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Abstract— Vision systems mounted on home robots need to
interact with unseen classes in changing environments. Robots
have limited computational resources, labelled data and storage
capability. These requirements pose some unique challenges:
models should adapt without forgetting past knowledge in a
data- and parameter-efficient way. We characterize the problem
as few-shot (FS) online continual learning (OCL), where robotic
agents learn from a non-repeated stream of few-shot data
updating only a few model parameters. Additionally, such mod-
els experience variable conditions at test time, where objects
may appear in different poses (e.g., horizontal or vertical) and
environments (e.g., day or night). To improve robustness of CL
agents, we propose RobOCLe, which; 1) constructs an enriched
feature space computing high order statistical moments from
the embedded features of samples; and 2) computes similarity
between high order statistics of the samples on the enriched
feature space, and predicts their class labels. We evaluate
robustness of CL models to train/test augmentations in various
cases. We show that different moments allow RobOCLe to
capture different properties of deformations, providing higher
robustness with no decrease of inference speed.

I. INTRODUCTION

In the last decades, vision models have outperformed
human-level accuracy on many recognition benchmarks.
Deep learning has produced outstanding results by training
all parameters of large models via offline updates over large
batches of abundant samples available all at once.

The rise of specialized robots (e.g., indoor domestic and
service robots) has driven the recent advancements in auto-
matic scene analyses. However, vision models deployed on
robotic agents experience new classes and domains specific
to users at test time [1]; and classical models cannot be easily
personalized without suffering from catastrophic forgetting.
Hence, Continual Learning (CL) paradigm has emerged to
address such adaptation-preservation challenge [2], [3].

At the same time, robotic agents are equipped with low
computation resources and no storage availability due to
hardware and privacy constraints [4], [5], [6]. Therefore,
online CL (OCL) methods have gained attention [7] to learn
from a non-repeated stream of data and tasks. In particular,
OCL has been recently investigated for low-resource embed-
ded devices with no data storage available [4], [8]. However,
no extensive study exists at the time of writing. Furthermore,
when learning new classes, users will only provide a few
labelled samples, as the labeling operation is time-consuming
and tedious. To tackle this, few-shot (FS) learning [9] should
pair with OCL (FS-OCL) [10].

Finally, after learning new concepts, robotic agents move
around the environment (e.g., the user home) and discover the
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same or other instances of newly learned objects in different
conditions. Therefore, vision models should be robust to test-
time distortion of objects (e.g., different poses, viewpoints,
etc.) and/or environment (e.g., different illumination, room,
etc.) [11], [12]. For example, a user may want to update the
robotic agent to recognize, e.g., its own pet. The user will
likely provide a few images of the pet, e.g., lying on the
living room carpet; however, the agent should identify the
same pet in other poses (e.g., standing in front of a door)
and in other domains (e.g., corridor or kitchen).

In this paper, we introduce the novel scenario of
parameter-efficient FS-OCL for low-resource robotic agents
for robust test-time performance in variable conditions. We
extend previous setups [4] to analyse and improve the
robustness of the algorithms to test-time distortions without
updating model weights at test time. To our knowledge,
this challenging and very practical scenario has not been
addressed in the existing literature, and in general, little
exploration has been carried out on robustness of CL models
to variable test-time conditions [13], [14]. The main details
of our scenario are depicted in Fig. 1.

Our contributions are summarized as follows:
• We tackle a new FS-OCL paradigm for low-resource

robots where storage is unavailable and computation power
is low (i.e., most of model weights cannot be updated).

• We introduce a new parameter-efficient FS-OCL method
(RobOCLe) suitable for mobile robotic agents and FS data.
RobOCLe extracts high order statistics from embeddings,
building more reliable feature representations robust to
variable domain and object conditions. RobOCLe shows
consistent improvements against 10 OCL baselines on 4
benchmarks and 16 backbones. RobOCLe shows a room-
aware relative accuracy gain (RARG, Sec. IV) of average
65.8% on same-domain data and 16.4% on other-domain
data compared to the best competing approach, while
decreasing inference FPS by less than 0.5%.

• We present a new evaluation paradigm to determine robust-
ness of vision models, and particularly CL models, over
a suite of real and synthetic augmentations, resembling
practical use cases. RobOCLe shows average RARG of
18.3% on controlled augmentations of other-domain data.

II. RELATED WORK
Continual Learning has many definitions. Classical CL

assumes data released at incremental steps and multiple
training epochs performed with large batch sizes updating the
whole net [3], [15], [16], [17]. Online CL (OCL) assumes,
instead, that data comes as a non-repeated stream of small-
batch samples [7], [18], [19], [20], [21], [22]. OCL methods
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1. PRE-TRAINING
IN FACTORY

• General-purpose datasets
• Pre-defined classes

• Limited domains

• Large batch size
• Update whole model

Kitchen Living 
room

2. PERSONALIZATION TO 
USER ENVIRONMENT

• Continual Learning
• Class-incremental

• Domain changes

• Robot has limited resources
• No data storage  no large 

batch size
• No update of whole model
• Few labelled samples

User Kitchen User 
Bedroom

3. TEST-TIME USAGE IN
USER ENVIRONMENT
Need to recognize new classes 
in new domains and conditions:
• Illumination

• Occlusion

• Blur

• Geometrical
distortion

Fig. 1. Overview of the considered use-case in 3 stages. 1) A vision recog-
nition model is pre-trained on factory servers on large-scale general-purpose
datasets on a pre-defined set of classes and a limited set of acquisition
domains. Model pre-training requires large computational power to update
the whole model via large batches. 2) The model is embedded into e.g.,
home robots, and shipped to users. Users customize the recognition model to
discover novel classes in their target domain/environment (e.g., user home).
Robots do not have large storage due to privacy and storage constraints,
and cannot update the whole model due to computational limitations. Large
batches are also unavailable, since no storage and low RAM is assumed.
Users do not label many samples as it is a tedious operation. 3) The
robot navigates the new environment and discovers recently-added classes in
unseen domains and conditions, e.g., under variable illumination, occlusion,
blurring and geometric distortions. Stages 2) and 3) can alternate at any time.

are mainly based on replay due to the inherent difficulty
to prevent forgetting. Recently, OCL for embedded devices
[4], [8], [23], [24] further restricts the scope to parameter-
efficient updates with unitary batch size due to low-resource
devices. In parallel, few-shot CL (FS-CL) [25], [26], [27],
[28], [29] and FS-OCL [10] train a model to recognize new
classes based on few labelled data only, via fast and efficient
model updates with minimal human effort.

Along all these definitions, three main scenarios have been
considered [30]: 1) class-incremental (CI) where new classes
are introduced to models over time; 2) domain-incremental
(DI) where the same problem is learned in different contexts
(e.g., with a fixed set of classes); and 3) task-incremental
(TI), where new distinct tasks are presented to models.

In our paper, we focus on the most practical and less-
explored FS-OCL for low-resource devices and few-shot
data in the CI setup, with domain changes happening at
both fine-tuning and testing stages. OCL, FSCL and FSOCL
methods generally assume replay data [31], [32], [33], [7],
violating the important assumption that no storage is guaran-
teed. Therefore, we rely on the baselines introduced in [4].
Additionally, we evaluate robustness of agents at test time.

Test-Time Performance is heavily influenced by the
domain gap with respect to the training set [34], [35].
Test-Time Augmentation (TTA) approaches use data aug-
mentation at test time to obtain greater robustness [11],
[12], improved accuracy [36], [37], [38], [39], [40], [41], or
estimates of uncertainty [42], [43]. TTA pools predictions
from several transformed versions of a given test input
to obtain a smoothed prediction. In particular, [37], [38],
[39] average the predictions obtained over augmented views
(e.g., cropped, rotated, etc.) of input samples. [40] averages
embeddings obtained over augmented views of the input
samples. [36], [41] propose a learnable aggregation of TTAs.
[44], [41] learn a selection policy for TTAs. [45] enhances
images to make them recognition-friendly.

Test-Time Training (TTT) is a special case of Unsuper-

vised Domain Adaptation (UDA) where a model trained on
a source domain is adapted to an unlabeled target domain
without accessing source data [46], [47], [48]. Many ap-
proaches design novel loss functions to train the model and
reduce domain shift, requiring access to the full target set.
Recently, [12] performs TTT on single images coupling TTA
with TTT to improve test-time robustness. Continual TTT
[13], [14] has been recently considered.

Our work is linked to this, with some key differences:
• We do not assume the test set to be available all at once,

as in practical applications where an agent encounters new
samples and domains over time.

• Our scope is different. TTA boosts model performance at
test time aggregating multiple predictions. TTT updated
the model at test time. Our aim is to propose an OCL
method with increased robustness over variable test sets.

• We do not compute multiple TTAs of the same input sam-
ple, but rather mimic a deployment scenario where robots
experience variable domains with no clear delimitation.

• We extract rich information from inputs, to reduce the need
for TTA/TTT and maintain same inference time (we use
one inference step per sample, opposed to TTA/TTT).

Pooling has been one of the key enablers for deep learning
models mapping high dimensional features into a summary
of active features [49]. Multiple schemes have been proposed
to extract the most useful information from the input data.
We compare our pooling mechanism with the following
schemes: average pooling (AVG) [50]; max pooling (MAX)
[51]; a linear combination of AVG and MAX (MIX) [52]; a
dropout-inspired probabilistic selection of activations based
on a multinomial distribution fit (STOCHASTIC) [53]; a
concatenation of top-k% of features to discover information
spread over the spatial map (RAP) [54]; a concatenation of
AVG and MAX pooling (AVGMAX) [55]; an average of the
p-th order non-central moment (Lp-norm) [56]; and iSQRT-
COV, which computes second-order covariance pooling via
iterative matrix square root normalization [57]. In our work,
we consider high order central moments [58] to discover
robust features from limited input data.

III. METHODS
We investigate OCL from sequential data streams. We

evaluate existing approaches and propose a new method
(RobOCLe) to overcome some of the challenges that CL
methods face when tested in novel conditions.

In our setup, a model learns from streamed examples, seen
one at a time with no repetitions, since many applications
cannot store samples due to the continuous nature of the data
stream and the limited time and storage to process it. Over
time, the learner sees new classes but no task identifier is
provided, since the agent should infer the class regardless
of the specific task information. On resource-constrained
devices, CL methods should be both data and computation
efficient: they should learn from few-shot labelled data and
adhere to strict memory and time constraints. Finally, agents
will operate in uncontrolled environments, therefore, CL
methods should be robust to (severe) test-time corruptions.



A. RobOCLe: Robust Online Continual Learning

To tackle our scenario, we propose a new Robust Online
Continual Learning method (RobOCLe), comprising of 3
main blocks: a feature extractor G(·), a pooling scheme
P (·) and a classifier F (·) to categorize samples from their
extracted features. We incrementally train a neural network
F (P (G(xn,k))) via supervised OCL updates over subse-
quent tasks to generate predictions ŷn,k, where xn,k is the
n-th input sample, n ∈ [Nk], of the k-th task, k ∈ [K].

Following traditional transfer learning setups, G(·) is a
backbone network (e.g., ResNets [38]) pre-trained on a server
on public benchmarks, with large batch sizes over many
epochs updating the whole model (point 1 of Fig. 1). When
G(·) is embedded in robotic agents, it experiences new
domains (e.g., user environments) compared to training ones.

Additionally, users want to personalize models to rec-
ognize personal objects. Therefore, a novel classifier F (·)
adapts the general features extracted by G(·) to the class set
of particular users (point 2 of Fig. 1). Users show few labeled
samples of the new classes to recognize, and robots do not
have storage or large computation resources. Therefore, F (·)
is trained using online updates, seeing a non-repeated stream
of few-shot labelled samples using a frozen feature extractor
G(·). In the experiments, we consider the most challenging
case of a single class being learned per task.

High order pooling. In order to apply F (·) over the
pre-trained backbone G(·), a pooling scheme is generally
inserted to summarize the input information and reduce the
feature map size. At test time, the robotic agent should
recognize personal classes in a variety of conditions (e.g.,
illumination, occlusion, blur, pose). Therefore, the overall
OCL procedure should be robust to such factors of variations
at test time. With this aim in mind, we perform the pooling
P (·), employing higher order statistical moments to increase
the amount of clues extracted from the input samples.
In particular, P (·) computes and concatenates the first R
statistical moments from the output of G(·). Such moments
characterize the distribution G of g ≜ G(xn,k) ∈ Rh×w×d

where h and w are the spatial sizes of features and d is the
number of channels, and thus capture rich spatial statistics
to improve recognition accuracy. More formally, we employ

P (g)=∥
(
µ,EG

[
(g−µ)2

] 1
2,

R

∥
r=3

EG

[
g−µ

EG [(g−µ)2] 12

]r)
,

(1)
where EG [·] is the expectation over G, µ is the empirical
mean, and ∥(·) denotes the concatenation operation. That is,
P (g) ∈ RR·d concatenates the first R moments of g. In
our case, we feed R = 3 moments to the classifier. Fig. 2
shows the distribution of the first statistical moments of fea-
tures extracted from clean vs. augmented samples. AVG has
more variability (higher Wasserstein distance) than higher
moments when changing domain. In Sec. V we confirm that
high order moments increase robustness of OCL models and
their invariance to augmentations on both same-domain and
other-domain test data (i.e., when models receive test data in
other conditions than at train time).

Similarity estimation. The classifier F (·) should be rep-
resentative of the new classes and extremely lightweight
for on-device deployment. We extend the Nearest Classifier
Mean (NCM) and the Linear Discriminant Analysis (LDA) to
support the streaming setup [20] and the high order pooling.
Streaming NCM and LDA are denoted by NCM and SLDA.

RobOCLeNCM computes a running mean feature vector
per class (i.e., the c-th class prototype mc ∈ RR·d, ∀c ∈ C)
each with an associated counter denoting the number of
samples employed to compute each average value (tc). Given
a new data vector xn,k with the associated label yn,k, we
embed it to zn,k ≜ P (G(xn,k)) ∈ RR·d, and update the
class mean and associated counter by

myn,k
← tyn,k

·myn,k
+ zn,k

tyn,k
+ 1

, tyn,k
← tyn,k

+ 1. (2)

For inference on new samples, RobOCLeNCM assigns the
label of the nearest prototype according to its ℓ2 distance on
the enriched feature space. The original NCM has shown to
be a simple yet effective baseline in CL [59], [19], [4], [60].

RobOCLeSLDA computes one channel-wise covariance
matrix of features shared across classes (Σ ∈ Rd×d) that
is updated online via [61]. During inference, SLDA as-
signs to a new sample the label of the closest Gaussian
model in the feature space defined using the running class
means and shared Σ. RobOCLeNCM is a special case of
RobOCLeSLDA where Σ is equal to the identity matrix.
We use the implementation from [20] to update the Σ
and compute predictions. RobOCLeSLDA runs inference on
a new sample1 xn by F (P (G(xn))) = Wzn + b, where
W ∈ R|C|×R·d and b ∈ R|C|, where | · | is the set cardinality.
Rows of W are computed by wc = ΛmT

c , and elements
of b are computed by bc = −0.5(mc ·Λmc) = (mc ·wc)
with the shrinking approximation Λ = [(1 − ϵ)Σ + ϵI]−1

with parameter ϵ = 10−4. Running covariance [61] is then
computed by

Σn+1 =
nΣn + δn
n+ 1

, δn =
n(zn −myn

)(zn −myn
)T

n+ 1
.

(3)

B. OCL Baselines

We describe several OCL methods used to update F (·),
mostly focusing on data-free approaches. Fine-Tuning (FT)
updates a fully-connected output layer using SGD and CE
loss with no mechanisms to prevent forgetting [4]. Online
Perceptron (PRCPT) keeps one weight vector for each
class [4], initialized to the first sample of the class. After
that, when the model misclassifies a new sample, the class
weight vector and the weight vector of the misclassified
class with the highest score are updated. During inference, a
label is assigned by taking the argmax over the dot product
between weights and input vector. Online Centroid-Based
Concept Learning (CBCL) extends NCM with multiple
class prototypes [25]. At inference, CBCL searches for the
weighted nearest neighbor, where class weights are inversely

1To simplify notation, we remove task index k.
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TestingFig. 3. Datasets employed in our work. Right-hand side table summarizes
differences between train and test sets. [Text within squared brackets] spec-
ifies how properties change when our augmentations are applied (Sec. IV).

proportional to the number of samples seen so far for that
class. We use the default parameters suggested in [26], i.e., a
distance threshold of 17, a nearest neighbor value of 1, and a
maximum buffer size of 44 prototypes. We noticed no clear
difference compared to NCM, as in [4]. Streaming One-vs-
Rest (SOvR) measures how close a new input is to a class
mean vector while also considering its distance to examples
from other classes [4], which is reminiscent of SVMs.
SQDA extends SLDA estimating one covariance matrix for
each class (i.e., Quadratic). The drawbacks are increased
memory consumption and need for many samples per class
to estimate reliable covariance matrices [62]. Streaming
Gaussian Naı̈ve Bayes (SNB) estimates a running variance
vector per class [63] (i.e., diagonal covariance matrices
assuming independent features). It requires significantly less
memory than SQDA. Online iCaRL maintains a class-
balanced memory buffer [20], [59] and randomly replaces
an example from the most represented class with a new
sample when the buffer is full. During training, it randomly
draws examples from the buffer, combines them with the new
sample and makes a single update. Similar to other methods,
we train a linear output layer. While effective, it requires
storing sensitive samples on devices. We use a buffer size of
1K samples (iCarl) or of 2 samples per class (iCarl-2pc).

IV. EXPERIMENTAL SETUP

Datasets. We analyse our novel setup on F-SIOL-310 [26]
and OpenLORIS(-Objects) [64], which are robot-acquired
datasets specifically designed for CL and FS, and their train
and test sets have different properties. A visual summary is
reported in Fig. 3. We consider a class-IID setup, where all
samples are ordered by class and shuffled within each class.

OpenLORIS collects 121 instances including 40 categories
of daily necessities objects under 20 scenes from variable
camera-object distance/angle. The dataset comprises four
environmental factors: illumination variability during record-
ing, occlusion percentage of the objects, object pixel size in
each frame (i.e., scale of objects), and clutter of the scene.
Each factor has three levels of intensity, yielding around
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Fig. 4. Synthetic data augmentations employed to analyse different
conditions in which objects could be found.

550,000 total RGB samples. Following [18], [4], we consider
two splits: instance and instance-small.

The instance split (referred to as OpenLORIS) presents
videos (i.e., image frames from the same video) of shuffled
object instances to learners one at a time. For example, a
learner experiences a video of toy#1, then a video of hat#3,
then a video of toy#2, and so on. The learner experiences
temporally-correlated data with repeating classes. This split
uses the original train-val division provided by the authors.

The instance-small split (OpenLORIS-small) evaluates
low-shot out-of-domain generalization ability of models.
When learning a new class, frames from a single video of an
object instance are shown to the learner. When testing, the
model is evaluated on all test data containing the classes seen
so far. Test data contains same object instance seen under
different domains (i.e., factors) as well as other object in-
stances from the same classes seen under different domains.
Challenges of this setup are: low-shot labelled learning from
correlated data, generalization to different object instances of
same class, generalization to unseen domains. This setup is
often encountered in practice. For example, given a new pet,
users provide a few labels and a classifier should recognize
the pet in different domains and conditions.

F-SIOL-310 is specifically designed for Few-Shot Incre-
mental Object Learning. We employ this dataset to further
evaluate the ability of models to generalize from extremely
small labelled data. It contains 310 instances of 22 household
categories with no object instances overlapping between train
and test sets. We consider two splits, respectively with 5 and
10 shots (i.e., 5 or 10 labelled training samples).
Objects, Conditions & Augmentations. The considered
datasets span a wide range of setups with variable factors.
OpenLORIS uses the whole dataset and the same objects are
shown in train and test sets. Images are acquired under some
different conditions (illumination, occlusion, scale, clutter).
However, co-existence of conditions is limited. OpenLORIS-
small restricts the set of samples and has only one instance
of objects in training. F-SIOL-310 uses 5 or 10 training
samples, and has different objects between train and test sets.
However, objects are acquired with similar conditions (same
background, viewpoint/scale, no occlusion, no clutter).

To cope with the limited variability of existing datasets,



we introduce some augmentations at either train or test
splits. A visual summary is shown in Fig. 4: we mimic
several conditions as described next.1) Illumination changes
via color jittering with parameters chosen uniformly in the
following ranges: brightness in [0.5, 1.5], contrast in [0.5, 1],
saturation in [0.5, 1.5], and hue in [−0.1, 0.1]. 2) Image blur
(e.g., due to dust on camera or wrong focus) via Gaussian
noise with 11 × 11 kernel and standard deviation (std) in
[0.1, 0.5]. 3) Geometrical changes via a combination of a)
affine transformation keeping image center invariant, with
degree in [−30, 30], translate shift in [−0.2, 0.2] for both
horizontal and vertical axes, scale in [0.8, 1.2], and shear
in [−0.1, 0.1]); b) random perspective with probability 0.2
and distortion amount 0.2, c-d) horizontal and vertical flip
with probability 0.5 and 0.3, respectively. 4) Last, we also
consider all of the above together. To ensure fair comparisons
among OCL methods, all samples are augmented with the
same parameters in each set of experiments.

All the results are averaged across 5 class orderings,
although std is not reported to improve readability. Offline
training upper bounds are not considered, because the clas-
sifier F (·) is different for each approach.
Metrics. We evaluate both plasticity and forgetting in com-
parison of OCL methods [7]. All metrics are computed on
test sets at the end of training phases. We compute accuracy
(Acc %, ↑) to assess the final model performance across
all classes. Often, we report the room-aware relative gain,
RARG, (∆R, %) of model2 with accuracy Acc2 compared to
a model1 with Acc1 with respect to the available room of im-
provement, defined by ∆R ≜ (Acc2 −Acc1)/(100−Acc1).
In addition, we also measure: (1) backward transfer (BwT,
↑), which tracks the influence that learning a new task has
on the preceding tasks’ performance, to measure stability; (2)
forgetting (Forg, ↓), which averages difference of class-wise
Acc at the last step and the best previous class-wise Acc;
(3) plasticity (Pla, ↑) as the average Acc achieved on each
task evaluated right after learning that task; (4) training time
(TTime [min]); and (5) frames per second (FPS) in inference.
Evaluation is carried out using an NVIDIA GeForce RTX
2080Ti GPU supported by an Intel(R) Xeon(R) Gold 5218R
CPU@2.10GHz with 80 cores and 252GB RAM. Nonethe-
less, relative considerations remain the same on hardware
mounted on robotic agents. All results are averaged across 5
runs with different seeds: only the mean value is shown since
the standard deviation is negligible (≤ 0.16 in all cases).

V. EXPERIMENTAL VALIDATION

We evaluate our RobOCLe in multiple scenarios.
Same-domain data (OpenLORIS). In the first analyses,
we consider 16 backbones, including both CNN-based (2x
MobileNets-V3 [65], 2x EfficientNets [66], and 5x ResNets
[38]) and transformer-based (3x Swins [67] and 4x ViTs
[68]) of variable sizes. These are commonly used baselines
and allow us to examine variability of results depending on
model size and learned visual features. All architectures have
been pre-trained on the ImageNet [37] dataset.
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Fig. 5. Per-step Acc of RN152 on OpenLORIS-small. Average gains of
RobOCLe over NCM and SLDA are 5.81% and 1.20%, respectively.

Accuracy is reported in Tab. I. Most naı̈ve OCL methods
(i.e., PRCPT, SNB, SOvR) are unable to outperform FT,
since, in this case, data is sufficient and correlated, with no
severe change of domains/objects at test time. Replay data
(i.e., iCaRL) shows benefits, however, contradicts the impor-
tant OCL assumption on data availability: robots should not
store data due to privacy and storage constraints.

SLDA outperforms all other competitors thanks to the
Gaussian modeling of features, while its extension (SQDA)
can achieve competitive performance only on certain back-
bones: we argue that this is because SQDA cannot create
reliable class-wise correlation matrices, especially for larger
networks. RobOCLe brings significant improvements with
respect to the best approach (SLDA), reaching an outstanding
average accuracy of 99.21% with a room-aware relative
gain (∆R) of 65.8% over it. This first analysis justifies the
robustness of RobOCLe to multiple backbones on same-
domain test data when sufficient training data is available.
This experimental case is the main benchmark employed in
the existing literature [7]; however, we argue that it may
often not be the case in practice, as we discuss next.
Real other-domain few-shot data (OpenLORIS-small, F-
SIOL-310). When deploying robots to users and updating
their AI models to recognize new objects, we typically
encounter two simultaneous problems: 1) users do not label
a large amount of data as it is a tedious time-consuming
operation, and 2) training and testing sets have different
conditions in terms of, e.g., object pose and background
environment. For example, users show some pictures of their
pet lying on the living room carpet during daytime, while at
a later stage, the dog’s pose and the environment will change.

In Tab. II, we analyse this challenging scenario of FS-
OCL with a different domain (other-domain) at test time.
We consider three benchmarks based on OpenLORIS-small
and F-SIOL-310 (with 5 and 10 shots), while we restrict
the evaluation to ResNets and ViTs, being the most popular
CNNs and Transformers at the time of writing (also, we
confirmed their effectiveness in Tab. I).

Also in this case, FT and naı̈ve OCL methods show low
accuracy. SQDA achieves competitive performance only in
certain cases. iCaRL improves significantly classical FT,
however, it shows limited results. We observe that when data
is scarce, NCM reduces the gap with respect to SLDA. In
some cases (e.g., ResNets on OpenLORIS-small) NCM out-
performs SLDA. We argue that this reflects two properties: 1)
SLDA optimizes a larger number of parameters (prototypes
and covariance matrix) compared to NCM (prototypes matrix
only); and 2) feature dimensionality of ResNets (e.g. 2048
for RN152) is higher than that of ViTs (e.g. 1024 for ViT-



TABLE I
ACC ON SAME-DOMAIN OPENLORIS DATA ON 16 BACKBONES AND 10 OCL BASELINES. MN: MOBILENET, EN: EFFICIENTNET, RN:RESNET.

MN-S MN-L EN-B0 EN-B1 RN18 RN34 RN50 RN101 RN152 Swin-T Swin-S Swin-B ViT-B16 ViT-B32 ViT-L16 ViT-L32 Avg

FT 84.22 93.38 96.14 97.89 83.35 83.84 94.19 95.43 94.33 95.68 96.07 96.04 59.07 67.27 92.47 62.85 87.01
PRCPT [4] 74.49 89.75 94.02 95.94 80.47 78.58 92.18 91.24 92.35 93.40 94.21 94.46 48.70 58.51 85.62 55.19 82.44
SNB [63] 31.12 37.84 77.96 83.91 1.51 0.84 0.00 0.00 0.00 87.30 86.94 86.14 3.51 4.60 42.90 5.76 34.40
SOvR [4] 37.42 60.17 73.92 80.65 34.65 31.77 71.54 64.57 67.68 80.03 79.01 77.92 4.91 18.83 62.61 22.02 54.23
NCM/CBCL [60], [25] 72.89 81.83 85.94 88.34 79.69 80.47 84.62 83.98 84.12 87.77 87.54 87.94 64.99 63.38 79.47 68.09 80.07
SQDA [62] 77.71 55.84 2.45 6.16 81.59 81.36 5.66 24.24 1.64 83.84 62.53 63.27 8.91 15.74 3.53 7.50 36.37
iCaRL [59] 91.76 95.54 97.60 98.06 92.76 93.21 97.18 97.47 97.63 97.65 97.57 97.98 86.43 89.61 95.52 89.61 94.72
iCaRL (2pc) [59] 89.29 95.09 97.07 96.43 91.21 92.34 96.50 96.99 96.79 97.13 97.13 97.68 79.41 82.49 93.34 81.78 92.54

SLDA [20] 95.57 97.93 98.83 98.98 95.01 95.47 99.00 99.10 99.13 98.25 98.18 98.85 96.74 96.20 98.69 97.04 97.69
RobOCLeSLDA (ours) 98.20 99.37 99.70 99.72 97.65 97.96 99.69 99.78 99.78 99.28 99.31 99.65 99.16 99.02 99.73 99.33 99.21
(∆R [%]) (+59.5) (+69.4) (+74.8) (+72.3) (+52.8) (+54.9) (+69.1) (+75.6) (+75.2) (+58.6) (+62.0) (+69.9) (+74.2) (+74.3) (+79.6) (+77.4) (+65.8)

TABLE II
ACCURACY ON REAL OTHER-DOMAIN FEW-SHOT DATASETS ON RESNETS AND VITS BACKBONES.

OpenLORIS-small F-SIOL-310 (5-shots) F-SIOL-310 (10-shots)
RN50 RN101 RN152 ViT-B16 ViT-B32 ViT-L16 ViT-L32 Avg RN50 RN101 RN152 ViT-B16 ViT-B32 ViT-L16 ViT-L32 Avg RN50 RN101 RN152 ViT-B16 ViT-B32 ViT-L16 ViT-L32 Avg

FT 13.64 14.81 16.05 2.08 2.08 2.51 2.08 7.61 40.72 27.65 31.96 8.56 9.87 19.67 8.63 21.01 30.25 26.75 32.83 5.00 7.33 14.42 7.25 17.69
PRCPT [4] 27.45 21.68 21.36 2.08 2.18 6.64 2.08 11.92 32.16 24.12 34.31 4.84 5.42 7.39 4.84 16.15 38.25 24.42 32.75 5.17 5.17 9.75 4.92 17.20
SNB [63] 0.57 0.58 0.25 3.10 4.19 23.52 5.16 5.34 4.90 2.94 6.47 11.31 9.28 24.90 7.84 9.66 6.00 0.83 1.92 6.92 6.42 20.58 15.42 8.30
SOvR [4] 46.72 45.96 43.76 9.33 10.31 29.21 17.24 28.93 80.39 63.01 64.97 18.69 8.17 54.58 14.51 43.47 76.33 63.67 67.50 17.75 7.00 50.08 10.00 41.76
SQDA [62] 37.65 47.08 46.10 37.34 36.20 41.41 36.41 40.31 93.73 94.18 91.70 96.27 94.44 95.03 93.40 94.11 94.67 96.00 95.50 96.00 96.92 96.42 96.42 95.99
iCaRL [59] 51.29 51.04 50.33 33.60 33.57 42.76 32.58 42.17 58.95 66.21 63.53 34.90 40.39 38.50 32.16 47.81 68.83 77.75 76.50 47.08 48.75 51.42 44.08 59.20
iCaRL (2pc) [59] 49.08 47.28 47.93 31.83 28.92 40.89 31.73 39.67 58.04 67.12 64.12 37.25 37.65 38.69 32.88 47.96 69.33 78.33 76.33 46.17 49.83 50.50 45.33 59.40

NCM/CBCL [60], [25] 50.59 48.31 47.68 34.58 32.20 40.57 34.28 41.17 94.90 93.53 93.66 91.96 92.22 94.84 91.70 93.26 93.83 94.42 94.33 93.58 96.17 96.67 94.17 94.74
RobOCLeNCM (ours) 55.67 54.84 54.89 36.39 32.74 41.23 35.12 44.41 95.90 95.37 94.85 94.33 93.91 95.70 92.99 94.72 95.86 96.81 96.51 95.58 97.00 97.69 95.71 96.45
(∆R [%]) (+10.3) (+12.6) (+13.8) (+2.8) (+0.8) (+1.1) (+1.3) (+5.5) (+19.7) (+28.5) (+18.8) (+29.5) (+21.6) (+16.) (+15.6) (+21.7) (+32.9) (+42.8) (+38.5) (+31.2) (+21.7) (+30.6) (+26.4) (+32.6)

SLDA [20] 50.26 49.91 50.41 43.96 41.50 45.51 42.93 46.35 94.38 94.77 93.99 96.34 95.62 94.64 95.23 95.00 97.00 97.92 96.25 99.00 98.17 98.33 98.67 97.90
RobOCLeSLDA (ours) 51.33 51.44 52.42 44.73 42.86 45.22 43.07 47.29 96.12 96.98 95.84 96.96 95.80 95.38 94.73 95.97 97.42 98.33 97.47 99.18 98.31 98.40 98.78 98.27
(∆R [%]) (+2.1) (+3.1) (+4.1) (+1.4) (+2.3) (-0.5) (+0.2) (+1.8) (+31.0) (+42.2) (+30.8) (+17.0) (+4.0) (+13.7) (-10.5) (+19.5) (+13.9) (+20.0) (+32.6) (+17.9) (+8.0) (+4.3) (+8.4) (+17.5)

TABLE III
ACCURACY ON OTHER-DOMAIN DATA GENERATED VIA CONTROLLED AUGMENTATIONS ON THE OPENLORIS WITH RESNET152 AND VIT-L16.

RESULTS HIGHLIGHTED IN YELLOW: SAME AUGMENTATIONS BETWEEN TRAIN AND TEST. TR: TRAIN, TE:TEST.

NCM RobOCLeNCM (ours) NCM RobOCLeNCM (ours)

R
es

N
et

15
2

tr↓ te→ clean illum geom noise all Avg OD clean illum geom noise all Avg OD ∆OD
R

V
iT

-L
16

tr↓ te→ clean illum geom noise all Avg OD clean illum geom noise all Avg OD ∆OD
R

clean 84.12 34.75 77.37 60.82 13.40 46.59 88.15 41.26 82.10 66.16 18.16 51.92 (+10.0) clean 79.47 35.11 73.43 66.57 19.49 48.65 80.31 33.13 73.69 68.38 19.74 48.73 (+0.2)
illum 56.91 53.91 54.77 45.75 30.29 46.93 62.65 56.83 59.92 51.26 31.91 51.44 (+8.5) illum 30.78 40.58 33.00 29.12 30.00 30.73 30.82 35.00 35.17 30.65 31.22 31.96 (+1.8)
geom 82.01 40.49 81.07 64.05 19.67 51.55 86.21 45.11 84.39 67.92 23.90 55.79 (+8.7) geom 78.01 36.62 79.19 68.73 23.31 51.67 78.70 37.05 78.64 68.87 24.32 52.24 (+1.2)
noise 77.27 35.60 71.99 74.31 20.08 51.23 82.78 43.99 78.67 78.82 24.84 57.57 (+13.0) noise 73.67 36.37 66.27 75.64 25.41 50.43 73.84 36.58 68.55 76.51 25.56 51.13 (+1.4)
all 40.45 43.49 38.22 32.35 35.02 38.63 43.07 44.33 41.64 35.95 37.33 41.25 (+4.3) all 15.32 32.27 21.58 15.25 31.79 21.11 17.05 32.26 20.98 18.21 24.77 22.13 (+1.3)

SLDA RobOCLeSLDA (ours) SLDA RobOCLeSLDA (ours)

clean 99.13 47.19 92.55 77.09 19.74 59.14 99.78 48.69 93.31 80.17 20.32 60.63 (+3.6) clean 98.69 38.30 92.94 90.09 21.49 60.71 99.73 40.69 95.04 93.03 22.53 62.82 (+5.4)
illum 86.68 79.65 77.76 61.88 39.41 66.43 89.02 82.21 79.29 64.58 40.89 68.45 (+6.0) illum 83.68 77.13 72.86 72.39 50.58 69.88 86.13 80.65 77.00 76.19 52.56 72.97 (+10.3)
geom 98.05 49.50 97.53 78.08 22.59 62.06 98.81 51.32 98.40 78.05 23.12 62.83 (+2.0) geom 97.72 46.72 96.86 89.44 27.98 65.46 98.74 45.87 98.10 92.25 28.08 66.23 (+2.2)
noise 97.81 50.14 90.12 96.83 28.12 66.55 98.72 51.82 92.85 98.12 28.57 67.99 (+4.3) noise 97.42 40.08 89.87 97.19 26.21 63.40 98.82 41.90 93.41 98.68 26.69 65.21 (+4.9)
all 70.16 68.79 70.85 66.35 62.60 69.04 74.78 71.70 74.88 68.73 65.31 72.52 (+11.3) all 71.27 68.15 66.03 68.67 65.09 68.53 72.81 71.36 71.58 71.59 68.43 71.84 (+10.5)

TABLE IV
ACCURACY ON OTHER-DOMAIN DATA WITH CONTROLLED

AUGMENTATIONS ON RN152 ON THE FEW-SHOT BENCHMARKS.
SLDA RobOCLeSLDA (ours)

tr↓ te→ clean illum geom noise all AvgOD clean illum geom noise all AvgOD ∆OD
R

O
L

O
R

IS
-s

m
al

l clean 50.41 20.06 44.77 32.80 10.42 27.01 52.42 20.23 44.27 33.56 10.29 27.09 (+0.1)
illum 30.24 27.71 20.88 19.28 12.99 20.85 32.36 28.75 24.58 17.26 12.56 21.69 (+1.1)
geom 51.01 20.14 49.61 33.76 10.11 28.76 52.51 20.71 49.75 35.82 11.13 30.04 (+1.8)
noise 46.29 18.83 39.03 42.31 11.35 28.87 46.69 19.63 40.16 43.31 11.04 29.38 (+0.7)
all 23.63 26.08 22.27 21.40 24.49 23.34 23.85 28.75 22.88 23.73 25.80 24.81 (+1.9)

FS
IO

L
31

0-
5s clean 93.99 36.86 78.89 58.50 26.08 50.08 95.82 42.81 80.20 62.88 27.97 53.46 (+6.8)

illum 41.50 60.33 39.48 33.40 21.11 33.87 41.70 62.48 40.82 32.52 22.88 34.48 (+0.9)
geom 79.74 34.71 83.59 40.98 26.54 45.49 79.93 43.53 84.38 43.53 30.07 49.26 (+6.9)
noise 72.55 34.44 52.68 83.66 24.12 45.95 75.69 38.10 58.56 85.36 25.69 49.51 (+6.6)
all 24.25 25.49 21.31 17.39 19.61 22.11 26.27 26.86 19.67 20.59 22.03 23.35 (+1.6)

FS
IO

L
31

0-
10

s clean 96.25 40.17 85.50 62.75 29.33 54.44 97.58 49.08 87.25 66.75 32.92 59.00 (+10.0)
illum 50.33 68.83 39.08 36.08 28.08 38.40 53.50 69.42 39.67 39.17 29.50 40.46 (+3.3)
geom 88.33 43.25 90.92 42.25 32.58 51.60 91.08 49.92 92.17 52.17 33.50 56.67 (+10.5)
noise 81.92 36.58 61.00 92.08 24.08 50.90 86.67 44.17 65.83 94.92 27.50 56.04 (+10.5)
all 27.25 24.42 27.67 22.42 43.17 25.44 28.58 25.17 29.83 23.00 43.83 26.65 (+1.6)

L32), thus increasing the size of the covariance matrix.
Therefore, on few-shot data, both NCM and SLDA can
achieve competitive results. Our RobOCLe improves both
NCM and SLDA in almost every backbone and dataset, with
just 2 exceptions out of 42 scenarios. The average gain ∆R

ranges from 1.8% to 32.6%, with the highest gains shown

in the F-SIOL-310 dataset using lower labelled samples.
Remarkably, the gains on the other-domain datasets reported
in this paragraph are even larger than the gains reported on
same-domain data on OpenLORIS in Tab. I.

Overall, these analyses certify the robustness of our
method to both low-shot labelled training samples (outper-
forming competitors with as little as 5-shots) and datasets
(improving on both the OpenLORIS-small and F-SIOL-310
with different objects and/or conditions seen at test time).

In Fig. 5, we also show robustness to per-step accuracy.
RobOCLe consistently outperforms the baselines at every
step, making it particularly suitable for real-world applica-
tions where the number of classes is not defined a priori.
Controlled augmentations on other-domain data (Open-
LORIS, OpenLORIS-small, F-SIOL-310). We anticipated
in Sec. IV and Fig. 3 that the existing datasets are limited
in having either partial (OpenLORIS) or no (F-SIOL-310)
different conditions at test time. To cope with this limitation,
we apply further augmentations at train and test time.

First, we perform experiments on OpenLORIS using the



TABLE V
MULTIPLE POOLING MECHANISMS ON OPENLORIS-SMALL AND SLDA.
∆f : THE AVERAGE FEATURE SIZE MULTIPLIER COMPARED TO AVG.

∆f

Accuracy

RN50 RN101 RN152 ViT-B16 ViT-B32 ViT-L16 ViT-L32 Avg

AVG [50] 1.0 50.26 49.91 50.41 43.96 41.50 45.51 42.93 46.35
[CLS] [69] 1.0 - - - 43.10 40.78 45.57 41.83 -
MAX [51] 1.0 50.87 50.01 50.75 41.27 38.67 43.23 39.79 44.94
AVGMAX [55] 2.0 50.74 50.16 50.51 42.21 39.49 44.42 40.19 45.39
MIX (50%) [52] 1.0 50.04 49.48 50.14 43.07 40.86 45.15 40.84 45.65
STOCHASTIC [53] 1.0 42.15 40.37 38.48 32.78 29.45 31.97 30.68 35.13
L2 [56] 1.0 44.12 43.71 44.09 35.14 30.88 36.19 32.27 38.06
L3 [56] 1.0 45.12 43.15 43.80 36.44 31.11 37.86 32.57 38.58
RAP (1%) [54] 2.8 50.39 50.14 50.01 43.11 41.98 44.48 42.61 46.10
RAP (10%) [54] 139.0 39.48 32.14 31.15 27.48 24.41 26.10 24.13 29.27
iSQRT-COV [57] 1.0 50.34 48.50 48.75 42.98 41.66 45.75 42.12 45.73
RobOCLeSLDA (ours) 3.0 51.33 51.44 52.42 44.73 42.86 45.22 43.07 47.29

TABLE VI
ADDITIONAL METRICS ON THE OPENLORIS-SMALL AND RESNET152.
TTIME: TRAINING TIME [MIN]. FPS: FRAMES PER SEC AT TEST TIME.

Acc ↑ BwT ↑ Forg ↓ Pla ↑ TTime ↓ FPS ↑

FT 16.05 23.37 78.77 92.82 5.57 165.8

NCM 47.68 57.34 46.54 61.10 3.93 164.8
RobOCLeNCM (ours) 54.89 (+13.8%) 63.85 39.95 69.18 4.24 164.2 (-0.36%)

SLDA 50.41 59.14 45.69 66.19 4.71 165.0
RobOCLeSLDA (ours) 52.42 (+4.1%) 60.75 43.54 70.38 7.14 164.2 (-0.45%)

best CNN (RN152) and the best transformer (ViT-L16) on
the two best OCL methods (NCM and SLDA) with variable
train and test augmentations. Results are reported in Tab. III.
For each sub-table, we report train augmentations on the
rows and test augmentation on the columns, and we compute
the average other-domain accuracy (Avg OD). For each
group of results (RobOCLe vs. baseline), we also report the
RARG of RobOCLe in terms of Avg OD. On each scenario,
RobOCLe shows superior results on severe and controlled
synthetic augmentations when applied in training and/or in
testing stages. Employing either color, geometric or noise
augmentation generally improves Avg OD. Their combina-
tion improves Avg OD when using SLDA only, as it has
more capacity than NCM to capture and disentangle input-
level domain variations. When non-clean same augmentation
is applied to both train and test sets, instead, we obtain
lower accuracy compared to the original accuracy obtained
using clean train/test sets. This is due to the tasks becoming
much harder as, in the OCL setup, the agent experiences
data only once. Therefore, convergence of models to learn
robust representations is hindered. Also in this case, we
confirm how RobOCLe is more effective than the baseline
counterpart, especially on other-domain setups.

Next, we select RN152, and analyse the effect of con-
trolled augmentations on the few-shot datasets using SLDA
in Tab. IV. For each dataset and for each training augmen-
tation, our RobOCLe robustly outperforms the baseline by a
large margin on both same-domain and other-domain data.
Ablation studies. So far, we presented evaluation of results
on the basis of 1) mostly replay-free OCL methods, and
2) accuracy. Here, we complement the analyses. In Tab. V,
we report accuracy of other pooling methods described in
Sec. III. We observe that [CLS] pooling performs slightly
worse than AVG, due to the limited input data. Concatenating
the top-k% features (RAP) increases the feature size but

shows lower accuracy compared to the proposed method:
using larger feature size is not enough to improve accuracy
and robustness. All other approaches do not achieve compet-
itive results. Our method slightly increases the feature size,
however, it brings robust recognition results.

As we introduced in Sec. IV, multiple metrics have been
defined to characterize performance of CL agents. Tab. VI
summarizes the main results obtained on the OpenLORIS-
small. RobOCLe improves performance with respect to base-
line competitors with higher Acc (overall final performance),
BwT (knowledge transfer to past classes), and lower Forg
(average forgetting of all classes), by finding a better trade-
off between stability and Pla (which is lower than, e.g., FT).
For completeness, FwT is always 0, since incremental steps
contain disjoint classes. FT implements the classifiers as a
fully-connected layer and shows longer TTime than NCM
and SLDA, which only requires computation of distance
between embedded features and class prototypes. RobOCLe
adds some computational overhead which is mostly affecting
TTime, while inference FPS remains practically unchanged
with a small decrease of less than 0.5% in all cases. On the
other hand, the slight increase of TTime is not a relevant
concern, since training is done on few-shot data only.

VI. CONCLUSION
In this paper, we tackled the practical task of FS-OCL

targeting robust test-time object recognition for low-resource
robots with limited labelled data and computational/storage
capability. We introduced RobOCLe that promotes invariance
to augmentation via high order statistical moments of the em-
bedded features of input samples. We proved that RobOCLe
achieves robust recognition in a variety of scenarios, using
several backbones, low-shot setups, per-step accuracy, and
controlled train/test augmentation on both same-domain and
other-domain data. Overall, FS-OCL task in low-resource
devices is far from being solved. We hope that our problem
formulation, approach and extensive comparison with previ-
ous methods will encourage future works on this direction.
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