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Abstract— The ability to predict the future movements of
other vehicles is a subconscious and effortless skill for humans
and key to safe autonomous driving. Therefore, trajectory
prediction for autonomous cars has gained a lot of attention in
recent years. It is, however, still a hard task to achieve human-
level performance. Interdependencies between vehicle behaviors
and the multimodal nature of future intentions in a dynamic
and complex driving environment render trajectory prediction
a challenging problem. In this work, we propose a new, data-
driven approach for predicting the motion of vehicles in a road
environment. The model allows for inferring future intentions
from the past interaction among vehicles in highway driving
scenarios. Using our neighborhood-based data representation,
the proposed system jointly exploits correlations in the spatial
and temporal domain using convolutional neural networks. Our
system considers multiple possible maneuver intentions and
their corresponding motion and predicts the trajectory for five
seconds into the future. We implemented our approach and
evaluated it on two highway datasets taken in different countries
and are able to achieve a competitive prediction performance.

I. INTRODUCTION

Being able to predict the future movement of other traffic
participants is important when driving on roads. Experienced
human drivers subconsciously anticipate possible maneuvers
of other road users and react accordingly in advance. Espe-
cially with varying numbers and types of traffic participants
in dynamic and complex road environments, predicting the
intentions of other drivers is a challenging task and humans
refine this skill over time while typically outperforming
technical systems.

Intelligent vehicles require a reliable perception of the
driving environment over time and space to make medium-
or even long-term predictions. This is not only the case for
autonomous driving, but also for advanced driver assistance
systems. For example, adaptive cruise control or traffic jam
assistants need to predict the behaviors of other road users
in advance to help the system react on time. The longer the
prediction horizon, the more time the system has to provide
a safe and at the same time convenient user experience.

In contrast to pedestrians and bicycles, cars are more
restricted in their motion due to larger inertia, traffic rules,
and road geometries. This makes vehicle movements bet-
ter predictable, especially in structured driving scenarios
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Fig. 1: The goal is to predict the future maneuver of the black target
vehicle (T). The different future motions are estimated depending
on the neighbors’ states like position, velocity, and acceleration.
Colors indicate possible maneuvers with corresponding trajectories.
Gray arrows denote velocity vectors, their lengths indicate speed.

like highway driving. Despite these amendable properties,
challenges arise due to the dynamic interactions among
vehicles. Particularly lane change maneuvers require special
attention for surrounding objects. Given a so-called target
vehicle, for which one wants to predict the future trajectory,
neighboring vehicles influence but also restrict the possible
maneuvers, such as accelerating or changing a lane. The
situation depicted in Fig. 1 illustrates such a scenario. In case
the black car (T) is faster than the truck in front (F), it will
need to slow down or make a lane change. Possible scenarios
are shown as colorized trajectories. Their likelihood strongly
depends on the positions, velocities, and accelerations of the
neighboring cars F, L, R, RL, and FL. The example illustrates
the inherent interdependencies among vehicle behaviors for
a time horizon of several seconds. This paper proposes a
method to tackle these challenges by paying attention to
the other road users and their dynamics and by explicitly
estimating the driver’s maneuver intention in advance.

The main contributions of this paper towards vehicle
motion prediction are two-fold. First, we present a novel
semantic neighborhood representation of the scene around
a target vehicle for joint aggregation of higher-level features
in prediction tasks. The memory-efficient and dense 3D
tensor encodes the time, neighbor positions, and past vehicle
states as the dynamic context. Second, we propose the use
of two 2D convolutional neural networks (CNNs) for joint
spatio-temporal feature extraction from the proposed input
representation. Our approach explicitly uses convolutions
across time and the space of neighboring vehicles. To this
end, we classify the future lane change intention of a target
vehicle with respect to a lateral motion and then predict
a trajectory based on the classified lane change intention.
Using a spatio-temporal CNN for sequence prediction leads
to a simpler and more compact architecture compared to
recurrent network approaches resulting in fewer parameters
to train but competitive prediction performance.
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This yields an approach that is able to (i) successfully
classify lane change maneuvers and predict a corresponding
trajectory for real-world scenarios by (ii) performing joint
spatio-temporal feature aggregation with 2D CNNs, (iii) and
outperform state-of-the-art methods. These three main claims
are backed up by the paper, our experimental evaluation, and
an ablation study.

II. RELATED WORK

Brown et al. [5] break down the task of estimating and
predicting human driver behavior into the tasks of state
estimation, intention estimation, trait estimation, and motion
prediction. In this work, we focus on predicting the future
motion of a vehicle based on the estimated driver intention.

Inferring the future motion of a vehicle from past data has
been approached from different perspectives. Closed-loop
approaches roll out a control policy in a forward simulation
for all target vehicles up to the prediction time, which
results in interaction-aware trajectories [34]. Interaction-
awareness between different traffic participants is deepened
with game-theoretic approaches [36], which condition an
agent’s future motion on the predicted motion of others.
Since this dependency increases the computational complex-
ity and can become intractable, other approaches model the
future behaviors of vehicles to be independent of each other.
Among these, physics-based models solely use kinematic
and dynamic properties and apply filter- or sampling-based
methods [26]. More advanced independent prediction models
are data-based approaches, which are further addressed in
this work.

Mozaffari et al. [30] differentiate data-based prediction
approaches based on input representation, output type, and
prediction method. If only the target’s trajectory history is
used for prediction, interdependencies between surrounding
vehicles can not be considered [38], [32]. In contrast, adding
information about neighboring agents [11], [9], stacking
different sources of spatial information in Bird’s Eye Views
(BEV) [8], [18] or using raw sensor data of the target’s sur-
roundings makes interaction-awareness between past states
possible [6], [27]. Deo and Trivedi [10] use a combination
of these approaches and call it a social tensor. This tensor
consists of a BEV image of the scene and is augmented by
pre-processed temporal features. In this paper, we extend this
idea by defining a spatio-temporal representation in advance
and then jointly aggregating spatial and temporal features for
prediction instead of processing them separately [10].

A common goal of motion prediction is the estimation
of maneuver intentions. These methods provide a high-
level understanding of future behavior, usually defined for
specific scenarios like intersections [41] or highway lane
changes [13]. To predict low-level future motion, an occu-
pancy grid map containing the probabilities of occupancy at
future time steps can be used [18]. This output representation
also allows for predicting multiple future modes but lacks
accuracy for large grid cells resulting in less consistent trajec-
tories. Another possibility is to predict trajectories directly,
either in a uni- or multimodal fashion. Unimodal predictions

come with a lower computational cost but tend to converge
to a mean of different behavior modes [9], [28]. Maneuver-
based predictions fix this problem by outputting multiple
motion hypotheses incorporating different maneuvers. These
models can be formulated in a probabilistic framework,
meaning that they model or sample from a multimodal
distribution conditioned on the input data [40], [15], [37].
Other approaches estimate intention modes in advance and
use them to predict a trajectory [35], [38] based on the
maneuver. Casas et al. [6] perform a multi-class classification
with eight intention classes using CNNs on a voxelized
LiDAR scan and a dynamic map containing road structures
and traffic lights. The generated intention scores are then
further processed to condition the trajectory estimation. In
contrast to these approaches, we define an intention space
with three lateral motions and classify a maneuver at each
step. Combining these motions at each step results in a larger
variety of maneuvers during the prediction.

Different methods have evolved for processing the spa-
tial and temporal dependencies to predict future behavior.
Recurrent neural networks (RNNs) can predict time series
by maintaining a hidden state while processing temporal
information. However, they can be difficult to train for larger
time series due to vanishing or exploding gradients caused by
their recurrent structure. Therefore, more advanced recurrent
models like gated recurrent units (GRUs) [7] or long short-
term memory networks (LSTMs) [17] have been proposed
and applied for trajectory prediction [1], [15], [22], [2]. Since
only extracting temporal information does not account for de-
pendencies between traffic participants, convolutional neural
networks (CNNs) have been widely implemented for spatial
information aggregation [18], [6], [19], [8]. Other methods
are fully connected [20] or graph neural networks [12].
Generative adversarial methods (GANs) proposed by Good-
fellow et al. [14] have also been considered for trajectory
prediction [25], [40]. The already mentioned approach by
Deo and Trivedi [10] uses a combination of LSTMs for
temporal feature extraction for each vehicle trajectory and
CNNs for processing the resulting grid representation. The
final trajectory is generated by an LSTM decoder for each
maneuver. Other combinations of the presented approaches
can be found for trajectory prediction [33], [40], [4]. The
main difference to our approach is that we solely use a
convolutional architecture for jointly encoding temporal and
spatial information as well as decoding the resulting features
for prediction without the use of recurrent structures.

The use of CNNs instead of RNNs for sequence mod-
eling has been proposed by Bai et al. [3]. They argue
that such temporal convolutional networks (TCN) are ca-
pable of outperforming recurrent models for specific tasks
while being simpler and easier to train. In addition to that,
TCNs can process the data in parallel, which makes them
faster at inference. Nikhil and Morris [31] propose to use
CNNs for pedestrian trajectory prediction and show superior
performance and speed compared to LSTM-based models.
However, neighboring agents are not considered in their
method since they only use 1D convolutions along the time



dimension. The approach developed in this work is inspired
by temporal convolutions and provides, in contrast to Nikhil
and Morris [31], a joint aggregation of spatial and temporal
features from the proposed novel tensor input representation.

III. OUR APPROACH

The key idea of our approach is to first classify the lane
change maneuver of a target vehicle for each step into the
future and then predict the corresponding trajectory with the
classification result as an additional input.

At the current time step t=0, the goal is to predict the
sequence of P future positions {(xt, yt)}Pt=1 from H past
states S={s−t}H−1

t=0 . Each past state s−t consists of multiple
channels like position, acceleration, and velocity of the target
vehicle and its neighbors, which are transformed into a 3D
tensor. This representation is addressed in Sec. III-A. The
lane change maneuvers are pre-defined and cover sequences
of straight driving, left, and right lane changes as explained
in Sec. III-B. The classification and regression steps rely on
the exploitation of past state sequences with spatio-temporal
2D convolutions, which are presented in Sec. III-C. Based
on the CNN features, the classification module predicts a
discrete maneuver (straight driving, left lane change, or right
lane change) for each prediction step 1, ..., P into the future,
see Sec. III-D. The classified sequence is then passed to
the regression module as an additional input to predict a
trajectory based on the maneuver as outlined in Sec. III-
E. Both modules share the same convolution-based architec-
ture. When training on common, publicly available highway
datasets, lane changes are usually underrepresented since
the vehicles drive straight most of the time. We found that
training a single network with two heads and a joint multi-
task loss for classification and regression is hard to tune
due to the imbalance of lane change labels. Therefore, we
propose to use partitioned models for each task, which makes
it easier to train them separately without shared parameters.

A. Neighborhood-based Input Representation

We take the direct neighborhood of the target vehicle
into account to predict a trajectory from past data. Close
neighbors influence the possible actions a vehicle can take.
For example, a leading car with a lower velocity requires
deceleration or a lane change of the target vehicle, but the
corresponding neighboring lane needs to be free for a safe
lane change maneuver. Whereas the short-time prediction of
for example the next second is mainly restricted by the inertia
of the car, we assume that for longer prediction horizons,
including the neighborhood leads to better predictions. This
claim is backed up by our experiment in Sec. IV-E. We
define a semantic neighborhood consisting of up to seven
vehicles around the target inspired by the work of Hu et
al. [20]. As mentioned, the vehicles in front (F) and on the
left (L) and right (R) play an important role. The remaining
neighborhood is further discretized in front left (FL) and right
(FR) as well as rear left (RL) and right (RR) vehicles. In
total, this results in a maximum number of eight considered
vehicles including the target. We illustrate the semantic
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Fig. 2: Left: At each time step, we discretize the neighborhood
around the target vehicle into seven neighbor positions. Right: For
each neighbor, we extract the input channels x and y positions,
velocity v, and acceleration a for each time step resulting in 2D
tensors and concatenate them to a 3D input tensor.

neighborhood in Fig. 2. For each neighbor vehicle, we ac-
quire an image-like 2D tensor containing the different input
channels over time and concatenate them to a 3D tensor. In
case a neighbor is not present, we set the entries to zero,
which is a state that is not naturally present in the input data
due to the choice of the reference location. The concatenation
order of neighbors can be chosen randomly but needs to be
consistent for training and evaluation. We experienced that
it is advantageous to keep neighbor positions close to each
other in the data representation. Based on our experiments
in Sec. IV-E, we hypothesize that the convolutional network
can learn a notion of absolute position and discriminates
between neighbors. This is further discussed in Sec. III-C.
In contrast to other approaches that encode the whole scene
into a grid structure [10], our neighborhood representation is
more dense and memory-efficient, since not all vehicles are
taken into account.

The proposed multi-channel design makes it easy to add
new information channels that can be useful for prediction.
We use the information given by the publicly available
highway datasets, which are x and y position, velocity, and
acceleration. Note that velocity and acceleration can also
be extracted from the positional information over time in
case they are not directly provided. We normalize the data
beforehand to guarantee a consistent input scaling.

We store the neighbors and channels per frame along the
third, temporal dimension, see Fig. 2. In order to compare
our results with existing methods, we use three seconds of
input data and predict the maneuvers and positions for the
following five seconds. In this setup with data sampled at
10 Hz, this results in an input tensor of dimension 4×8×30
with 4 channels, 8 neighbors, and 30 frames of history.

B. Output Parameterization

The number of predicted future positions P depends on
the output size of the last dense layer in the classification
and regression heads in Fig. 3 and is only limited by the
resolution of the dataset used for training. We choose to
predict and evaluate the future for the next 5 s represented
via 5 positions being 1 s apart in time. This sampling rate is
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Fig. 3: Two spatio-temporal convolutional networks aggregate features in parallel from the neighborhood-based 3D input tensor. The
tensor from Fig. 2 contains the x and y positions, velocity v and acceleration a for all eight vehicles at the past time steps. Note that the
transposed input tensor is depicted for better visualization. The upper module classifies a maneuver for each prediction step and passes
the result to the lower regression module. Finally, the offsets between the future trajectory and the initial position are predicted. For each
layer we provide the output dimensions.

commonly used for evaluating the performance of trajectory
prediction methods [10], [40], [35], and therefore, we use
it here. Note that the input data is still processed at 10 Hz,
which is unaffected by the output resolution. Furthermore,
a higher output-rate can be easily added. A ground truth
maneuver output with 3 classes (straight, left lane change,
right lane change) is of size 5×3 and is computed from the
lane IDs. The lane ID is provided by the datasets and not
part of the input data. If the lane ID of a vehicle changes
between subsequent frames, we assume a lane change with
a duration of 2 s before and after the corresponding frames
and infer the maneuver direction from the lane IDs.

The regression layer outputs trajectory offsets that describe
the difference between the predicted position and the initial
position at t=0 of the target vehicle. This improves the
training since the identity mapping from input to output is
achieved by predicting an offset of zero. At inference time,
the model’s output is de-normalized and added to the target’s
current position.

C. Spatio-temporal Convolutional Neural Network

Given the data representation proposed in Sec. III-A, we
use four convolutional layers for feature aggregation. As
carried out by Bai et al. [3], we apply convolutions along
the time dimension to detect local correlations between states
in the history sequence. In addition to that, we extend the
temporal convolution along the spatial neighbor dimension
resulting in 2D convolutions. The hierarchical stacking of
layers ensures that the low-level features from the input data
can be combined in the subsequent layers for higher-level
representations. We conclude that higher layers learn to inter-
pret the convolution along the neighborhood dimension and
therefore account for the absolute position of the neighbor.
This assumption is backed up by Kayhan et al. [21], who
claim that CNNs can encode absolute spatial locations from
boundary effects. Since we use zero padding and our spatial
dimension is only eight, we can expect to make use of the
boundary effects during training.

It is worth pointing out that the learning process of the
temporal and spatial relations among all vehicles happens
jointly. This makes the prediction fast since, in contrast

to recurrent models, no previous hidden states need to be
computed and taken into account. Analogously to vision-
based 2D convolutions with multiple image channels, the
filter depth is matched with the number of feature channels.

Stacking multiple convolutional layers increases the recep-
tive field of the CNN. For temporal convolutional networks,
the receptive field determines the number of past time steps
that influence a single output. Especially for longer input
sequences, this is an important factor for prediction perfor-
mance. Besides deepening the architecture by adding layers,
it is also possible to increase the size of the convolution
kernels. However, since all techniques increase the number of
training parameters and therefore the model complexity, we
use dilated convolutions. A dilated convolution expands the
receptive field without reducing the resolution or coverage
as pointed out by Yu and Koltun [39]. We implement
dilations along the temporal dimension by adding zeros
between kernel entries depending on the dilation rate. We
provide an experiment on the improvement by using dilated
convolutions in Sec. IV-E.

The complete network architecture is illustrated in Fig. 3.
Each convolutional layer uses a leaky rectified linear unit
(ReLU) activation function [29]. At the first layer, the input
tensor of size 4×8×30 is convolved with 24 filters with a
kernel size of 5×10 and dilation of one. Each output in
the resulting feature map of size 24×4×12 has a receptive
field of 4×5×19. Furthermore, a dilated convolution with
40 filters of size 3×3 is carried out resulting in a size
of 40×2×8. The third layer applies 56 filters of size 2×3
with dilation, which leads to a map with 56×1×4 features.
Finally, the last convolutional layer reduces the channel
dimension with 24 1×1 kernels to 24 feature channels and
a final receptive field of 4×8×27.

D. Classification

When only using a regression module to predict the trajec-
tory, the model needs to capture multiple possible maneuvers
as motivated in Fig. 1. Mozaffari et al. [30] point out that
this can lead to predictions that are averaged over all possible
modes. We decide to first classify the future maneuver of the



target vehicle and to predict a trajectory that depends on the
estimated maneuver.

To classify the future maneuver of the vehicle with our
spatio-temporal CNN defined in Sec. III-C, we flatten the
output of the last convolutional layer with a size of 24·4=96
and pass it to a fully connected layer with a leaky ReLU
activation function and a hidden dimension of 40. A final
fully connected layer processes the hidden feature vector of
length 40. The output layer predicts the class logits, which
can be normalized to a probability for each of the three
maneuvers ”straight”, ”left”, and ”right” at each prediction
step resulting in an output vector of size 5×3. Selecting
the indices of the maneuvers with the highest predicted
probability results in an estimated maneuver intention vector
of size 5×1 containing values between 0 and 2. Based on
the three possible maneuvers at each of the P=5 prediction
steps, there are in total 35=243 maneuver sequences the clas-
sification network can model. During training, we optimize
the network parameters by minimizing the sum of negative
log-likelihoods at each prediction step reading

Lclass =

P∑
t=1

− log p(ct), (1)

with p(ct) denoting the predicted probability for the ground
truth class ct at time step t. We analyze the improvements
on the prediction performance achieved by our classification
module in Sec. IV-E.

E. Regression

To make maneuver-based predictions, we feed the classi-
fied maneuver sequence directly to the regression module.
As discussed above, there are 243 possible combinations
of maneuver predictions for a given input tensor. We con-
catenate the resulting vector of size 5×1 containing the
indices of the five most likely maneuvers at each time
step with the flattened CNN output vector resulting in 101
features. We pass this vector to a fully connected layer with
the same architecture as in the classification module. The
corresponding hidden vector of size 40 is the input for the
final output layer with a linear activation function, which then
predicts a vector of size 5×2 containing the x and y positions
at each of the 5 prediction steps. During training, we use the
ground truth maneuvers as input for the regression module,
whereas during evaluation, we use the maneuvers predicted
by the classification module. The training aims at minimizing
the batch-wise root mean squared error (RMSE) reading

Lreg =

√√√√ 1

P

P∑
t=1

‖x̂t − xt‖2, (2)

with predicted locations x̂t and ground truth locations xt for
each time step t, where each location consists of the x and
y positions.

With the proposed architecture, the temporal and spatial
information of the highway scene around a target vehicle is
jointly encoded by applying 2D convolutions. As pointed

out by Bai et al. [3], the temporal convolution avoids a
long backpropagation path resulting in a more compact
model, which is easier to train compared to RNNs. Also,
the prediction can be carried out in parallel due to the
temporal convolutional structure and is therefore fast. The
total amount of trainable parameters for the design depicted
in Fig. 3 is 65,721. For comparison, the convolutional social
pooling approach [10] has 194,954 and the multiple futures
prediction approach [37] has 1,073,644 trainable parameters.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is to predict the lane change
maneuver and the corresponding future trajectory of a vehicle
based on past information about states including the neigh-
borhood. We present our experiments to show the capabilities
of our method and to support our key claims made about our
work, which are: (i) Successfully classifying lane change
maneuvers and predicting a corresponding trajectory for
real-world scenarios by (ii) performing joint spatio-temporal
feature aggregation with 2D CNNs, (iii) and outperforming
state-of-the-art methods.

A. Implementation Details

We train the classification and regression modules with
the Adam optimizer [23] and a learning rate of 7·10−5.
Additionally, we augment the training set by overlapping
the input data by 20 frames resulting in 506,180 training
examples. This leads to better coverage of different lane
change maneuvers in the training data. The total training time
for each module is 17.5 h with 300 epochs on an Intel Xeon
W-2133 CPU and an Nvidia Quadro RTX 5000 GPU. It takes
around 0.3 ms on average to classify the future maneuver
sequence and to predict the corresponding trajectory.

B. Experimental Setup

We consider two different datasets to train and evaluate
our proposed approach on real-world scenarios. The highD
dataset [24] contains 110,000 vehicle trajectories from 60
highway recordings. The highways are located in Germany
and have 2 to 3 lanes. To show that our approach generalizes
well on different driving behaviors and highway structures,
we also use the NGSIM dataset [16] with 9,206 vehicles
driving on two different US highways with 5 to 6 lanes. Both
datasets provide access to position, velocity, and acceleration.
For each dataset, we use 70% of all vehicle trajectories for
training, 10% for validation, and 20% for testing. For a better
comparison, we use the same vehicle trajectories for testing
as Song et al. [35].

C. Qualitative Analysis

The qualitative experiments evaluate the prediction results
on real-world data and support the claim that our modular
approach of classification and regression results in reasonable
predicted maneuver-based trajectories. We show that the
prediction relies on the spatio-temporal encoding of the
target vehicle’s surroundings by modifying the neighborhood
leading to different results. The original scenes are taken
from recording 56 of the highD dataset.
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Fig. 4: Two scenarios with predictions for the black target vehicle (T). Left: The original scene with a dashed red line as ground truth.
The solid line represents the first seconds of the predicted future trajectory. The velocity of neighboring vehicles is depicted by the length
of the gray velocity vectors. Our approach successfully classifies a left lane change (blue) since the car in front (F) is slower. Right: In
case we modify the neighborhood by removing the car in front, the prediction changes to a straight driving maneuver (black).

RL L

R
F

FL
5 s

T
4 s3 s2 s1 s

RL L

R

FL

5 sT
4 s3 s2 s1 s

L

R
F

FL
5 s

T

4 s3 s2 s1 s

FR

FR

FR

Fig. 5: Three scenarios with modified environments. Top: Original highD scene, the target can not change the lane and needs to decelerate.
Middle: Removed leading vehicle, the target does not need to decelerate resulting in a longer trajectory. Bottom: Removed left rear
neighbor, a left lane change (blue) is now possible and therefore predicted. Note that the velocity of neighboring vehicles is depicted by
the length of the gray velocity vectors.

In Fig. 4, we consider two possible scenarios for the same
highway scene. The original neighborhood is depicted on the
left. A slower car (F) is in front of the black target vehicle (T)
and forces it to change the lane or decelerate. In this case, the
target will let the left center (L) vehicle pass and perform
a lane change. The ground truth trajectory is represented
by a red dashed line. Our approach successfully classifies
a left lane change maneuver indicated by the blue color
and predicts a trajectory that matches the ground truth. To
demonstrate the influence of the semantic neighborhood on
the prediction, we remove the leading car (F) by replacing the
corresponding entries in the input data with zeros. Based on
the new neighborhood, our model predicts a straight driving
maneuver since there is no longer a need to change the lane.

The second example in Fig. 5 demonstrates a more ad-
vanced highway scene. The black target vehicle (T) is again
facing a slower vehicle in front (F). Additionally, two cars
at the rear and center of the left lane (RL and L) hinder the
target from changing the lane. Our approach predicts that the
car will stay on the lane and slow down. The ground truth
is shown in dashed red and confirms our prediction. In the
middle part of Fig. 5, we removed the truck in front (F) from
the spatio-temporal input representation. One can see that the
predicted trajectory is still straight, but now longer compared
to the previous case. This can be reasoned by the fact that
there is no longer a slower leading car that forces the target
vehicle to decelerate. In a third scenario, we keep the truck
in front (F) and remove the car on the rear left (RL). The
classification module now outputs a lane change maneuver
to the left (blue) and the corresponding trajectory moves to

the left lane. All three examples show that our approach can
predict reasonable maneuver intentions and trajectories from
the neighborhood of the target vehicle.

D. Quantitative Analysis

We present a second experiment to support the claim that
our approach outperforms existing state-of-the-art methods
for trajectory prediction. For a fair comparison, we evaluate
our approach on the same test sets for each dataset as done
by Song et al. [35]. We report the root mean squared error
(RMSE) for each prediction step, which is a common metric
for trajectory prediction. We compare the results with the
baseline methods S-LSTM [1], CS-LSTM [10], S-GAN [15],
MATF [40] and PiP-noPlan [35]. In case of S-GAN and
MATF which are stochastic models, we take the best root
mean squared error among 3 sampled trajectories. We refer
to the PiP-noPlan implementation since the planning coupled
module in PiP uses ground truth future trajectory of the target
vehicle to predict the future trajectory of neighboring cars
which would result in an unfair comparison.

The final results are shown in Tab. I. In general, our
method shows better results for both datasets at the pre-
diction steps. Especially for the highD dataset, the proposed
approach outperforms other state-of-the-art methods at larger
prediction horizons. All methods show larger RMSE values
for the NGSIM dataset, which can be explained by larger
noise in the data as pointed out by Krajewski et al. [24]. This
noise leads to smaller performance improvements between
the baselines and also explains why our method achieves
a smaller margin compared to the evaluation on the highD



Dataset Time S-LSTM [1] CS-LSTM [10] S-GAN [15] MATF [40] PiP-noPlan [35] Our Approach

NGSIM

1 s 0.60 0.58 0.57 0.66 0.55 0.53
2 s 1.28 1.26 1.32 1.34 1.20 1.17
3 s 2.09 2.07 2.22 2.08 2.00 1.93
4 s 3.10 3.09 3.26 2.97 3.01 2.88
5 s 4.37 4.37 4.40 4.13 4.27 4.05

highD

1 s 0.19 0.19 0.30 - 0.18 0.10
2 s 0.57 0.57 0.78 - 0.53 0.21
3 s 1.18 1.16 1.46 - 1.09 0.41
4 s 2.00 1.96 2.34 - 1.86 0.78
5 s 3.02 2.96 3.41 - 2.81 1.34

TABLE I: Comparison of the root mean squared error at each prediction step evaluated on the NGSIM [16] and highD [24] datasets. Bold
numbers indicate the best result. The baseline results are reported by Song et al. [35]. For the stochastic models S-GAN and MATF, the
best root mean squared error among 3 sampled trajectories is reported. Note that for PiP, we refer to the PiP-noPlan implementation for
a fair comparison, since the planning coupled module in PiP partially uses ground truth information.

Only Input Without Shuffled Without Without Sampled Full
Time x and y Neighborhood Neighborhood Dilation Maneuver Maneuver Approach

1 s 0.24 0.08 0.15 0.15 0.14 0.14 0.10
2 s 0.64 0.18 0.25 0.30 0.26 0.33 0.21
3 s 1.24 0.39 0.43 0.52 0.47 0.62 0.41
4 s 2.02 0.83 0.82 0.90 0.87 1.04 0.78
5 s 3.00 1.52 1.40 1.45 1.48 1.60 1.34

TABLE II: Ablation study on the highD dataset [24].

dataset. We conclude that noise in for example the vehicle
speed heavily influences the prediction due to the high
average speed on highways.

E. Ablation Study
Finally, we conduct an ablation study to evaluate how

much each proposed component of our method contributes to
the performance reported in Tab. I. We retrain and evaluate
our approach with several modifications on the highD [24]
dataset since the data is more accurate as previously de-
scribed. The results are shown in Tab. II.

In a first ablation experiment, we retrain our method only
using x- and y-position as input channels. The result shown
in Tab. II indicates that adding velocity and acceleration as
inputs leads to a major performance improvement, which
justifies the multi-channel design of the proposed 3D input
tensor.

If the local neighborhood defined in Sec. III-A is ig-
nored for prediction as done by Nikhil and Morris [31],
the prediction performance is slightly better for short-term
predictions, but worse for larger prediction horizons. This
indicates that the behavior of other traffic participants mainly
influences the future trajectory at larger horizons and should
not be ignored. Furthermore, we retrain our approach with
a shuffled neighborhood order and the competitive result for
prediction steps larger than 1 s indicates that the CNN is able
to learn the absolute position across the vehicle dimension
independent of the ordering.

We conducted an additional ablation study to investigate
the effect of dilated convolutions used to increase the re-
ceptive field and to reduce the number of parameters. If no
dilated convolutions are used, the size of the dense layers
in Fig. 3 needs to be increased to account for the resulting
larger feature maps at the output stage of the CNN. This

results in a model with 90,681 parameters. Our experiment
shows that the use of dilated convolutions leads to a better
performance while having fewer parameters to train.

The last ablation study investigates the effect of our
maneuver-based prediction. First, if no maneuvers are used,
the performance degrades. We hypothesize that the regression
module alone is not capable of capturing all maneuvers
and therefore a prior classification improves distinguishing
between these modes. Finally, we show that our classifica-
tion module can predict different maneuvers based on the
previous input. We test this by comparing to a model which
randomly samples a maneuver sequence from the training
distribution and passes it to the regression module. It can be
seen that the sampled maneuvers lead to a worse performance
compared to our trained classification module.

V. CONCLUSION

In this paper, we presented a novel approach to classify
the future lane change maneuver of a target vehicle and
predict the corresponding trajectory. Our model operates
on a 3D spatio-temporal input representation encoding the
neighborhood around the target. We exploit the local corre-
lations in neighboring state sequences with spatio-temporal
2D convolutions resulting in a simple, memory-efficient
architecture with fast and parallelized inference. This allows
us to successfully account for different possible driving
maneuvers which are used for a more informed prediction.
We implemented and evaluated our approach on two datasets
taken at different locations and provided comparisons to
other existing techniques and supported all claims made
in this work. The experiments suggest that our approach
can successfully predict maneuver-based trajectories and
outperforms state-of-the-art methods.
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[26] S. Lefèvre, D. Vasquez, and C. Laugier. A survey on motion prediction
and risk assessment for intelligent vehicles. Journal of Robotics and
Mechanical Engineering Research, 1:1–14, 2014.

[27] L.L. Li, B. Yang, M. Liang, W. Zeng, and M. Ren. End-to-end
Contextual Perception and Prediction with Interaction Transformer.
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2020.

[28] W. Luo, B. Yang, and R. Urtasun. Fast and Furious: Real Time End-
to-End 3D Detection, Tracking and Motion Forecasting with a Single
Convolutional Net. In Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2018.

[29] A. Maas, A.Y. Hannun, and A.Y. Ng. Rectifier Nonlinearities Improve
Neural Network Acoustic Models. In Proc. of the Int. Conf. on
Machine Learning (ICML), 2013.

[30] S. Mozaffari, O.Y. Al-Jarrah, M. Dianati, P. Jennings, and A. Mouza-
kitis. Deep Learning-Based Vehicle Behavior Prediction for
Autonomous Driving Applications: A Review. arXiv preprint,
abs/1912.11676, 2019.

[31] N. Nikhil and B.T. Morris. Convolutional Neural Network for
Trajectory Prediction. In Proc. of the Europ. Conf. on Computer Vision
Workshops, 2018.

[32] S.H. Park, B. Kim, C.M. Kang, C.C. Chung, and J.W. Choi. Sequence-
to-Sequence Prediction of Vehicle Trajectory via LSTM Encoder-
Decoder Architecture. In Proc. of the IEEE Vehicles Symposium (IV),
2018.

[33] A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, S. H. Rezatofighi,
and S. Savarese. SoPhie: An Attentive GAN for Predicting Paths Com-
pliant to Social and Physical Constraints. In Proc. of the IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR), 2019.

[34] J. Schulz, C. Hubmann, J. Lochner, and D. Burschka. Interaction-
Aware Probabilistic Behavior Prediction in Urban Environments. In
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2018.

[35] H. Song, W. Ding, Y. Chen, S. Shen, M. Wang, and Q. Chen. PiP:
Planning-informed Trajectory Prediction for Autonomous Driving.
Proc. of the Europ. Conf. on Computer Vision (ECCV), 2020.

[36] L. Sun, W. Zhan, C.Y. Chan, and M. Tomizuka. Behavior Planning
of Autonomous Cars with Social Perception. In Proc. of the IEEE
Vehicles Symposium (IV), 2019.

[37] Y. Tang and R. Salakhutdinov. Multiple Futures Prediction. Proc. of
the Conference on Neural Information Processing Systems (NeurIPS),
2019.

[38] L. Xin, P. Wang, C.Y. Chan, J. Chen, S.E. Li, and B. Cheng. Intention-
aware Long Horizon Trajectory Prediction of Surrounding Vehicles
using Dual LSTM Networks. In Proc. of the IEEE Intl. Conf. on
Intelligent Transportation Systems (ITSC), 2018.

[39] F. Yu and V. Koltun. Multi-Scale Context Aggregation by Dilated
Convolutions. In Proc. of the Int. Conf. on Learning Representations
(ICLR), 2016.

[40] T. Zhao, Y. Xu, M. Monfort, W. Choi, C. Baker, Y. Zhao, Y. Wang,
and Y.N. Wu. Multi-Agent Tensor Fusion for Contextual Trajectory
Prediction. In Proc. of the IEEE/CVF Conf. on Computer Vision and
Pattern Recognition (CVPR), 2019.

[41] A. Zyner, S. Worrall, and E. Nebot. Naturalistic Driver Intention and
Path Prediction Using Recurrent Neural Networks. IEEE Trans. on
Intelligent Transportation Systems (ITS), 21(4):1584–1594, 2018.


