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Abstract— In applications such as search and rescue or
disaster relief, heterogeneous multi-robot systems (MRS) can
provide significant advantages for complex objectives that
require a suite of capabilities. However, within these application
spaces, communication is often unreliable, causing inefficiencies
or outright failures to arise in most MRS algorithms. Many
researchers tackle this problem by requiring all robots to
either maintain communication using proximity constraints or
assuming that all robots will execute a predetermined plan
over long periods of disconnection. The latter method allows
for higher levels of efficiency in a MRS, but failures and
environmental uncertainties can have cascading effects across
the system, especially when a mission objective is complex or
time-sensitive. To solve this, we propose an epistemic planning
framework that allows robots to reason about the system
state, leverage heterogeneous system makeups, and optimize
information dissemination to disconnected neighbors. Dynamic
epistemic logic formalizes the propagation of belief states, and
epistemic task allocation and gossip is accomplished via a mixed
integer program using the belief states for utility predictions
and planning. The proposed framework is validated using
simulations and experiments with heterogeneous vehicles.

I. Introduction

Heterogeneous multi-robot system deployment offers a
variety of advantages including improved versatility, scalabil-
ity, and adaptability over homogeneous systems. As robotic
technology has advanced over the last few decades making
robots smaller, more capable, and affordable, demand for
multi-robot research has grown. Appropriate coordination of
these heterogeneous systems can improve the effectiveness of
safety critical missions such as surveillance, exploration, and
rescue operations by incorporating the capabilities of each
robot. However, the complexity of the solution for a hetero-
geneous system can exponentially expand over long periods
of disconnectivity, especially in uncertain environments.

As humans, if the local plan must change at run-time, we
are able to handle communication limitations by reasoning
about the progress of other actors while empathizing with
what other actors might believe about us. In our previ-
ous work [1], we formalized a dynamical framework for
logical planning using epistemic planning, considering the
knowledge and beliefs of the MRS. This method allows a
distributed system to reason iteratively about the location of
other robots in the system.

In this paper, we build on our previous work [1] and
consider fault and disturbance tolerant task allocation for
heterogeneous robotic systems under communication con-
straints. We note that calculating a distributed plan for
coverage while accounting for any combination of robot
system failures, changes in the environment, or deviations
is intractable. Instead, we propose a reasoning framework
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Fig. 1. Pictorial depiction of the problem. The proposed framework enables
a robot to reason from other agents’ perspectives as it experiences a behavior
change or observes that another robot is not where expected.

using dynamic epistemic logic where each robot i propagates
belief states that represent where the robot believes other
robots could be and empathy states that represent what other
robots might believe about robot i. Using epistemic planning,
each robot can reason about a distributed strategy given local
observations to complete any combination of mission objec-
tives such as communicating with another robot, exploring
an environment, or performing tasks.

For example, consider Fig. 1 where two unmanned ground
vehicles (UGVs) and one unmanned aerial vehicle (UAV) are
exploring an environment and may discover tasks at undis-
closed locations. During disconnection, the UAV maintains
a set of possible (belief) states for UGV 1 and UGV 2 and
also a set of (empathy) states that UGV 1 and UGV 2 might
believe about the UAV. The UAV finds a task that requires
a UGV and plans to communicate with UGV 2. After the
UAV travels to UGV 2’s first belief state, it finds that UGV
2 is not present. So, the UAV reasons that UGV 2 might be
at the second belief state, successfully communicates, and
plans to utilize UGV 1 instead of UGV 2 due to UGV 2’s
deprecated state, sending UGV 2 to the base. In this way,
robots can iteratively reason using their local observations,
even when the plan requires a change at runtime.

Thus, the main contribution of this work is a formal
heterogeneous task assignment and communication frame-
work using epistemic planning for complex tasks consid-
ering disturbances and uncertainties in a communication
restricted environment. We show that the performance of our
method correlates with cases where continuous connectivity
is guaranteed and outperforms motion planning methods that
require the robots to be constantly connected for the entire
duration of the operation.

II. RelatedWork
Multi-robot systems have received considerable attention

in recent years due to their scalability, versatility, and ap-
plicability to various application domains [2]–[4]. A well-
studied multi-robot research area is environmental explo-
ration. Authors in [5] and [6] study multi-robot exploration
missions in both known and unknown environments, but
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rely on continuous connectivity. Some recent works consider
communication limitations by restricting motion planning to
maintain connectivity [7], assigning unique objectives for
sub-teams of the system [8], or using intermediary radios
for connectivity maintenance [9].

A related area of study is multi-robot task allocation
(MRTA). MRTA is a combinatorial optimization problem and
involves assigning a subset of robots to optimize the comple-
tion of an objective where task objectives can have complex-
ities such as extended time assignment, requiring multiple
robots, or having precedence constraints [10]. Authors in
[11] solve a variant of heterogeneous MRTA by maximizing
the reward of a heterogeneous team using a self-organizing
map heuristic. Few works have also included communication
limitations and failures in their approach. [12] includes multi-
robot communication limitations and allocates tasks using a
consensus-based bundling algorithm with connected robots.
Similarly, [13] accounts for communication limitations and
assigns targets to individual teams and plans rendezvous
with team members to reduce the uncertainty of targets
over time. Authors in [14] include system failures in their
multi-robot policy search, but assume that robots are able to
communicate these disruptions.

Although research in multi-robot task allocation and envi-
ronmental exploration have incorporated realistic limitations,
there are few applications that combine prolonged or inten-
tional disconnection and system failures. [15] is one such
work that uses an auction allocation algorithm to assign tasks
in a communication limited environment, but assumes that
the number of locally connected robots is adequate to ac-
complish discovered tasks. Other works deal with prolonged
disconnections by establishing rendezvous points [16], [17];
however, this method can introduce unnecessary communica-
tion and laborious backtracking. In contrast, this work applies
dynamic epistemic logic (DEL) [18], allowing each robot
in the MRS to reason and plan using its beliefs of other
robots in the system while disconnected, updating its beliefs
if new events are observed and routing to communicate when
necessary. DEL is a formal logic that describes how beliefs
and knowledge change and has recently been integrated
into robotics applications. The method presented in [19]
recreates the Sally-Anne psychological test for human-robot
interactions. Typical DEL-based multi-robot research uses
epistemic planning for game theory-based policies [20]. We
extend DEL use to a realistic multi-robot application to
reason about the system’s state considering environmental
disturbances, system failures, task discovery, and partially-
unknown environments.

III. Preliminaries

A. Notation, Communication, & Control

Given a heterogeneous multi-robot system of Nr robots in
the set A, we consider a system with a set of capabilities
represented by Q where each qi ∈ Q is the capability of the
ith robot. The element qi represents a possible subset of Nk
capabilities. Additionally, all initial positions of the robots
are known and the MRS’s connectivity graph is denoted
as G = (A,E) where the set E ⊂ A × A represents edge
connections between robots. An edge (i, j) ∈ E indicates

that robots i and j are within communication range (i.e.
connected).

We let Nt signify the number of complex tasks (i.e., tasks
that require solution strategies such as multi-robot tasks or
tasks with precedence relations) in the set T located at ini-
tially unknown positions within the operating environment.
The number of tasks may be known or unknown a priori.
An element τ in T is defined by the tuple identifying the
location, the required robot capabilities, and the duration of
the task: (xτ, yτ,Rτ, δτ) where Rτ ⊆ Q. We assume that the
tasks are stationary and completed once a subset of robots
navigate within a radius rc ∈ R>0 for a length of time,
δτ. The robots are assigned to search for these tasks in an
environment, W, which is modeled as an occupancy grid,
M ⊆ R2. As robots observe unexplored cells Mu ⊆ M, M
is updated using recursive Bayesian estimation, although any
applicable method can be used. We also define the frontier
set F ⊆ M \ Mu as the set of explored cells adjacent to
unknown cells and O ⊆ M as the set of known obstacles
assuming that the environment is partially-unknown.

We let xi(t) denote robot i’s state variable that evolves
according to general linear or nonlinear dynamics:

xi(t + 1) = g(xi(t),ui(t),νi(t)) (1)

where ui ∈ R
du and the variable νi ∈ R

dν denotes the control
input and zero-mean Gaussian process uncertainty at discrete
time t. The tuple Ωi(t) = (xi(t), qi,Mi, σi) of robot i is
referred to as robot i’s disposition and is defined by robot
i’s state, capability qi, local occupancy map Mi, and status
σi. Status is defined as a robot’s current objective such as
covering the environment, communicating, or performing a
task. We let a robot i’s status be a proposition that represents
the objective a robot is executing.

B. Epistemic Logic
In this work, distributed knowledge and reasoning for

robots in the system is modeled using epistemic logic [21].
An epistemic state is formally defined as follows:

Definition 1: An epistemic state is described for a finite
set of atomic propositions, AP, by the tuple s = (W,Ri,V,Wd)
where
• W is a non-empty, finite set of possible worlds
• Ri ⊆ W ×W is an accessibility relation for robot i
• V → 2AP is a valuation function.
• Wd ⊆ W is the set of designated worlds from which all

worlds in W are reachable.
The logical formula vRiw is interpreted as “though the true
world is w robot i ∈ A believes the world is v.” The
variable s represents an epistemic state and we set the initial
epistemic state to s0 = (W,R,V,w0). If Wd = {w0}, s0 is the
global epistemic state. The world, w, signifies a set of true
propositions which in our application is the status of each
robot w = {σi∀i ∈ A}. The worlds that the system can be in
are described by the combinations of all possible statuses of
each robot in the multi-robot system.

We define beliefs to be the estimated state of a robot with a
pre-defined set of failures (i.e., faults or disturbances). Each
robot predicts the future states of a set of beliefs for all
robots in the system. The set P = {P1, . . . ,PNa } holds the
distributed beliefs of all robots. An element in Pi represents



possible states from a robot i’s perspective of robots j ∈ A.
For this application, the epistemic language, L(Ψ,P,A) is
obtained as follows in Backus-Naur form [22]:

ϕF H(ω) | ϕ ∧ ϕ | ¬ϕ | Kiϕ | Biϕ

where i, j ∈ A. H ∈ Ψ with Ψ signifying a set of functions
that describe the system state. ω generally denotes function
arguments while ¬ϕ and ϕ ∧ ϕ are propositions that can
be negated and form logical conjunctions. Kiϕ and Biϕ are
interpreted as “robot i knows ϕ” and “robot i believes ϕ”,
respectively.

Dynamic epistemic logic is expanded from epistemic logic
through action models [21]. These models affect a robot’s
perception of an event and influence its set of reachable
worlds. We simplify the notation of the action model by
referring to actions in plain language. In this paper, we
describe a robot’s main actions or action library, A, as:
perceive a robot, belief, or task and announce a proposition
or system state. Further, we express the epistemic product
model as s⊗ i : a = (W ′,R′i ,V

′,W ′d) where i : a specifies that
an action a ∈ A has been executed by robot i.

IV. Problem Formulation
In this paper, we consider a scenario in which a heteroge-

neous MRS must coordinate in a decentralized fashion to ef-
ficiently search for Nt complex tasks at unknown locations in
a communication restricted, partially-unknown environment
with the potential for system failures or disturbances. There
are two main challenges that arise from this scenario: 1) how
to encourage efficient exploration of a partially-unknown
environment with limited communication and 2) how to
efficiently calculate a plan to accomplish mission objectives,
accounting for the potential of failures/disturbances that
lead to different abilities of robots in the system during
disconnection. Formally, we define this problem as follows:

Problem 4.1 (Epistemic heterogeneous task allocation):
Given a heterogeneous, multi-robot system made of Nr
robots having Nk different capabilities, find a distributed, se-
quential policy, π, to enable the multi-robot system to quickly
perform cooperative search with limited communication, in
a cluttered environment W, containing Nt tasks at unknown
locations, with each task τ requiring a subset of the available
system capabilities, Rτ ⊆ Q. The policy should minimize
mission time while enabling cooperative behavior if a robot’s
abilities change while disconnected.

V. Approach
Our proposed framework propagates belief and empathy

states to inform heterogeneous exploration and goal assign-
ment, considering task discovery and system failures in a
partially-unknown environment. For ease of discussion let
us consider two robots i and j. From robot i’s perspective, a
belief state, pi j,b ∈ Pi, represents a possible state of a robot
j and an empathy state, pii,b ∈ Pi, describes robot i’s belief
of robot j’s belief about robot i’s state. With this knowledge,
robot i predicts and tracks empathy states to ensure that a
robot j holds one true belief of the state of robot i if covering
the environment (i.e. robot i will plan its motion according
to at least one empathy particle). Thus, robot i’s empathy
states are equivalent to robot j’s belief states for robot i.
The diagram in Fig. 2 summarizes this architecture.

Fig. 2. Diagram of the proposed approach. The contributions of this paper
are within the green box.

Initially, as shown in Fig. 2, robot i assesses if communi-
cation is successful and, if it is, frontiers are partitioned in a
distributed manner and each robot calculates their respective
frontiers using a generalized Dirichlect tessellation (GDT)
[23]. If the robots disconnect, the common belief set, Ci,
acts as the state in the GDT for any robot j ∈ A from i’s
perspective that is not connected. Each robot plans its path
to a frontier point using a smooth A∗ [24] and local control
for path following using an artificial potential field.

While searching the environment, the robot system’s main
purpose is to execute tasks. Upon discovery, a policy, πi, is
established for each robot using a non-linear integer program.
If robot i discovers a task that requires robot j, the robot
includes the task of communicating with robot j (gossiping)
using the set of beliefs for robot j, {pi j,b,∀b ∈ B} and updates
its policy, πi.

In the following sections, we will describe the principal
elements in our framework including: i) belief and empathy
propagation, ii) epistemic coverage, iii) epistemic planning,
and vi) task allocation and gossiping protocol.

A. Belief & Empathy Propagation

In our epistemic framework, each robot propagates belief
states for all robots in the multi-robot system. This allows a
robot i to plan according to its beliefs about other robots and
empathize with what other robots expect robot i to accom-
plish while disconnected. To constrain system uncertainties
while disconnected to a finite set of possibilities, we define
a finite set of particles, Pi, to represent these belief and
empathy states from the perspective of the ith robot:

Pi = {pi j,b ∀ j ∈ A,∀b ∈ B}. (2)

The ith robot defines its empathy particles as Pe
i = {pii,b ∀b ∈

B} and its belief particles about other robots as Pr
i =

{pi j,b ∀ j ∈ A,∀b ∈ B}. For each robot j ∈ A, the robot i
orders its belief and empathy particles 1 through Nb accord-
ing to the probability of occurrence (that is, from largest to
smallest). The order is initialized prior to deployment and
each robot i initially tracks its first empathy particles.

If disconnected, a robot i propagates beliefs from the last
globally communicated state between robot i and robot j.
We define this set of particles as Ci ⊆ Pi and refer to it as
robot i’s common belief set. The motion plan for all particles
is computed using the common belief set, Ci = {ci j ∀ j ∈ A}
and the dynamics defined in (1).

The goal selection for each robot and particle is dependent
on the believed status of a robot. Within this paper, the main
statuses for a robot are: exploring, gossiping, or performing
a task, noting that these statuses are predefined and mission
dependent. Given that all robots follow an empathy particle



during exploration, we next present our strategy to propagate
these states while disconnected.

B. Epistemic Coverage Assignments
As noted in the related work, most distributed algorithms

rely on a fully connected system. In contrast, we utilize a
partitioning and coverage mechanism using the common be-
lief set, C, for cooperative robots given a partially-unknown
environment while disconnected.

To begin, an ith robot updates its local map and the esti-
mated coverage from robot j at the location described by the
jth particle in the set Ci using recursive Bayesian estimation.
Using this common belief map, an ith robot determines its
frontier set, Fi, by assessing which explored cells are adja-
cent to unknown cells. Additionally, the optimal partition of
Fi is the tessellation Vi(Ci) = {Vi1,Vi2, . . . ,ViNr } generated
by common belief particles in Ci denoted as the points
(ci1, ci2, . . . , ciNr ) and weighted by a constant factor ψ j based
on a jth robot’s capability:

Vi j = { f ∈ Fi| ψ j|| f − ci j|| ≤ ψk || f − cik ||,∀k , j}. (3)

With each robot’s frontier assignment given in (3), we can
determine the utility of each frontier point. The utility of
a frontier point is user-defined (e.g. travel time, distance
to other robots) and includes a penalty for frontier points
outside of a particles’ partition. The utility of each frontier
point is defined as:

υi j,z =

h( fz, ci j) + ∆ fz < Vi j

h( fz, ci j) fz ∈ Vi j
(4)

where ∆ is a user-defined penalty for frontier points outside
of a robots’ partition and h(·) is the utility function for
assigning ci j to f ∈ Fi. Subsequently, the frontier point that
minimizes the utility from (4) is defined as

z∗ = argmin
z

υi j,z (5)

and
gc

i j = fz∗ . (6)

The variable gc
i j is the frontier point goal for the common

belief particle, ci j, which encourages the common belief to
propagate to unique and uncovered portions of the envi-
ronment. If a particle’s status is exploring, it also shares
the same goal as its respective common belief particle:
gi j,b = gc

i j ∀ j ∈ A,∀b ∈ B. Otherwise, the goal for each
particle depends on the particle’s status, such as going to a
task or communicating with another robot. Once all frontier
points are believed to have been visited, the robot i’s particles
converge to a common meeting place using the mean location
of the particles in the set Ci:∑

ci j∈Ci

ci j/|Ci| (7)

where | · | signifies the cardinality of a set.
If a robot experiences a failure, we assume that each robot

i is capable of computing the set of empathy states that are
suitable to track. For robot i, we denote this set as Pt

i ⊆ P
e
i .

The robot chooses to track the particle in Pt
i with the highest

likelihood If all robots are within communication range, the

first particle becomes the robot’s current state and subsequent
particles are propagated based on the updated vehicle state.

Fig. 3 shows an example of particles propagating in a
partially-unknown environment for three vehicles (2 UGVs
and 1 UAV). In Fig. 3(a), the robots begin within commu-
nication range and establish goals along the frontier using
(4). In Fig. 3(b), the robots disconnect moving toward their
respective coverage goals and establish belief states. The
number of belief states is finite so that if robot i experiences
a failure and can no longer track the common belief, robot i
will track the next particle that is more likely to empathize
with other j robots. Similarly, if robot j needs to communi-
cate with robot i it will begin by checking the common belief
and iterate through the next most probable particles to find
robot i. Fig. 3(c) shows UGV 2 experiencing a failure and
tracking its second particle. The covered area is shaded by
the robot color that accomplished coverage, and the plotted
frontier points are the frontier points from each belief states’
perspective, dynamically allocated using (3).

(a) (b) (c)
Fig. 3. Depiction of particle propagation over time for three vehicles at
initialization (a), disconnection (b), and for a failure (c).

C. Epistemic Modeling

As a robot explores the environment, new information may
become available while disconnected from other robots. We
use epistemic planning to account for each robot’s imperfect
knowledge of the system given the communication restric-
tions in our application. Though [25] states that multi-player
games with imperfect information are undecidable, we use
epistemic planning to reduce the computational complexity
of the problem and complete all tasks in most disconnected
scenarios.

When robots communicate, rational belief updates must
occur to ensure that the common belief is still retained. In
this work, we establish three cases where updates occur: i)
when connected to all robots, ii) when expecting to connect
with another robot, and iii) when the robot discovers a task.
From the established semantics in Sec. III-B, we introduce
our action library A that can transform the epistemic state.
We let A = {perceive(ϕ), announce(ϕ)}. The action perceive
occurs when a robot perceives a generic proposition ϕ in
the environment, such as a task, particle, or robot, noting
that perception can occur through local communication to
another robot or by direct perception. The action announce is
when a robot communicates with its locally connected team.
The set Ψ = {present, track} is functionally interpreted for
Ki present(τ) as robot i knows the location, required robots,
the duration of the task τ and for Ki track(pi j,b) as robot i
knows that robot j is tracking the belief particle b.

First, we address the global belief update when all robots
are connected. We assume that because robots are cooper-
ative, all belief updates are accepted and do not become
outdated unless an event occurs in the environment such



as discovering a task or system failures or disturbances.
However, a robot may not know when/if the information
of the system becomes outdated when disconnected. We
formulate the logic for this framework using a series of
worlds, wt, which is the set of propositions of each robot’s
status, σt

i ∀i ∈ A. Additionally, there exists one true world,
w∗t , at time t and it only exists if

w∗t Riw∗t , ∀i ∈ A. (8)

In order for all robots to know with certainty the true world,
all robots’ statuses, σi

t, ∀i ∈ A must be common knowledge
and announced such that the epistemic state from robot i’s
perspective at time t is:

si
t−1 ⊗ announce(Ω) = si

t |= Kiσ
i
t

∧
j∈A

KiK jσ
j
t ∀i ∈ A. (9)

where announce(Ω) is an action symbolizing the announce-
ment of all robots’ dispositions.

The common belief particles are updated from the an-
nouncement of all states to the multi-robot system such that

ci j ← Ω j, ∀(i, j) ∈ A2. (10)

Since the common belief is updated to the world wt shared
according to (9), the particles in this set are propagated ac-
cording to the status propositions of each robot. For example,
in a two-robot team, if robot 1 communicates with robot 2
that it has found a task and will complete this task, robot 1
and robot 2 would propagate a common belief particle that
moves robot 1 to execute the task before continuing to cover
the environment.

Local beliefs are updated differently since common belief
particles are still propagated, but a robot may act on new
information in the environment. There are two actions that
cause a robot to change its belief of the world. First, if robot
i perceives that robot j is not at its believed location:

si
t−1 ⊗ i : perceive(¬track(pi j,b)) = st |= Ki¬σ

j
t−1. (11)

This causes robot i to update its belief of the world and robot
j such that

si
t−1⊗i : perceive(¬track(pi j,b)) = st |= Bitrack(pi j,b+1). (12)

Second, if a robot perceives a task, epistemic state updates
occur as follows:

si
t−1 ⊗ i : perceive(present(τ)) = st |= Kiσ

i
t. (13)

In this way, the knowledge of disconnected robots is not
affected, nor does robot i update its belief that a disconnected
robot would know the updated information.

With our epistemic states and actions defined, we now
describe how these concepts can be used for planning. A
planning task for a robot i is defined by the tuple Π =
(si

t, A, γ) where γ is a goal formula. In plain language, the
goal formula is to complete all tasks in the environment. The
execution of π is defined as a maximal sequence that satisfies
the global formula γ.

Generally, each robot uses the belief updates defined in
this section as inputs to the optimal task assignment pre-
sented in the following section. For a robot i, the optimized
task allocation and policy for each robot depends on the
believed disposition of all vehicles, modeled by the epistemic
state si

t.

D. Epistemic Task Allocation & Gossip Protocol

Lastly, this framework requires a method for using the
epistemic planning task, Π, and establishing an execution
policy, π that satisfies the mission objective. We consider the
solution to a planning task as a joint policy so that each robot
is responsible for subtasks within the mission objective. The
solution to such a policy is solved using the below nonlinear
integer program where the utility, u(·), is maximized.

max
∑
i∈A

∑
τ∈T

uiτ(tiτ(bi(yi), si
t))yiτ (14)

s.t.
∑
i∈A

∑
τ∈T

yiτIk
i ≥ rk

τ, ∀τ ∈ T , ∀k ∈ {1, . . . ,Nk}

tiτ(bi(yi), si
t) ≥ tiς(bi(yi), st

i) + δςτ ∀(ς, τ) ∈ S i (15)

tiτ(bi(yi), si
t) ≥ 0 ∀τ ∈ T

yiτ ∈ {0, 1}

where yiτ = 1 if robot i is assigned to task τ and yi =

{yi1, . . . , yiNt }. Ik
i is an indicator function for the robot i

that has the kth capability. The arrival time for the ith
robot is a unique function, tiτ, that accounts for the arrival
time of rk

τ necessary robots with capability k for task τ.
Additionally, the function tiτ considers the current belief
using the epistemic state si

t. The variable δςτ is the duration
between tasks ς and τ. The order of tasks is represented by
a directed graph, S i, created by the order of robot i’s path,
bi, where an edge (ς, τ) ∈ S i is indicates that task ς must be
performed before task τ.
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Fig. 4. Pictorial representation of binary decision matrix.

We use the matrix representation shown in Fig. 4 to
represent the solution space from (14). We refer to the time
of a task as an epoch in which any robot is available to
perform an additional task. Using this representation, we
can check precedence constraints such as gossiping to a
robot before assigning it tasks to accomplish or simultaneous
tasks requiring multiple robots at the task location (e.g.
a UGV opening a door for a UAV to fly through). All
matrix representations for one iteration of the task allocation
problem are of static depth along the time axis and initialized
to be the number of tasks possible to complete (i.e. gossiping
tasks plus discovered tasks).

Though any method for solving a constrained nonlinear
assignment problem can be used, we apply a genetic algo-
rithm (GA) due to the sparsity of the decision space and the
binary assignment constraints. Specifically, we generate an



initial feasible population for the task allocation problem and
then utilize a GA to efficiently sample the decision space.

Since the assignment problem must be solved at runtime,
the initial population is generated using the method in
Algorithm 1 to warm-start the GA where ∈R indicates a

Algorithm 1 Feasible Solution Generation
Input: Π = (si

t, A, γ)
Output: Solution representing policy, π for Π

1: v0 is the set of connected robots and vr = v0
2: while τ ∈ TD not complete do
3: for each τ ∈ TD do
4: if vr has the capabilities to perform the task then
5: if vr ≡ A or rand() >threshold then
6: vt ∈R vr for each task capability
7: b j ← b j⊕ task ∀ j ∈ vt

8: if τ ∈ TD is complete then
9: break

10: for each vr < vt do
11: vg ∈R A \ vr
12: bvr ← bvr ⊕ vg

13: vr = vr ⊕ vg

14: π←
⋃

j∈A b j

uniformly selected element. The operator ⊕ appends the
antecedent set to the precedent set. The output policy π is a
sequence defined by the joint execution order {b j ∀ j ∈ A}
and represented as a sequence of epistemic states and robot
action pairs, π = (si

t, ( j : a), si
t+1, . . . ). The algorithm is run

for the desired size of the initial GA population.
Additionally, the constrained optimization function in (14)

is transformed into an unconstrained, penalty-based function
such that

val =
∑
i∈A

makespan(bi) + Vi (16)

where makespan(bi) is the estimated length of time for robot
i to complete its assigned tasks and Vi is the penalty for
violated constraints in (15). Since only policies where no
constraints are violated are valid for the goal formula γ, Vi
must be set at a high value to ensure that the selected solution
of the GA is feasible. Algorithm 1 ensures that the initial
population of solutions are all valid policies for the goal
formula γ, but we use the GA to iterate our solution and
attempt to achieve a higher fitness value.

The resultant solution or gene is shown generically in
Fig. 5 where the highest fitness value is the execution policy
for the robots connected locally. To achieve the highest
fitness value at the lowest computational complexity, the
chromosome is formatted as a single row sparse matrix.
By using this representation we can utilize point mutation,
one-point crossover, and roulette wheel selection [26] such
that the computational complexity of our task allocation

y1
11 y1

12
. . . y1

1τ y2
11

. . . yt
1τ y1

21
. . . yt

rτ

Robots, Time, & Tasks
Fig. 5. GA solution representation

algorithm is O(nm2) with n being the number of robots and
m being the number of tasks.

Example. To reinforce the proposed approach in the
reader’s mind, consider the scenario in Fig. 6 where all robots
know there is one task at an unknown location (e.g., a search
and rescue mission). Fig. 6(a) shows the robots disconnecting
and beginning to propagate belief states. UGV 2 experiences
a failure and moves to the second particle. In Fig. 6(b), UAV
1 finds a task that requires one aerial vehicle and one ground
vehicle and uses the first particle of UGV 2 in the allocation
optimization. In Fig. 6(c), UAV 1 observes that UGV 2 is
not tracking its first particle and reallocates using UGV 2’s
second particle. UAV 1 is able to communicate with UGV
2 at its second belief particle and re-optimizes assignments
using the new information. This sends UGV 2 back to base
and assigns UGV 1 to perform the task shown in Fig. 6(d).
In Fig. 6(e) UAV 1 and UGV 1 plan to perform the task and
complete the task in Fig. 6(f) before relocating to the base.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Example simulation with one known task at an unknown location.

In general, employing this framework allows a heteroge-
neous MRS to propagate beliefs, reason about environmental
changes, and plan according to local observations while
disconnected. The output of our proposed methodology is
a sequential policy that is formulated using belief states to
reason about other robots location and used to accomplish
any mission objectives discovered in the environment.

VI. Simulations

In this section, we provide results and comparisons from
MATLAB simulations with our approach implemented on
two, three, five, and eight robot teams. Each scenario has a
randomly generated team makeup consisting of two types of
vehicles, UAVs and UGVs, for each run. Simulations were
performed in 15 random 50m × 50m environments with 5-
15 initially unknown obstacles. The robots start by assuming
that the environment has no obstacles and do not know the
location of the tasks.

Each robot propagates three particles. Particles are propa-
gated on the basis of the maximum speed of the vehicle type.
A UGV may travel at a max speed of 2m/s, and a UAV may
travel at 6m/s. The second and third particles travel at a linear
speed decreased from the vehicle’s maximum speed of 40%
and 80%, respectively. The particles propagate according to



these velocities, and the maximum communication range is
10m from the center of the robot. Within our simulations,
each scenario was run with zero, one, and two failures that
can happen to any robot at any time, causing the affected
robot to track its second or third empathy particle.

Fig. 7 showcases an example of the simulation scenarios
run in this section. As shown, there are two tasks in the
environment, but all robots begin not knowing how many
tasks or the location. Fig. 7(a) shows that after disconnection,
one task requiring a ground and aerial vehicle is discovered
by UAV 2 who communicates the task to UGV 2 and both
complete the task in Fig. 6(b). In Fig. 6(c), UAV 2 finds a
task requiring two ground vehicles. UAV 2 allocates UGV 1
and UGV 3 to the task initially, but after updating the states
and replanning upon connection with UGV 1 in Fig. 7(d),
UAV 2 gossips to UGV 2. Both UGV 1 and UGV 2 route to
the task and complete it in Fig. 6(e) before connecting with
all robots in the system at the common meeting location and
partitioning the remaining frontier. In Fig. 7(e), no frontier
points remain and all robots route to base.

(a) (b) (c)

(d) (e) (f)

Fig. 7. Example simulation with one known task at an unknown location.

The proposed approach is compared with two other meth-
ods. The first method, referred to as the “flock method,”
applies a constant connectivity constraint, restricting all
robots to travel within a 10m communication range of each
other. The second “ideal method” assumes that robots can
communicate across the entire environment. Both methods
use the smooth A∗ and APF method to control the robots
towards uncovered regions and away from obstacles. In all
methods, the vehicles’ simulated LiDAR range is 5m and the
genetic algorithm is used for task allocation.

As shown in Fig. 8 and in Table I, the proposed method
outperforms the flock method in all scenarios. Additionally,
the average coverage time for the proposed method is similar
to the ideal method, even with the communication limitation
for the simulated failure scenarios.

TABLE I
Average mission times by simulated failure scenarios.

Number of Faults
Method 0 1 2
Ideal 27.968s 30.432s 32.884s
Proposed 40.158s 48.63s 53.097s
Flock 113.4s 156.79s 179.31s

Fig. 8. Comparison of the simulated scenarios.

VII. Experiments

The proposed approach was also validated through labora-
tory experiments with a multi-robot team. The team consists
of one to two Husarion ROSbot 2.0 UGVs and one Bitcraze
Crazyflie 2.1 using a Vicon motion capture system.

The experiments effectively demonstrate all parts of the
proposed approach, including intentional disconnections,
coverage, gossiping, and task completion behaviors. In all
experiments, the vehicles start within the communication
range and are tasked to cover the environment and complete
any discovered tasks.

Experiments were performed in a 4m×5.5m space con-
taining convex obstacles and using, as a proof of concept, a
sensing and communication range for each robot of 0.5m. In
Fig. 9, we show the results of a sample experiment where
there are three tasks in the environment, but the total number
of tasks and their locations are unknown. Two tasks require
one ground vehicle, and one task requires an aerial and a
ground vehicle simultaneously.

As shown in the figure, each robot is assigned a partition
of the frontier in Fig. 9(a) that encourages the robots to
disconnect. Once disconnected, UAV 1 finds a ground and
aerial vehicle task and a ground vehicle task. UAV 1 plans
to communicate these tasks with UGV 2’s common belief
or first particle, but UGV 2 has experienced a fault and
is now tracking the third particle. Fig. 9(c) shows UAV 1
reasoning about the location of UGV 2 by iterating through
its beliefs before finding UGV 2 at the third particle and
communicating the tasks. In Fig. 9(d), UGV 2 and UAV 1
complete the simultaneous task and UGV 2 plans to go to
the ground vehicle task while UAV 1 plans to return to its
common belief particle. In Fig. 9(e), all vehicles’ common
belief particles converge to a common meeting place from (7)
and plan to cover the remaining environment and completing
the last task before returning to their initial position in
Fig. 9(f).

VIII. Conclusion & FutureWork

In this work, we have presented a novel framework for
heterogeneous multi-robot systems to leverage epistemic
planning in its complex task allocation procedure while
disconnected. The proposed method allows a heterogeneous
MRS to disconnect and cooperatively plan according to a set
of belief and empathy states. The generalized task allocation
algorithm utilizes these belief states in allocating tasks while
accounting for the potential need to gossip assignments to
disconnected robots, which enables dynamic task allocation



(a) (b) (c) (d) (e) (f)

Fig. 9. Snapshots and results of an experimental case study.

to be performed without the need for constant communica-
tion. We showcase the performance of our method compared
to ideal communication and the flock method and apply our
framework to real-world experiments.

From this, future theoretical work includes addressing
the challenges of improving strategies for additional con-
siderations such as complex obstacles in fully unknown
environments. Furthermore, we would like to decrease the
computation time for task allocation and optimize the nec-
essary belief propagation for a larger multi-robot system by
dividing the team into sub-teams. Outdoor experiments with
our proposed implementation are also on the agenda.
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