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Robots as AI Double Agents: Privacy in Motion Planning
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Abstract— Robotics and automation are poised to change the
landscape of home and work in the near future. Robots are
adept at deliberately moving, sensing, and interacting with their
environments. The pervasive use of robotics promises societal
and economic payoffs due to its capabilities—conversely, the
capabilities of robots to move within and sense the world around
them is susceptible to abuse. Robots, unlike typical sensors, are
inherently autonomous, active, and deliberate. Such automated
agents can become Al double agents liable to violate the privacy
of coworkers, privileged spaces, and other stakeholders. In this
work we highlight the understudied and inevitable threats to
privacy that can be posed by the autonomous, deliberate motions
and sensing of robots. We frame the problem within broader
sociotechnological questions alongside a comprehensive review.
The privacy-aware motion planning problem is formulated in
terms of cost functions that can be modified to induce privacy-
aware behavior: preserving, agnostic, or violating. Simulated
case studies in manipulation and navigation, with altered cost
functions, are used to demonstrate how privacy-violating threats
can be easily injected, sometimes with only small changes
in performance (solution path lengths). Such functionality is
already widely available. This preliminary work is meant to
lay the foundations for near-future, holistic, interdisciplinary
investigations that can address questions surrounding privacy in
intelligent robotic behaviors determined by planning algorithms.

I. INTRODUCTION

Recent advances have introduced robots—particularly
robots with manipulation capabilities—into applications such
as home assistance [1], healthcare [2], service [3], and
industry [4]. These settings require the robot to (i) adapt
to sensed information (e.g., camera images) which is proba-
bilistic and uncertain and (ii) share space and interact with
humans, introducing ethical concerns. We contend that the
powerful capabilities of these systems urgently burden us with
novel ethical concerns relating to unprecedented use of these
systems which, if not addressed now, will lead to dystopian
uses of robotics by naive or malicious actors. Robots are
inherently tools of surveillance, have unprecedented access to
spaces [5], are trusted in ways cameras and other technology
is not [6], and have sensing capabilities that are poorly
understood [7]—a robot that avoids you is also tracking you.
Modern uses of robots combine consumer hardware with
intricate frameworks of open-source libraries, middleware [8],
learned models, and probabilistic algorithms—all of which
exacerbate the opacity of a robotic system. Potential abuses
are understudied, under-litigated [9] and traditional mitigation
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Fig. 1. Deployments of robots with sensors can expose threats to privacy
from the ability of robots to autonomously use motion planning for choosing
how its sensors gather data. In the figure, a sensor attached to a manipulator
can gather data about coworkers during typical operation.
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strategies are hard or impossible to apply, motivating an urgent
need for understanding such threats.

Privacy violations by robots can take many forms, such
as data over-collection beyond what is strictly necessary for
operation that can be used for later inference (as is often ob-
served in web technologies [10], [11]). Compromised robotic
systems with poor security can leak information to unknown
third parties [12], [13]. Exfiltration of sensor data or post-hoc
analysis of camera data can violate privacy by monitoring
coworkers or users, extracting privileged information from
the workplace and the home (e.g., [14]). It behooves us to
be wary of the uneasy parallels between the proliferation
of robots for generating economic value and surveillance
capitalism [15].

Focus in the literature has primarily addressed privacy
concerns raised by robots and smart devices from a computer
vision perspective [16]-[19]. There is little work from a
privacy standpoint on what makes robots unique—their ability
to move and interact with the physical world. In this work
we focus on a fundamental element of robotic autonomy—



motion planning—and its relation to privacy. Robot operators
can use custom costs, constraints, and objectives that may
place humans co-working with robots in situations that may
violate their privacy. Abuses to privacy gives rise to what we
call robots as Al double agents. To the best of the authors’
knowledge, a comprehensive study of privacy implications
of generalized motion planning is sorely under-explored.
The key contributions of this work are to present (a) a
detailed motivating review of interdisciplinary literature that
explains considerations of privacy at the confluence of society,
technology, and engineering drawing out the connection to
the robotic motion planning problem; (b) a formalization of
the privacy in the motion planning problem that identifies
privacy-violating functional definitions of feasibility and costs
as potential vulnerabilities; (c) a set of motivating case studies
based on typical manipulation and navigation scenarios using
simple simulations and a straightforward weighted cost func-
tion to demonstrate that (i) simple cost function alterations
can cause severe privacy-violating behavior, and (ii) privacy-
violating behavior can be accompanied by only minor changes
in traditional performance metrics (path length). The technical
choices in the simulated study are simple modifications to the
motion planning problem, using readily available open-source
functionality, that serve to provide an illustrative testbed. The
takeaways from this work points out the clear and present
dangers to privacy posed in robotic motion planning.

II. THE BIGGER PICTURE OF PRIVACY AND ROBOTICS

We first take a step back and look at where robotics lies
within the broader context of engineering and cyber-physical
systems. Many of the privacy considerations attributed to
traditional uses and abuses of technology are aggravated by
the power of robotic systems to not only be passive sensors,
but also be autonomous in the physical space.

Privacy: We must concretely define what we mean by
privacy [20]. A precise definition is closely tied to societal
and legal interpretations in different parts of the world. We
choose to refer to GDPR, a push towards common law
privacy safeguards [21]. A closely related definition [22]
promises safeguards that “protects the individual against
abuses which may accompany the collection and processing
of personal data and which seeks to regulate at the same
time the transfrontier flow of personal data.”

Note that we are separating security concerns from those
of privacy (e.g., see [13], [23]-[26] for ROS and security).
However, privacy violating systems are more readily exploited
when security has been compromised.

Engineering Ethics: In the context of robotics, a significant
portion of the system design falls on automation deployers,
consultants, and engineers. This draws a close connection
between the questions of ethical automation and engineering
ethics [27]. Ethics has been studied as an important aspect
of engineering problems where solutions have to trade off
ethical considerations and risks versus profit, efficiency, and
output. The choices made by engineers can have critical
societal impacts and unethical choices can have significant
fallout. Engineering ethics is also deeply connected to

morality and responsibility [28]. Intelligent automation lies
under the shadow of this complicated relationship between
technology, ethics, and society. Beyond sharing many common
problems [29], the powerful capabilities of robotics presents
unique challenges and threats.

Cyber-physical Systems: While analysis on privacy has
been done in traditional cyber-physical systems [30], [31],
the internet of things [32], and so on, intelligent robot systems
have received little analysis. There also has been little
understanding and observation from policy makers to the
threat that robotics bring to privacy, particularly as these
systems become more ubiquitous [9], [33]. There is an
uncomfortable relationship between smart home devices and
considerations of privacy and legalese [34], [35], including
innocuous products like smart toys [36].

Robots as Sensors: From the perspective of a robot as
a passive sensor platform, there has been much work in
preserving privacy [37], through methods such as obfuscating
sensor input [16], using degraded images (e.g., anonymizing
faces [17], reducing quality of the camera feed to a teleopera-
tor [18]), and redacting relevant parts of the scene [19]. There
has also been use of “privacy markers” that indicate regions
that should be removed or redacted from sensors [38], [39],
automatically detecting these regions [40], and also extended
to a case with mobile robots [41]. However, all these methods
merely operate on the camera feed passively, and do not
actively direct what information the sensor should gather.
Even with minimal data, powerful inference can identify
individuals (e.g., with motion [42]). In general, robots must
collect only the data they need [33].

Robots around Humans: Trust is essential for embodied
systems to operate reliably near humans [43]. Moreover,
people are more “comfortable” with robots rather than un-
embodied cameras, and more willingly expose themselves to
privacy violations [6], and misunderstand the full capabilities
of robotic systems to gather information [7], [44]. There are
certain qualities that humans expect from robots, and how
that relates to how robots can “fly under the radar” when
doing things. This relates to intention-aware planning [43].

Privacy and Learning: There has been much recent work
on using machine learning-based methods for robot control,
particularly in learning from human demonstrations [45],
[46]. Learning based methods require large amounts of data,
which is at odds with privacy concerns that require minimal
data collection. There has been work in addressing privacy in
deep learning [47], [48], namely in differential privacy [49],
[50], but little from this literature has been applied to robotics
and control [51], particularly in the context of manipulation.

Given the complexity of machine learning-based models,
there is also potential for subterfuge, e.g., adding undetectable
backdoors to modify behavior of a system [52]. Such back-
doors could be used to induce malicious behavior in models
used to nominally preserve privacy without the awareness of
stakeholders.

Privacy in Robotics Research: Privacy is pressing issue
throughout the broader AI community [53]. Robotics in
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Fig. 2. The figure shows the logarithmic growth of submissions to
Arxiv:CS.RO with the keywords human, ethic, and privacy in their abstract
between 2010 and 2022. Privacy and ethical concerns are far outpaced by
applications that interact with humans.

particular is a concern for privacy, given the direct nature of
a robotic system as a tool of surveillance, with sensing an
inherent part of a robot’s ability to understand the world [54].
However, considerations of privacy in the field of robotics
have been far outpaced by the potential usages that might pose
threat. Fig. 2 is an approximation of what is an undeniable
trend—robotics solutions and applications that have the
potential to interface with humans are growing beyond the
understanding of privacy (and ethics) in these contexts. [55]
makes a similar observation.

There is some work in understanding privacy concerns for

social robots [56], [57]—that is, systems primarily designed
for human interaction and entertainment. Systems, such as
household robots, have been shown to have poor security and
privacy properties [12]. We focus instead on general scenarios
where the intended purpose, such as a logistics task, can be
compromised by motion planning.
Privacy and Planning: There has been prior work in incor-
porating deliberate reasoning about sensing within planning.
Generally falling into the category of “active vision” [58],
work exists in autonomous surveillance [59], searching for
objects [60], [61], and chronicling [62], [63]. Some work
has used the capabilities of robotic arms [64] in assistive
applications [65]. There has been work for protecting the
privacy of robots themselves [66]-[68], but these works
typically apply to mobile or aerial applications. Drones
form a common platform of choice for visibility-aware
problems [69] with some work on aspects of privacy [70]—
[75]. These works focus on clearly defined areas to avoid (e.g.,
similar to explicitly marked privacy zones) but only deal with
low-dimensional systems (e.g., mobile robots and drones).
General robots with many joints—Iike manipulators that are
beginning to be more broadly deployed—pose significant
challenges due to the high-dimensionality of their search
space. Addressing the problem for general platforms and
manipulators is necessary to apply to broader scenarios.

III. PRIVACY-AWARE MOTION PLANNING

In this section we take a closer look at the role privacy
plays in a fundamental aspect of robotics—motion planning.
We introduce some of the technical and theoretical tools
necessary to define and understand elements of privacy in
motion planning. We focus on a threat model where a robot
fitted with a sensor collects data while moving. Privacy-aware

motion planning will be defined in terms of data collected on
privacy-sensitive regions. The vulnerabilities framed in this
section can potentially lie exposed to deployers and end-users.
Modifications to parameters, like cost functions, in motion
planning can lead to altered behavior by robots acting as Al
double agents.

Definition 1 (AI Double Agent). An Al double agent is
a robot, that by virtue of altered reasoning and planning,
exhibits autonomous behavior which violates the privacy of
any human agent in the robot’s workspace.

A. Privacy-Aware Motion Planning

A robotic agent A with d degrees of freedom, e.g., robotic
arm with d joints, is situated in a workspace W € R? with
obstacle regions o C W. The robot has a d-dimensional
configuration space X C R¢. Each configuration of the robot
can be checked for feasibility, typically defined in terms of
being collision-free with the obstacles. Denote a boolean
feasibility function as v : X — {1,0}. The invalid subset
corresponds to Xops = {z | v(z) = 0,z € X}, while
the valid subset is Xpee = X \ Apps. A motion planning
problem requires connecting a start configuration xg € X' to
a goal region X, with a continuous, collision-free, time-
parameterized trajectory 7 : [0,1] — Ao Where w[0] =
20, T[1] € Xgoqi- Given all possible such feasible trajectories
II > 7, a cost function ¢ : I — R>( assigns a non-negative
real number to a trajectory. The cost is typically considered
to be (or some function proportional to) the Euclidean path
length. An optimal solution corresponds to the minimum cost
m* € argmin ¢ c(m).

In this work we introduce the element of privacy into
the motion planning problem. For notational clarity we will
use subscripts with p to denote privacy-aware variants. A
privacy-sensitive regions is a region of the workspace which
is associated with requirements for privacy preservation is
denoted by o, € W. A set of k such regions is denoted
by Op = {o}, - o’;}. A privacy feasibility function applies
to a configuration and is denoted by v, : X — {1,0}.
Without loss of generality we will consider privacy-violating
evaluations when vy, evaluates to 0. A non-negative privacy-
aware cost is defined along a trajectory cp : II — R>.

The evaluation of both the constraint and cost v, and cp,
will depend upon the privacy regions Op. The exact nature
of this relationship will be affected by the precise setting
under consideration including the kinematics of the robot,
the attachment of the sensor, the sensing model (for instance
visibility cone for a camera, etc). Our general formulation
will leave these as necessary privacy-aware pieces within the
otherwise typical motion planning problem. Note that the
definition of the problem thus far can be applied to many
general combinations of robots, sensors, and privacy regions.

B. Types of Privacy-Awareness

The definitions of v, and cp, can allow interactions with
privacy regions Op with three types of privacy-awareness:
Privacy-Agnostic (v, c) classical motion planning has un-
modified feasibility and cost functions.



Pr.ivacy-PreserVing (v; , c:,“) choices penalize privacy vio-
lations along robot motions.
Privacy-Violating (v; ,€p) choices promote privacy viola-
tions along robot motions.

Privacy-aware behaviors present a choice of functional
alternatives. This leads us to the step where these are defined,
which is up to the problem designer or deployer.

Definition 2 (Motion Planning Double Agent). The design
of privacy-violating v or cg to replace the privacy-
agnostic feasibility and cost functions, creates a double agent
generating motion plans for the privacy-violating variant of

the problem.

C. Privacy as a Secondary Objective

The privacy-aware cost function cp,, which is either privacy-
preserving or violating behavior, can encode or be a part of
multiple objectives [76] within the motion planning problem.
The threat model of interest, and indeed of greater risk and
harder to detect, is expected to involve robots that perform
their primary automation operation satisfactorily while also
achieving a secondary privacy-aware objective. For instance,
consider a possible combination of the length of solution path
(a traditional cost in motion planning) and the privacy region
visibility by a camera attached to the robot. The manner
of this combination can lead to different flavors of pareto-
optimal [77] problems, while the continuous nature of the
problem can relate to cost maps [78].

Key to the broader scope is not the prescription of such
a specific cost and feasibility. Rather, in the next section,
we show that it suffices to design minor changes to the
cost function in standard motion planners to make them
privacy-aware. This is particularly interesting because of the
relatively low barrier of access, as it might be possible for
deployers or end-users with enough expertise to modify the
parameters and modules of motion planning.

IV. MOTIVATING SIMULATED CASE STUDY

In this section we demonstrate how—using a candidate
modified cost function—privacy-aware behavior can be in-
jected into normal operation of a motion planner.

A. Candidate Model of Privacy-Aware Cost Function

Consider a PRM* [79] as the motion planner that reports
shortest paths over roadmaps [80] constructed in the robot’s
configuration space. Custom cost functions change the graph
edge weights, altering the discovered solutions executed by
the robot. This basic functionality is readily available through
powerful open-source libraries [81]. While being careful
not to prescribe what a privacy-aware cost function should
be, we provide a straightforward candidate for studying the
effects introduced by weighted modifications to the Euclidean
path length cost function. The trajectory 7, is weighted
multiplicatively or fractionally using a privacy weight (w)
parameter (such that |[w| > 1) depending upon the interaction
with the privacy regions. A negative weight is privacy-
violating. The total cost will be calculated over a discretization
(Am) of the trajectory mp. |W| = 1 is privacy-agnostic.

Privacy-Preserving (w > 1):

Cg(ﬂ'p) = Z

Amemp

w||Ax| if privacy violated 0
L||An|| otherwise

Privacy-Violating (w < —1):

= ||Ar|| if privacy violated
cp(mp)= > v ) )
= |w|||A7|| otherwise
TCTp
Here |- | and || - || denote the absolute value and Euclidean

arc length. In essence, all that is needed is an approximation of
privacy violation (for instance, intersection with a camera cone
with Op,), and functional choices that penalize or promote the
privacy preservation or violation. Due to the generality of the
underlying planning, this should apply to a large variety of
sensor-attached high-dimensional robotic platforms. Though
the cost function weighting represents a simple alteration,
what is not obvious is how the cost function affects the double
agent’s privacy and efficiency?

B. Case Studies

To highlight motivating scenarios, we focus on two case
studies with cameras attached to the robot while it moves. The
camera visibility is approximated by a cone (shown in pink
in Fig. 3 top) defined similar to the specifications of an Intel
Realsense camera (a 42° field of view and 2m range). While
sensing these privacy regions poses its own challenges, here
we choose to focus on the effects of planning by assuming
these as input. Our motivating scenarios will introduce typical
workspace settings where specific areas might be expected
to contain these privacy-regions. Humans are represented as
static mesh obstacles with spherical approximations (40cm
radius) of privacy regions around their heads.
Manipulation: A manipulator with a camera attached to its
wrist is set up in a workspace opposite to human collabo-
rator(s) or customer(s). These types of settings are common
to warehouse automation settings or service industries. The
task itself is typically concentrated in the shared workspace
between the robot and the human, for e.g., a table, a cashier’s
desk, a counter, etc. The robot is free to move the sensor
(wrist) unencumbered, as long as it reaches its planning goal
and avoids obstacles. The camera interacts with the regions
of the workspace expected to contain human occupancy
(spherical approximations shown in Fig. 3 (left, middle) for
one and three individuals respectively).

Navigation: A mobile robot with a camera attached to
a controllable joint is set up to navigate through a planar
workfloor filled with human co-workers or crowds. Such
scenarios will come up in a variety of mapping, navigation,
cleaning, and monitoring tasks where the mobile robot is
operating within the floorplan while avoiding the obstacles
(here humans). Since the head camera is freely controllable
during its motions, the camera interacts with the regions of the
workspaces expected to contain human occupancy (spherical
approximations shown in Fig. 3 (right) for nine individuals).

Experimental Details: The simulation uses a Fetch in

two controllable modes: a) arm+torso: a camera attached to
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(Top) A Fetch robot (with camera visibility cone in pink) controlling either the arm+torso with a hand camera (left, middle) or the base+head with

a head camera (right). (From left to right) 1, 3, and 9 privacy regions (blue spheres) overlaid on humans in the workspace. Violin plots (with mean markers)
for 100 random runs with the privacy violating fraction (middle) and path lengths (bottom) for different privacy weights. Mean values are given at the top.

its wrist (8-dim X’) and b) base+head: a controllable head
camera (5-dim X). A PRM* [79] is constructed and reused
across the experiments. Each choice of privacy cost alters the
weights on this roadmap. Given random valid starts and goals,
uniform cost search reports a solution. The metrics reported
for the resultant paths are a) privacy violation fraction,
which is the fraction of the path where the sensing cone
intersects with any of the privacy regions, and b) path length.
w (Egs. (1) and (2)) is chosen from {1,+2,+5, +10}. The
code was implemented with Robowflex [82] and OMPL [81].

C. Effects of Changing Privacy Cost (cp)

Fig. 3 demonstrates the different behaviors obtained by
changing c, by tuning w. All the motions successfully
connect the start and goal but differ in the interactions
between the camera cone and privacy regions (Fig. 3 middle).
Privacy-violating (negative) weights significantly increase
the portion of the motions in which the camera lingers on
the privacy regions. The privacy-violating solutions are also
longer (Fig. 3 bottom) further increasing the data gathered.
Note how an example violating motion (Fig. 4 left) ends up
gathering data on all the regions. In contrast, the privacy-
agnostic paths are shorter but are still liable to capture data on
the privacy regions. The 3-region benchmark shows violations

along a quarter of the motions on average (Fig. 3 middle-
middle). This motivates explicit reasoning about privacy
preservation. Privacy-preserving paths immediately show the
benefits of penalizing intersections between the cone and the
privacy regions, with such violations dropping below 0.25%
in all cases, while still maintaining relatively short paths. Note
the privacy-preserving motion in Fig. 4 (right) completely
avoids the privacy regions. Increasing the absolute magnitude
of w strengthens the preserving or violating behavior.

A trade-off arises in the data between privacy violation
and performance, both of which might be attributed economic
value in the design of automation. Large negatively weighted
privacy violations are associated with large path length
increases. Interestingly, in certain cases (w = —2) high
privacy violations (> 0.58) arise on average with only a small
dip in performance (< 1.4 times the agnostic path length)
in all the case studies. We highlight that double agent might
be deliberately designed to aggravate low-privacy, high-
performance behaviors. Additionally, trade-offs can arise
when such data gathering might be necessary for detecting
humans for safe operation and handling cases of dynamic
or uncertain detections. Multiple sensors and targeted data
gathering among multiple regions also poses risks. Though the
studied cost function is not prescriptive and several alternate
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models exist, the chief takeaways remain unchanged.

Key Causes for Alarm: The observations from our simple
simulated case studies already illustrate serious causes for
concern. (a) With relatively straightforward alterations to
the cost function, drastic privacy-violating behavior was
introduced. (b) Significant privacy-violating behavior might
only introduce relatively small changes to the performance
(privacy-agnostic path length). (c) Functionality to plug
in custom cost function is readily available in open-
source planning libraries. (d) Privacy-preserving behavior
only emerges when deliberately included in the cost
function.

V. DISCUSSION

The work presented here has highlighted the privacy threats
exposed by robotic double agents capable of autonomous
planning and reasoning to move and sense in deliberate
ways. This work contributes a thorough review of the
interdisciplinary connections between privacy and motion
planning, formulates the role of privacy in the motion planning
problem, and showcases imminent privacy-violating threats
using motivating simulated case studies and straightforward
cost function modifications to motion planning. The work
calls for a more consolidated investigation.

Human-Centric Factors: The human aspect is essential
in the problem. The current simulated studies motivate the
need for a deeper understanding of how humans perceive
privacy-aware robotic behavior. The human-centric factors
here are intrinsic to privacy, necessitating the investigations
to be centered around the rights and protections of humans.
There has been related human-robot interaction work that
studies the anthropocentric principles to align robot motion
to human expectations in intention-aware planning [83]-[85],
the consideration of ethical or human-focused value alignment
[86], and planning with legibility or human interpretation
as an objective [87]-[89]. There has also been work on
communication [90], understanding robot motion [91], [92],
and parameterized social interactions [93] in navigation.
Tradeoffs can exist between human-awareness in robots
and privacy. The current study also raises questions about
the context and expectations of privacy from the robot—
an understanding by the human of an ongoing or imminent
privacy violation.

Verification and Mitigation: This work admittedly raises
more questions than answers with respect to the ways
in which the threats posed by robotic planning can be
identified and mitigated. While intentional deployment and
recommended practices of privacy-preserving planning can
achieve some headway, it does not resolve the issue of the
bad actor or even a naive one (who exposes threats that
exist even in privacy-agnostic planning). There needs to be
broader discussions among social scientists, ethicists, and
policy-makers to inform rules, regulations, and deployments.
The understanding of the human factors can also inform com-
munity stakeholders like coworkers or end-users. Privacy is
also connected to vulnerabilities in open-source and general-
purpose software. It is critical that the robotics community
recognizes these imminent threats to step towards a future
that avoids the worst of these threats.

Call to Action: We look into motion planning as one
of the most fundamental capabilities of autonomous robots
that can be abused for privacy violations. We demonstrate
the imminent threats that exist on the near-horizon using
technologies and solutions that exist today. The increased
incidence of robots in our work and home will raise uncom-
fortable questions of how these robots are harvesting data and
protecting privacy. A call to action is needed for the robotics
community to reach out to other stakeholders to build towards
a future with useful robots that are both capable and comply
with fundamental human values, such as privacy.
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