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An Interacting Multiple Model Approach based on Maximum

Correntropy Student’s T Filter

Fethi Candan1, Aykut Beke2 and Lyudmila Mihaylova1

Abstract— This paper presents a novel approach called the
Interacting Multiple Model (IMM)-based Maximum Corren-
tropy Student’s T Filter (MCStF), which addresses the chal-
lenges posed by non-Gaussian measurement noises. The MCStF
demonstrates superior performance compared to the IMM
algorithm based on Kalman Filters (KFs) in both simulation
environments and real-time systems. The Crazyflie 2.0 nano
Unmanned Air Vehicle (UAV) model is used in the simu-
lation validation, and results from 3000 independent Monte
Carlo runs are shown. After getting the simulation results
under monotonously changed non-Gaussian distribution, their
performance results have been compared to each other. The
same scenario has been applied in the real-time system using
Crazyflie 2.0. Next, results from real-time tests are presented
in which the position of Crazyflie 2.0 is estimated online.

I. INTRODUCTION

In recent years, Unmanned Air Vehicle (UAV) systems

have received significant attention in many areas, such as

agricultural feeding/spraying, cyber-physical, and civilian

applications [3], [12], [32]. Although the number of UAV

applications is increasing, many aspects of UAVs are still

under development. One of these aspects is positioning the

UAV or tracking the desired trajectory under high uncer-

tainty. Considering the trajectory tracking part, linear and

nonlinear controllers have been applied to UAVs [7], [11],

[16], [33], [34]. However, observing or detecting the UAV’s

position is another challenging problem in a real-time system

because of the uncertain nature of its components, such as

sensor quality and communication latency [22], [23].

In this paper, we focus on the localisation problem of a

nano UAV under environments with measurement uncertain-

ties. Therefore, a novel position estimation method for the

UAV is proposed and investigated. In previous works, differ-

ent methods are developed, such as conventional, extended,

cubature, or unscented Kalman filters (KFs) [26], [35] to

estimate the position of a single UAV or of multiple UAVs.

The KF and other KF variants have been widely used in

autonomous systems, especially in UAVs, unmanned ground

vehicles (UGVs), surveillance and communications [4], [10],

[24], [27].

*This work was supported by the Ministry of National Education of
Turkish Government.

1Fethi Candan is with Automatic Control and Systems Engineer-
ing, University of Sheffield, Sheffield, S1 3JD, United Kingdom
fcandan1@sheffield.ac.uk

2Aykut Beke Researcher is with Department of Control Systems Design,
ASELSAN, Ankara, 06750, Turkiye abeke@aselsan.com.tr

1Lyudmila Mihaylova is with Automatic Control and Systems En-
gineering, University of Sheffield, Sheffield, S1 3JD, United Kingdom
l.s.mihaylova@sheffield.ac.uk

The performance of these filters depends especially on

the model parameters and noise variance or covariance

values. However, knowing the exact parameter values in

most real-time system applications is difficult, which could

affect the estimation accuracy. These unknown parameters or

uncertainties can be characterised by the noise distributions

of the sensor data. These noises are usually represented by

the Gaussian distribution. Then, the prediction and estimation

are achieved by Kalman filters [8], [9]. However, these

distributions are not always Gaussian. As a result of this, the

predictions and the estimations cannot give high accuracy of

the system state estimation under non-Gaussian.

This paper is organised as follows: Section II presents

an overview of related works, Section III describes the

novel filtering method, a Maximum correntropy Student’s T

filter (MCStF), and the Interacting Multiple Model (IMM)

approach with MCStFs. Section IV presents performance

validation of the IMM-MCStF over simulated data and over

real data. A comparison of the proposed IMM-MCStF with

an MCKF and a standard KF is presented. Finally, Section V

summarises the main results and ideas for future work.

II. RELATED WORKS

In this section, the most commonly used filters under non-

Gaussian distributions [9], [14], [18] are reviewed.

Before the explanation of this research, the widely used

Student’s T, which is a non-Gaussian distribution, and its

various degrees of freedom (DoF) (υ) are illustrated in Fig. 1.

Fig. 1. Illustrations of distribution functions used in this paper (Gaussian
and Student’s T).

The maximum correntropy Kalman Filter (MCKF) [9]

has advantages in dealing with non-Gaussian noises and

improves the precision in the tracking and positioning. It



adopts the maximum correntropy criteria (MCC) and shows

robustness to environmental changes [13]. In [9], unlike the

KF, MCKF is able to perform successfully under the non-

Gaussian distribution with a defined error threshold and a

small kernel bandwidth. Another research [18] has proposed

Multi-Kernel maximum correntropy Kalman filter (MKM-

CKF). Multivariate non-Gaussian noises and disturbances

have been coped with using MKMCKF. In [8] and [17], a

Huber-based Kalman filter (HKF) is introduced as a solution

to filtering problems in linear systems with the heavy-tailed

process and measurement disturbances. This is achieved by

minimising a combined L1 and L2 norm, where a Huber

function is utilised to constrain the residuals. The HKF can

be considered a generalised maximum likelihood estimator.

However, it should be noted that the HKF’s influence func-

tion does not redescend, which limits its impact on estimation

accuracy [17]. To handle heavy-tailed non-Gaussian noise

caused by significant outliers, several maximum correntropy

criterion-based Kalman filters (MCCKFs) have been devel-

oped. These filters aim to maximize the correntropy of the

expected error and residual and can be viewed as maximum

posterior estimators. However, the lack of a theoretical foun-

dation for the estimation error covariance matrix weakens the

estimation accuracy [14]. Recent studies have addressed the

issue of filtering heavy-tailed measurement noise. While [2]

and [25] propose variational approximations, [28] suggests

a regularisation-based optimisation strategy. However, these

approaches presume well-behaved process noise, which is

often not the case in practical scenarios such as tracking

moving targets. Consequently, these localization strategies

encounter challenges in many situations. In [30], improve-

ments for the robustness of Student’s T filters under varying

degrees of heavy-tailed noise are proposed. The authors

suggest a versatile and robust Student’s T multi-model

strategy, assuming that the unknown degrees of freedom

(DoF) parameter follows an interacting Markov process. The

multiple Student’s T models include the maximum versoria

criteria, an efficient optimisation criterion recently employed

in the kernel adaptive filtering domain.

Compared with the related works, we proposed a novel

approach, the maximum correntropy Student’s T filter (MC-

StF). It has been applied over a simulated environmental

setup and on a real-time system under the assumptions for

non-Gaussian distributions. Simultaneous consideration of

non-Gaussian processes and measurement noises is neces-

sary for most real-time systems. We proposed Maximum

correntropy and Student’s T maximum versoria criteria. After

that, the designed filter is implemented in interacting with

multiple models (IMM). It is because the performance of the

traditional single model KF, MCKF or MCStF deteriorates

when the motion status is not single [13], [21], [31].

A. Contributions

This paper proposes a novel IMM-MCStF approach with

Student’s T distributed measurement noises. Unlike the

Gaussian distribution, the Student’s T distribution parameters

must be calculated with an approximate method. The pro-

posed IMM-MCStF approach is based on the Mercer Kernel,

and this kernel allows it to MCStF perform accurately in both

under Gaussian and non-Gaussian distributions. Moreover,

classical KF under Student’s T distribution does not have bet-

ter results than the KF under Gaussian distribution. However,

not only MCStF shows similar results to KF under Gaussian

distribution, but it also gives it the ability to perform better

than the KF under non-Gaussian distributions.

III. MAXIMUM CORRENTROPY STUDENT’S T FILTER

The proposed MCStF has the assumption of non-Gaussian

distributed measurement noises. In this section, the maxi-

mum correntropy criterion (MCC) and Student’s T filter to

derive the MCStF formulation have been explained deeply.

Unlike under Gaussian noises, the traditional Kalman filter

may perform dramatically worse when faced with non-

Gaussian noises, and impulsive noises stimulate the particu-

lar underlying system.

Considering a linear model [9], [18]

[
x̂(k|k − 1)

y(k)

]
=

[
I

H(k)

]
x(k) + υ(k), (1)

where x(k) ∈ Rn denotes an n-dimensional system state

vector at discrete time k, y(k) ∈ Rm is an m-dimensional

measurement vector, I is the n× n identity matrix, H(k) is

the measurement matrix and (x̂(k|k − 1)) is the predicted

state estimate at time k. Following the notations of [9], an

aggregated noise vector υ

υ(k) =

[
−(x(k)− x̂(k|k − 1))

r(k)

]
(2)

comprises both the state error and measurement noise r(k).
The state error covariance matrix (P(k|k−1)) and measure-

ment noise covariance matrix (R(k)) can be written as

E[υ(k)υT (k)] =

[
P(k|k − 1) 0

0 R(k)

]
, (3)

where E[.] denotes the mathematical expectation operator.

Equation (3) can be represented in the form

[
Bp(k|k − 1)BT

p (k|k − 1) 0
0 Br(k)B

T
r (k)

]
= B(k)BT (k),

(4)

where B(k) is obtained by using the Cholesky factorisation

of the expression on the left. When multiplying both sides

of (1) by B−1(k), we obtain

D(k) = W(k)x(k) + e(k), (5)

in the above equation, D(k) and W(k) can be written as

D(k) = B−1(k)

[
x̂(k|k − 1)

y(k)

]
,

W(k) = B−1(k)

[
I

H(k)

]
.

(6)

In (5), the residual error e(k) is defined as e(k) =
B−1(k)υ(k). Moreover, it can be written as E[e(k)eT (k)] =



I in the case of (5), where I. is theunit matrix Therefore, the

residual error e(k) must be white-coloured.

Considering the MCC iterations, it can be written that the

ith element of e(k) is: ei(k) = di(k)−w(k)x(k). The MCC

cost function JL is in the form:

JL(x̂
∗(k|k)) =

1

L

L∑

i=1

Gσ(di(k)−wi(k)x̂(k|k − 1)), (7)

with L = m + n being the dimension of B(k) and wi(k)
is the row of W(k). The optimal state estimate x̂(k|k) is

calculated from:

x̂(k|k) = argmax
x(k|k)

JL(x
∗(k|k)) = argmax

x(k|k)

L∑

i=1

Gσ(ei(k))

(8)

also, Gσ denotes the kernel function which is the Gaussian

kernel [9]. Unlike the MCKF, Mx and My need be calcu-

lated, as in (9) and applied in Student’s T filter to satisfy this

condition

Mx(k) = diag(Gσ(e1(k)), · · · ,Gσ(en(k))),
My(k) = diag(Gσ(en+1(k)), · · · ,Gσ(en+m(k)))

(9)

and these calculated diagonal matrices have been used to

find the error covariance P(k|k− 1) and error measurement

covariance R(k) matrices, in Equations (10) and (11)

P(k|k − 1) = Bp(k|k − 1)
(
M̃

(t−1)
x (k)

)−1

BT
p (k|k − 1),

(10)

R(k) = Br(k)
(
M̃

(t−1)
y (k)

)−1

BT
r (k), (11)

and

x̂∗(k|k) = x̂(k|k − 1) +P(k|k − 1)H(k)T(S(k))−1

(z(k)−H(k)x̂(k|k − 1)),
(12)

S(k) = H(k)P(k|k − 1)H(k)T +R(k). (13)

Considering the MCC-based cost function, iteration σ
and small positive threshold ε values have been defined. In

ref. [6], [9], the effects of σ and ε have been investigated

and compared with different values and

∥x̂∗,(t)(k|k)−x̂
∗,(t−1)(k|k)∥

∥x̂∗,(t−1)(k|k)∥
≤ ε. (14)

Equation (14) gives the cost function, which depends on

the current state estimate x̂∗,(t)(k|k) and the previous state

estimate x̂∗,(t−1)(k|k). The t index denotes the number of

iterations, and ||.|| denotes the Euclidean norm. Then, the

estimated state value can be obtained as x̂k|k = x̂∗
k|k if the

calculated value is (≤ ε) in (14). The covariance matrix can

be calculated from

P∗(k|k) = υ(k−1)+∆2(k)
υ(k−1)+d

(P(k|k − 1)−P(k|k − 1)

HT(k)(S(k))−1H(k)P(k|k − 1)).
(15)

where
∆2(k) = (z(k)−H(k)x̂(k|k − 1))T,
(S(k))−1(z(k)−H(k)x̂(k|k − 1)).

(16)

In (15), the updated error covariance matrix has been

calculated after the necessary condition is done. In this work,

a flexible Student’s T distribution has been used under heavy-

tailed noise. A method including noises with heavy-tailed

distributions is proposed in [28], [30], in particular with a

Student’s T filter and the covariance matrix is represented as:

P(k|k) = υ∗(k)
υ∗(k)−2

υ(k)−2
υ(k) P∗(k|k). (17)

In (17), the updated error covariance matrix of the flexible

Student’s T filter has been defined. In the equation, υ is the

degree of freedom, and d is the dimension of the state vector.

In addition, it is obtained as υ∗(k) = υ(k− 1)+ d. After all

the mathematical background, the MCStF’s implementation

pseudocode of the MCStF is shown in Algorithm (1).

Algorithm 1 The implementation pseudocode for one time-

step of the MCStF

Inputs: x̂(k − 1|k − 1), P(k − 1|k − 1), Q(k − 1), R(k),
υ, ε, σ
Time update:

1) x̂(k|k − 1) = F(k)x̂(k − 1|k − 1).
2) P(k|k− 1) = F(k)P(k− 1|k− 1)FT(k) +Q(k− 1).

Measurement update:

1) Bp = Chol(P(k|k − 1)), Br = Chol(R(k)),
x̂(t=t0)(k) = x̂(k|k − 1).

2) Mx(k) = diag(Gσ(e1(k)), · · · ,Gσ(en(k))),
My(k) = diag(Gσ(en+1(k)), · · · ,Gσ(en+m(k))).

3) P(k|k−1) = Bp(k|k−1)(M̃
(t−1)
x (k))−1BT

p (k|k−1),

R(k) = Br(k)(M̃
(t−1)
y (k))−1BT

r (k).
4) S(k) = H(k)P(k|k − 1)H(k)T +R(k),

x̂∗,(t)(k|k) = x̂(t)(k|k − 1) +P(k|k − 1)H(k)T

(S(k))−1(z(k)−H(k)x̂(k|k − 1)).

5)
∥x̂∗,(t)(k|k)−x̂

∗,(t−1)(k|k)∥
∥x̂∗,(t−1)(k|k)∥

≤ ε,

where x̂(k|k) = x̂∗,(t)(k|k) is performed and go to

Step 6 if the termination condition is satisfied; else,

Step 2 is returned, and the iteration is continued after

setting t = t+ 1.

6) ∆2(k) = (z(k)−H(k)x̂(k|k − 1))T(S(k))−1

z(k)−H(k)x̂(k|k − 1).

7) P∗(k|k) = υ(k−1)+∆2(k)
υ(k−1)+d

(P(k|k − 1)−P(k|k − 1)

HT(k)(S(k))−1H(k)P(k|k − 1)).

8) P(k|k) = υ∗(k)
υ∗(k)−2

υ(k)−2
υ(k) P∗(k|k).

Outputs: x̂(k|k), P(k|k).

The presumed state-space model that accurately repre-

sents the real system significantly impacts how well state

estimation techniques. However, model uncertainties appear

when the system is complicated and challenging to model

precisely [29]. If measurement noise statistics are unknown,

uncertainties may also exist from the method and their

statistics [14]. The rapid shift in the system dynamics brought



by, for example, target movement is another typical source of

model uncertainty [19]. The presence of model uncertainty

may severely hamper the state estimation performance.

In contrast, several candidate models are used in multiple-

model techniques to address model uncertainty [20]. IMM

produces the state estimate, combining the filtering results.

In this work, IMM has been combined with multiple MCStFs

by using different models. These models will be explained

in the next section.

Fig. 2. Architecture of IMM-MCStF.

The architecture diagram of the IMM-MCStF is shown in

Fig. 2. The IMM-MCStF structure consists of three MCStFs

that operate with three different motion models: the nearly

constant velocity and coordinated turn models [19], [31],

which are explained in the next section. Each motion model

has been specified for each MCStF. The benefits of the IMM

have been widely discussed in the literature [19], [30].

IV. PERFORMANCE EVALUATION AND VALIDATIONS

This section explains how to perform numerical simulation

and real-time experiments of IMM-based KF, MCKF and

MCStF methods. All experiments are started on the simula-

tion environment, and non-Gaussian noises are implemented

on the system model. Then, the state estimation results

are evaluated and compared using Root Mean Square Error

(RMSE) as a performance measure. Afterwards, we present

the real-time experimental results to show the performance

of the proposed IMM-MCStF against the conventional IMM-

KF and IMM-MCKF. Note that the height was set and fixed

as 40 cm in all the conducted experimental studies.

A. Numerical Simulation

The simulations have been performed on Crazyflie 2.0

UAV model. The detailed model has been explained in

many research [1], [6], [7]. For the controller, interval type-

2 fuzzy PID has been chosen, and the linear velocities

(υx and υx) of the UAV have been chosen as reference

signals. Moreover, the altitude level has been set at 40
cm. The model contains Crazyflie 2.0’s positions in the 2-

D plane and is used as the reference benchmark data set

to test the performances of the implemented filters; IMM-

KF, IMM-MCKF, and IMM-MCStF. During the simulation,

it is assumed that the measurements are corrupted with a

Student’s T distribution noise which can be defined as one

of the non-Gaussian distribution types. Thus, the reference

benchmark data set has been corrupted with a noise that

has a Student’s T distribution. In other words, the employed

IMM methods are tested in an environment with noise with

Non-Gaussian distribution.

In [30], the effects of DoF have been explained and shown

in Fig. 1. In this study, the distribution has been chosen

between [3 − 25], which means the noise is variable on

intermediate and extreme levels heavy-tailed.

A constant velocity model and coordinated turn mod-

els with state transition matrices respectively (FCVM ) and

(FCTM ) represent the different types of UAV motion. Two

coordinated turn models have been implemented, represent-

ing two different directions (left turn and right turn motions).

To determine the non-Gaussian process model, (FCTM ).

var(x) = αV has been merged with the defined covariance

matrices.

The system state transition matrices of the constant ve-

locity model and of the coordinated turn models have the

form:

FCVM =




1 ∆T 0 0
0 1 0 0
0 0 1 ∆T
0 0 0 1


 , (18)

FCTM =




1 sin(ωi∆T) 0 −(1− cos(ωi∆T)/ωi

0 cos(ωi∆T) 0 −sin(ωi∆T)
0 (1− cos(ωi∆T))/ωi 1 sin(ωi∆T)/ωi

0 sin(ωi∆T) 0 cos(ωi∆T)


,

(19)

and the respective system noise covariance matrix of the

coordinated turn model is:

Q = α




∆T4

4
∆T3

2 0 0
∆T3

2 ∆T2 0 0

0 0 ∆T4

4
∆T3

2

0 0 ∆T3

2 ∆T2


 , (20)

where the α value on the model side has been constant and

chosen as “5”, but the υ value on the measurement side has

been changeable between 3 and 25, and step size has been

2 for each Monte-Carlo step. Moreover, 3000 Monte-Carlo

independent repetitions have been used for the experiment.

After the 3000 times repetition, all processing time has been

measured for each IMM structure. IMM-KF, IMM-MCKF

and IMM-MCStF have given 766 sec, 4724 sec and 5121
sec, respectively. Although IMM-KF has been faster than

the others, their RMSE results have shown real differences

between them. In addition, the process time differences

problem can be eliminated in a real-time system.

In Fig. 3, noised reference, which means reference

with Non-Gaussian distribution, IMM-KF, IMM-MCKF and

IMM-MCStF, has been coloured as black, green, blue, and

red, respectively. The reference square reference has tracked

the UAV in this figure. It shows that IMM-KF faces out of

reference lines. It is expected due to discrepancies in the



Fig. 3. Reference trajectory tracking for each IMM structure.

covariance matrices. Considering the IMM-KF and IMM-

MCKF, process covariance matrices depend on Gaussian

distribution. On the other hand, IMM-MCStF has worked

under non-Gaussian noises.

The changes in the x and y coordinates (shown as a

trajectory in Fig. 3) are presented separately in Fig. 4 and

Fig. 5. Unlike the compared IMM algorithms, IMM-MCStF

has the best result considering the 3000 times Monte-Carlo

running and reference trajectory.

Fig. 4. Results of compared IMM methods on the x-axis.

From the trajectory given in Fig. 4, it is evident that the

IMM-KF algorithm shows an overshoot of the estimated

trajectory in some parts, while the IMM-MCKF shows

steadily converging state estimation error. These overshoots

and steady-state errors affect the overall performance results.

Like the x-axis results, the same performance results can

be observed on the y-axis; this has been shown in Fig. 5.

Moreover, the results for a specific area demonstrate that the

IMM-MCStF tracks the reference line perfectly compared

with other algorithms.

Both position results and axes velocities have been inves-

tigated and graphed. The system velocity responses can be

seen in Figs. 6 and 7. The reference velocity has aggressive

responses between 100 − 200 and 250 − 350 iterations.

Fig. 5. Results of compared IMM methods on the y-axis.

Fig. 6. Results of compared IMM methods x-axis velocities.

At these points, noise or distribution effects can be seen.

Although IMM-KF has not had a good result, IMM-MCKF

and IMM-MCStF have eliminated the distribution effect

more than IMM-KF.

Fig. 7. Results of compared IMM methods y-axis velocities.

Although 3000 independent Monte Carlo repetition has

been done, the number of samples j = 1− 100 results have

been shown in Figs. 8 and 9. Each sample shows average

RMSE value of the proposed and the compared methods.



With these figures, it can be seen that the errors are repeated

after 100 independent iterations.

Fig. 8. RMSE Results of compared IMM methods on the x-axis.

Fig. 9. RMSE Results of compared IMM methods on the y-axis.

With these 100 RMSE values, MCKF and MCStF have

almost the same error values on the x-axis. On the contrary,

these filters have 10 times better results than IMM-KF.

Moreover, in Fig. 9, it can be seen that IMM-MCStF has

6 and 10 times better results on the y-axis than IMM-MCKF

and IMM-KF, respectively. The UAV movement dynamics

directly affect the axes. The UAV has long distances on

the axis, and the heading angle direction is on the y-

axis. Therefore, part of the errors can be eliminated by the

controller of the UAV. That is why the UAVs have almost

the same RMSE values on the x-axis.

TABLE I

RMSE VALUES OF TESTED IMM METHODS.

RMSE Values IMM-KF IMM-MCKF IMM-MCStF

x-axis results (m) 0.2413 0.0221 0.0230
υx-results (m/s) 0.6321 0.4566 0.4408

y-axis results (m) 0.4108 0.1841 0.0388
υy-results (m/s) 0.5687 0.4245 0.3834

Instead of 100 independent iterations, 3000 independent

Monte-Carlo RMSE results have been shown in Table I.

Unlike RMSE figures, RMSE values on velocities have been

shown in the table. The results show that the proposed

method has significantly good results when compared to

methods except for the results on the y-axis. On the x-axis,

the proposed and the compared methods have almost the

same response. It has shown the same performance values

on both axes in the figures and table of RMSE.

B. Real-time Application Results

In this subsection, the real-time experimental results of

the implemented IMM filters are demonstrated on Crazyflie

2.0 commercial mini UAV [5] as seen in Fig. 10. In the

simulation studies, the performances are compared through

an offline analysis with collected position data. On the other

hand, real-time experiments are conducted online in the real-

time. In this context, We have constructed an experiment

environment as shown in Fig. 11. On top of the experiment

environment, an Intel real-sense camera system [15] is lo-

cated that is used for detecting and tracking the positions

of the Crazyflie 2.0 during the experiments in real-time.

The frames are collected via the camera system and then

processed by a vision-based localisation structure to obtain

the positions in 2-D coordinate (x, y).

Fig. 10. Crazyflie 2.0 coordinate frame.

The experiment area is constrained by a protection net

so that the mini UAV does not fly out, and also we limit

the mini UAV’s flying area. Intel real-sense camera, which

provides accurate position information with low noise, has

been used in the experiments. Therefore, we inject other

noise sources into the real-world experiment area to decrease

camera accuracy, assuming they have non-Gaussian distri-

bution. Testing the performance of IMM-MCStF has been

modelled for Non-Gaussian or Gaussian distribution, such

as changing environment temperature, different initial levels

of the battery, wind sources, and other inaccessible reasons.

In [6], [7], the dynamic model of the Crazyflie 2.0 is given

afterwards; state estimation, attitude, altitude controllers and

position controllers are explained in detail, which are the

same control structures used in this.

Remark 1: Intel real sense has significant accuracy in

getting the position of the desired object. For this reason,

non-Gaussian noise with [3− 25] DoF has been injected as

monotonic increasing and decreasing.

In Fig. 12, Crazyflie 2.0’s reference trajectory and the

resulting performance trajectories of the implemented IMM



Fig. 11. Global Camera Location.

filters under a noisy environment are presented. Here, point

0 represents the initial point of Crazyflie 2.0 just after take-

off, while point 4 represents the final point of Crazyflie 2.0.

One needs to remark that Crazyflie 2.0 started from the same

point on the ground for all experiments conducted with all

implemented IMM filters, and point 0 in Fig. 12 shows the

first positions in hovering just after taking.

Fig. 12. Crazyflie 2.0 reference trajectory results on the real-time
experiments area.

Remark 2: It should be noted that initial values of

covariance, measurement, and process noise matrices have

been set as the same for all the implemented IMM filters,

and they selected as suggested in [6].

The real-time performance of the implemented Interacting

Multiple Models (IMM) filters for the reference trajectories

in the x-y plane is illustrated in Fig. 13 and Fig. 14. These

figures depict the mean values of the resulting trajecto-

ries from 10 independent experiments for each IMM filter,

considering the stochastic nature of the environment. The

performance measures obtained from these experiments are

presented in Table II.

Fig. 13 and Fig. 14 clearly indicate that the IMM-MCStF

outperforms its counterparts in both axes. The response of the

IMM filters in Fig. 13 shows similar performance, with the

IMM-MCStF achieving even better results compared to the

Fig. 13. Crazyflie 2.0 reference trajectory results on the x-axis.

Fig. 14. Crazyflie 2.0 reference trajectory results on the y-axis.

IMM-MCKF. However, Fig. 14 reveals distinct behaviour,

with the IMM-MCKF exhibiting oscillations around the ref-

erence trajectory within the interval of 0 to 15 seconds, while

the IMM-MCStF demonstrates an almost perfect response

on the y-axis. For instance, at the 9th second, the IMM-

MCKF shows a deviation of 9 cm from the reference,

whereas the IMM-MCStF maintains a near-perfect response.

Additionally, the coupling effect is observed in Fig. 14 at the

24th second when a reference change occurs on the x-axis.

It can be concluded that the IMM-MCStF exhibits a more

robust performance in handling this effect.

TABLE II

REAL-TIME RMSE VALUES OF TESTED IMM METHODS

RMSE Values IMM-KF IMM-MCKF IMM-MCStF

x-axis results (m) 0.1368 0.1306 0.1222

y-axis results (m) 0.0929 0.0560 0.0342

From Table II, it can be firstly commented that the

IMM-MCStF outperformed the IMM-KF and IMM-MCKF

significantly as it improved the RMSE value by an amount

of 40% for the y-axis when compared to its IMM-MCKF

counterpart. On the other hand, the RMSE value is by an

amount of 10% for the x-axis compared to its IMM-KF



counterpart.

V. CONCLUSION AND FUTURE WORKS

A novel estimation method called Interacting Multiple

Model Maximum Correntropy Student’s T Filter (MCStF),

has been proposed in this study. The proposed method has

been compared with the IMM-based Kalman filter (KF)

and maximum correntropy Kalman filter (MCKF). For the

comparison, non-Gaussian-based distributions have been ap-

plied to the reference trajectory. Moreover, the selected non-

Gaussian distribution, Student’s t based, had variable degrees

of freedom. It changed between 3 and 25. Therefore, the

noises are between extreme and intermediate level heavy-

tailed. In addition, the simulation and real-time experiment

environments have been applied to analyse the MCStF re-

sponse. Both environments gave the same error results. That

means simulation and real-time results proved each other.

Future work will focus on implementing the MCStF

on a swarm of UAVs whose system covariance matrices

are unknown. Also, MCStF will be combined with local

path planning methods, such as the velocity obstacle and

reciprocal velocity methods. After these implementations, the

MCStF will be investigated for collision avoidance.
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