
at an occluded intersection using this matrix:

€go vehicles lanes
T
desa  di ... dn doy ... do,
o = Ve V1 . Up Vg e Vo 2)
de,goal de,l de,n de,01 de,om

where v, is the ego vehicle velocity and de s, de goa are its
distance to the stop line and to the other side of the inter-
section. d;, v; are distance and velocity of every observable
vehicle to their conflict zones and d,,, v,, are information
for ghost vehicles indicating maximum visible distance and
allowed velocity on every intersecting lane. Finally, d.;
(de,0,) represents the distance of the ego vehicle to every

(ghost) vehicle. We extend this representation for merging
scenarios where we also observe the distance and velocity
of the closest front vehicle on the ego vehicle lane.

Finally, we provide a k-Markov approximation [25] of the
POMDP as input to the RL agent in order to enable Q-
learning similar to [8]:

st=[or 011 04— (k—1)] 3)

In this way the neural network and its training process
become less complex compared to other implementations for
POMDPs like [5] which utilize Long Short-Term Memory
(LSTM) cells [26] to incorporate past information. In our
experiments we supplied the last k¥ = 5 observations to
the network. Note that the direction of vehicles is specified
by their velocity sign and their intention can be estimated
from states history. Other traffic participants can also be
added into this model like pedestrians or cyclist in order
to provide more generic model. This representation is more
efficient compared to the grid-based representations used in
[4], [27] which require deep convolutional layers to extract
useful features which are sensitive to the roads topology and
irrelevant traffic participants.

D. Scalable Reinforcement Learning

The dimension of the state representation can exponen-
tially grow for complex scenarios when the number of ve-
hicles n or intersecting lanes m increase. Another challenge
here is that permutation of input elements can change which
may cause the network to have different reactions for the
same scenario with different input permutations [28].

In order to address this problem, we use Deep sets [29]
architectures that decouple the network size of machine
learning algorithms from the number of input elements. Deep
sets approach has already been applied to learn a lane change
policy with DQN for highway scenarios in [28]. In this paper,
we propose a Deep sets architecture for automated navigation
at occluded merging and crossing scenarios (Figure 2). A
representation is calculated for each type of the input element
(real vehicle or ghost vehicles) with the ¢rcq; and @gpnost
networks. After that, all features for each element type are
combined with a permutation invariant operator, which we
used sum of them. Finally, prcq; and pgnos: networks extract
fixed size features from the combination of each type of the
input element with the ego vehicle state.

III. PROACTIVE SAFETY VERIFICATION

In order to verify safety, we propose a proactive safety
verification approach which provides safe actions for every
state s € S. We call it proactive while the worst-case scenario
is always considered to prevent being in an unsafe state in
the future.

A. Worst-Case Scenarios for Proactive Safety Verification
We define a set of worst-case scenarios H that can happen
during automated driving at intersections:
1) On the intersecting lane [;, an occluded vehicle is
driving with velocity vmax at the closest occluded
distance to the conflict zone.



2) On the intersecting lane [;, an observed vehicle has an
estimation error of 304 and 3o, for its distance and
velocity and accelerates with ap.x to reach velocity of
Umax-

3) On the ego lane l.4,, an observed vehicle in front of
the ego vehicle has an estimation error of 304 and 30y
for its distance and velocity and decelerates with @i,
to reach zero velocity.

By assumptions in H we over-approximate the state of an
occluded vehicle at intersecting lanes similar to [30] and
for detected vehicles as well. In addition to [30], we over-
approximate vehicles distance and velocity estimation error
as Nt(u,03) and N(u,02) respectively which are denoted
as truncated Gaussian distribution with support [p — ac, u +
ac]. Therefore, the distance and velocity measurement errors
are modeled with truncated Gaussian distributions N (d, o3)
and NZ (v, 02), respectively, i.e. with a 30 range around the
true value.

B. Feasibility of Emergency Maneuvers for Safety Verifica-
tion

For every intersecting lane [; and also the ego vehicle
lane [.4, inside the current state s, feasibility of executing
one of the following two emergency maneuvers is evaluated
to verify the state s as a proactive safe state (PSS) according
to the worst-case assumptions H:

o Emergency Stop Maneuver: Ego vehicle is able to stop
at a distance dpg bigger than SG, before the conflict
zone.

o Emergency Leave Maneuver: Ego vehicle is able to
leave the intersection with a time headway tyw bigger
than SG;.

Thus, PSS verification can be formulated as:

PSS(s) = (/\ drs > SG,}) \/ </\ taw > SGt> ; (4)

l;€s l;€s

with SG4 and SG; the minimum safety gap required for
stop and leave maneuvers. Note that here we validate safety
according to all worst case assumptions in H, i.e. if only
one of them or all of them happens the situation should
remain safe. We set SG4; = SG; = 0.5 in our experiments
which resulted in collision free maneuvers during training
and evaluation of all policies.

C. Proactive Safety Verification of Actions in POMDP

We assume an agent selects action a € A for an observa-
tion o € O from our POMDP model. In order to verify safety
of a, we need to make sure that it results in a proactive safe
state even if the worst-case scenario happens. Therefore, we
simulate the future state of the ego vehicle by executing a and
the state of other vehicles with the worst-case assumptions in
‘H until the next decision time. We call this simulated state
as 8%, ,. If 8%, , is a PSS, then action a € A is verified as a
proactive safe action (PSA):

True, if PSS(34,,),

otherwise.

(&)

False,

PSA(s,a) = {
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Fig. 3: Effect of increasing the jerk limit on the average
crossing time and average jerk for the proactive safe policy.

The main advantage of the proposed worst-case proactive
safety verification compared to reachability-based [31] and
prediction-based approaches [6] for safety is that it only
needs to predict the whole situation for one time step and
only for the worst-case scenarios defined in H instead of all
possible maneuvers for all participants in the whole future
horizon. Since for each intersecting lane, the proposed safety
verification approach only considers the closest vehicle to the
conflict zone, it has computation complexity of O(m + 1)
where m is the number of intersecting lanes in the scenario.
This complexity is much smaller than the safety verification
strategy proposed in [6] which has complexity of O(nT)
where n >> m is the number of agents and 7' is the time
horizon considered for safety verification in that approach.

IV. LEARNING SAFE AND COMFORTABLE POLICIES FOR
AUTOMATED DRIVING UNDER UNCERTAINTY

Similar to [2], we propose to apply safety as a hard
constraint in the decision making problem trying to minimize
other costs such as utility or comfort as soft constraints. For
that, we can use the PSS concept in order to find all safe
actions among the set of available actions in 4 as Apga:

Apsa(s) = {a € A|PSA(s,a) = True}, (6)

and search for the safe action with the lowest cost re-
garding comfort and utility. Here we consider actions as
jerk commands applied to the automated vehicle similar to
[32], [33] which help to provide comfortable maneuvers by
moderating jerk. Therefore, we set possible discrete actions
as A= {-1.5%,0.0%,1.5%}.

A. Safe Rule-based Policy

We implemented a rule-based policy which selects the
fastest safe action from A and in case of emergency selects
an emergency action with the lowest jerk. The maximum
emergency jerk limit can be increased which result in higher
utility in cost of less comfortable drivings due to higher
average jerk (Figure 3). On the other hand, when emergency
jerk limit is reduced, the policy becomes slower, more com-
fortable and more conservative, since emergency maneuvers
are limited.



B. Minimizing Safety Interference with Reinforcement
Learning

RL, thanks to its ability to provide long-term optimal
actions, can trade-off between utility and comfort based on
the preferences defined in its reward function:

1, if reach goal
=, if a ¢ Apsa(o) (7
0, otherwise

R(o,a) =

By such reward function, safety interventions are discour-
aged preventing situations that an uncomfortable emergency
action with higher jerk instead of the unsafe RL action
needs to be executed. The proposed framework has two main
differences compared to other safe RL frameworks like [1],
[13]. First, the emergency action is not necessarily a member
of Agp, therefore the training episode is terminated when
a safety interference is required and the RL unsafe action
will not be replaced in the replay buffer. Secondly, the agent
receives a big punishment of —\ whenever its action is not
a member of Apsa which is also not necessarily suggested
in [13] and not used in [1] for safety interference.

One challenge here is choosing the safety interference
punishment \. Lazarus et. al. in [14] applied similar reward-
ing scheme for an autopilot system of the aircraft which
punished the RL agent whenever the emergency controller
had to be deployed. They showed choosing higher values
for A will encourage more conservative behavior, whereas
faster policies with more interruptions can be expected for
lower values of .

One may try to find the best value for A\, however, the
learned policy generates proper behavior only for environ-
ments that have similar state transition probabilities to the
training environment P. Moreover, due to the safety verifi-
cation punishments which consider worst-case assumptions,
RL either learns a super conservative policy or a fast policy
with too many safety interventions. In our experiments, we
learned a balanced policy by DQN with A = 1 as a normal
RL baseline.

C. Risk-aware Policies with Distributional Reinforcement
Learning

The main problem with applying normal RL in envi-
ronments under uncertainty is its risk-neutral characteristic
that can not distinguish the amount of variance in actions’
return and only considers their expected values. Therefore,
one risky action with negative tail in its return but higher
total expected value is always preferred to a safer (lower
variance) action. For that, Tang et al. modeled the return for
each action as a normal distribution and optimized an RL
policy by learning the return distribution parameters (u,0)
[3]. However, we believe that the return is a multimodal
distribution and therefore we applied Implicit Quantile Net-
works (IQN) implementation [24] which approximates the
quantile function that implicitly defines the return distribu-
tion. Moreover, utilizing the return distribution also allows
to expand risk-neutral policies to risk-sensitive policies by

applying distortion risk measures like the Conditional Value-
at-Risk (CVaR) [34]:

CVaR, = E[Z7|Z" < F;}(a)], (8)

where Z7 is the sum of discounted rewards under policy 7
and F;! () is its quantile function at « € [0, 1].

Therefore, we train an IQN agent with same reward
function as DQN (Equation 7 with A = 1 ) and tune the
the risk-sensitivity of the policy using « at execution time
without requiring to train multiple policies for different risk
levels. In order to leverage the whole solution space over
different risk-sensitive policies, « is uniformly sampled with
a ~ U(0,1) at the beginning of each episode during training
and applied to the IQN results (Figure 2).

V. RESULTS AND EVALUATIONS

A. Simulation and Policy Training

We train and evaluate different RL policies for automated
merging and crossing at occluded intersections using our
high level simulator which can simulate different randomized
scenarios. Figure 5 shows an example scenario generated by
our simulator. The location and size of obstacles (orange
boxes) are generated randomly for each training episode
causing some vehicles invisible for the ego vehicle. In order
to generate realistic scenarios, every vehicle in the simulator
(except the ego vehicle) has a random desired velocity
selected by normal distribution with a randomly selected
pn={6, 9, 12} and 0={2, 4, 6}. Each vehicle drives with the
Intelligent Driver Model [35] controller with maximum ac-
celeration 15%, minimum deceleration 10?2 and comfortable
deceleration 1.6z and keeps safety distance 2m and time
headway 1.6s with front vehicles. However, the controller
does not keep distance to the ego vehicle (when it drives
into the intersection), thus a collision between a vehicle and
the ego vehicle is possible.

At every step a new vehicle by probability of puew={0.1,
0.4 or 0.7} is generated in the simulator. Vehicles are with
probability peoop={0.1, 0.4 or 0.7} cooperative and yield to
the ego vehicle by setting their desired velocity to zero when
the ego vehicle is close to the intersection which helps to
simulate uncertainty about the intention of other drivers.
Moreover, distance and velocity of vehicles are perturbed
to simulate perception noise for the policy according to the
truncated Gaussian distributions N2 (0, 02) and N (0, 02),
respectively, where o0y = 1m and o, = 27T were fixed
during training. o4 and o, are linearly scaled according to
the distance between the ego and other vehicle. For the ego
vehicle, the RL policy generates a discrete jerk action from
A= {-153,0.03,1.5%5} every 0.3 second. RL policies
are trained with more than 1000 intersection crossing and
merging scenarios providing more than 3 x 10° training steps
in total. Distributional RL policies have been trained with
uniformly selected o ~ U([0,1]) for CVaR calculation of
the return distributions.



el S DQN 1.2 @
= Deepsets-IQN T e e B Vehicle jerk[”
g 20 — — Rule-based % 11 RL jerk hmll
=L R R | s
-~ 18 — —
2 oo G
‘7 16 =
% % 0.9 f
(]
§ 14 2 = o | B
b < 0.8 Deepsets-IQN
> 12 — — Rule-based
< ~-— - - - - - - - - == 0 0.2 0.4 0.6 0.8 1.0 _6 DQN IQNps  IQNg, IQN;,  Rule-based
0 0.2 0.4 0.6 0.8 1.0 . . . . .

« percentile

« percentile

Fig. 4: Comparing performance of each policy on benchmark scenarios. Left: Average crossing time for each policy. IQN
becomes faster and less conservative by higher a. Rule-based is the fastest and DQN is the slowest policy. Note that all
policies are completely safe without any collision thanks to the safety layer. Middle: Average of vehicle absolute jerk and
its confidence interval for each policy. By increasing a, IQN becomes less conservative (higher jerk). Right: Distribution
of vehicle jerk while driving by each policy. Green interval shows RL jerk limits. Jerk values out of this interval are due to

emergency interference and indicate uncomfortable driving.

accelerate
decelerate ’
—  idle ” \

accelerats \

density

decelerate

- - 0% mm
4
: A )
t=to t=tp+0.9 t=tp+0.9
approaching non-cooperative driver,  cooperative driver

chance of collision for
accelerate

Fig. 5: Left: Learned return distributions for two scenarios
with similar initial situation. Ego vehicle (red) follows the
action with the highest CVaR that is shown with filled
distribution. Gray ghost vehicle indicates maximum visible
distance limited due to orange obstacles. Middle: Black
vehicle is non-cooperative causing more negative return
chance for the accelerate action. Right: Black vehicle is
cooperative causing higher CVaR for accelerate action.

B. Evaluations

After training the RL agents, we evaluate their efficiency
using 30 benchmark scenarios with random uncertainty con-
figurations o4 € {0, 1m,2m}, o, = 204 and peoop={0.1, 0.4
or 0.7}. Note that, no collision with other vehicles happens
during evaluations thanks to the safety verification layer.
In case of an emergency situation, i.e. ary, ¢ Apsa, an
emergency maneuver from the safety layer with maximum
emergency jerk limit of 533 is sent to the controller instead
of the unsafe RL action. In order to compare the effect of
interference applied for each policy, we define a metric for
measuring the amount of applied emergency interference:

Z a’gmg
Jlnterference = Ta (9)

where aeng is the emergency jerk command applied to
replace the unsafe action and N is the total number of

evaluation episodes.

1) Drivers Intention Prediction: Since RL policies receive
history of last 5 observations as their input state, they can
predict the intention of other drivers and generate optimal
actions based on that. Figure 5 shows examples of the learned
return distributions by IQN agent for two similar scenarios
with the only difference of having cooperative (yielding to
the ego vehicle) and non-cooperative drivers. As it is visible,
when the other vehicle is cooperative and reduces its velocity,
the IQN policy generates higher return for a = 1.5 action
allowing the ego vehicle to enter into the intersection.

2) Comfort and Risk Sensitivity: Figure 4 compares the
utility and conservativity of each RL policy compared with
the safe rule-based policy. By increasing the « percentile,
IQN policy becomes faster but less conservative in average.
For lower « percentile, it has less absolute jerk (in the middle
image) and lower jerks outside the RL jerk limit (in the
right image) which indicates more comfortable maneuvers.
DQN, shows the most conservative behavior with the highest
crossing time. On the other hand, the rule-based policy has
the highest amount of emergency interference as a risk neu-
tral policy resulting in wider jerk distributions and showing
uncomfortable maneuvers. Therefore, we can conclude that
IQN can learn a family of adaptive policies which are not as
highly conservative as DQN and also not as risk-neutral as
the rule-based policy.

Same results can be concluded from Table I where we
recorded the average crossing time and Jipgerference fOr all
policies at different environment configurations. Here we
only consider two IQN sub-policies, the ones with the
fastest behavior and with the lowest interference cost (most
comfortable). We evaluated the policy in 10 uniform samples
of a and selected the best policy according to each metric.
Note that finding the best o value could be done in a more
automated approach but here we only wanted to compare the
best behavior of the Deepset-IQN agent with other baseline
agents and examine how much other metrics are sacrificed
when the policy performs well in specific metric. In all three
configurations considered in Table I, the rule-based policy



TABLE I: Evaluation of the IQN policies with best « for different metrics and their comparison with baselines for different

environment configurations.

Environment Configuration 04 =0 peoop = 0.3 | 04 =2 peoop = 0.3 | 04 =2 peoop = 0.7
Policy Metric for optimal o | Time  Jerference Time  Jinerference Time  Jierference
Deepset-ION Speed 9.80 25.03 8.80 43.09 9.94 33.25
P Comfort 1173 10.00 11.08  25.50 12.16  18.83
DQN —_— 20.00  10.79 2140 14.17 21.25  20.10
Rule-based —_— 7.69 83.59 7.75 92.29 7.74 103.05
—— DN by learning return distributions which provide policies that
—e— Rule-based can be tuned adaptively after training in order to become
Deepsets-IQN more comfortable or less conservative. According to our
= 9 e experiments, the learned distributional policy requires less
= 80 . . . . .
- 70 g | o safety interference in noisy environments comparing to a
153 - w0 rule-based safe policy even when the noise level is higher
I o éé - than the training configurations.
//' N - 20 For future works, one can propose a better conservativity
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Fig. 6: Safety interference cost applied to the IQN policy for
different environment noise levels and its comparison with
baselines.

is the fastest one, however, it is also the worst policy in
terms of comfort. The DQN, on the other hand, always has
low interference cost, but drives more than two times slower
than the others. The IQN trades of between average crossing
time and interference cost by showing relatively fast behavior
which requires 3.6 to 8 times lower interference than the rule-
based policy depending on the environment configuration.

3) Evaluation under Higher Perception Uncertainties: In
addition to the initial noise levels, we studied the sensitivity
of each policy to higher amounts of noise in the environment.
For that, we evaluated the RL and rule-based policies for
5 different noise levels o4 € {0,1,2,3,4,5} (in meters)
and 0, = 204 (in 7). The results are depicted in Figure 6.
As it is visible, the IQN policy has lower interference cost
for lower o and also lower noise levels. For higher noise
levels, it requires more interference which can be reduced
by decreasing CVaR «. The rule-based policy always has
high cost and DQN has low cost independent of the amount
of noise existed in the environment. Here DQN seems to be
a comfortable policy, however it is the worst policy in case
of utility as discussed before.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a proactive safety verification approach to
validate the safety of actions with the goal of preventing
unsafe situations in critical applications like automated driv-
ing. In order to minimize uncomfortable safety interfer-
ence, we used reinforcement learning to learn policies that
are punished for resulting in states where an emergency
maneuver is necessary. We showed how IQN agent can
mitigate the conservative behavior existing in DQN policies

based on the observed uncertainty or the required risk
sensitivity in the environment.
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