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Abstract— In the context of robotics, accurate ground truth
positioning is essential for the development of Simultaneous
Localization and Mapping (SLAM) and control algorithms.
Robotic Total Stations (RTSs) provide accurate and precise
reference positions in different types of outdoor environments,
especially when compared to the limited accuracy of Global
Navigation Satellite System (GNSS) in cluttered areas. Three
RTSs give the possibility to obtain the six-Degrees Of Freedom
(DOF) reference pose of a robotic platform. However, the un-
certainty of every pose is rarely computed for trajectory evalu-
ation. As evaluation algorithms are getting increasingly precise,
it becomes crucial to take into account this uncertainty. We
propose a method to compute this six-DOF uncertainty from
the fusion of three RTSs based on Monte Carlo (MC) methods.
This solution relies on point-to-point minimization to propagate
the noise of RTSs on the pose of the robotic platform. Five main
noise sources are identified to model this uncertainty: noise
inherent to the instrument, tilt noise, atmospheric factors, time
synchronization noise, and extrinsic calibration noise. Based on
extensive experimental work, we compare the impact of each
noise source on the prism uncertainty and the final estimated
pose. Tested on more than 50 km of trajectories, our compar-
ison highlighted the importance of the calibration noise and
the measurement distance, which should be ideally under 75 m.
Moreover, it has been noted that the uncertainty on the pose
of the robot is not prominently affected by one particular noise
source, compared to the others.

I. INTRODUCTION

In mobile robotics, the current development of mapping
and control algorithms heavily relies on datasets [1]. The
performance of these algorithms is evaluated by comparing
the different poses with a reference trajectory. In outdoor en-
vironments, Robotic Total Stations (RTSs) provide the high-
est accuracy by measuring reference trajectories with uncer-
tainty on the position in the range of millimeters [2]. Com-
ing from the field of surveying, a total station is an optic-
based measurement instrument that can be precisely aimed at
a given prismatic retro-reflector (i.e., simply called prism in
the remainder of this article). A total station is robotic when
it can automatically track a prism, while this prism is in mo-
tion. The position of the prism is computed in the local co-
ordinate system of the RTS, according to the horizontal and
vertical angles, along with the range between the RTS and
the measured prism. With three prisms or more attached to a
robotic platform, it is possible to compute its six-Degrees Of
Freedom (DOF) pose through manual static measurement [3]
or through the use of multiple RTSs continuously tracking
three active prisms rigidly mounted on the same platform [4].
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Fig. 1: Setup used to record a reference trajectory during a
snowstorm. Three RTSs are each tracking a specific active
prism, all mounted on a Clearpath Warthog robotic platform.

Active prisms are recently available off the shelf and provide
a unique light signature for automatic target identification by
RTSs. Each prism is tracked by its own assigned RTS, as
shown in Figure 1. The distance between a RTS and its prism
is determined by Electronic optical Distance Measurement
(EDM), which is greatly impacted by weather conditions [5].

Yet, to be useful in autonomous navigation research, eval-
uation protocols need to be used in a variety of conditions
and environments, such as snowfalls [6], which can increase
the uncertainty of ground truth trajectories. In addition to
measurement noise inherent to a single RTS, using multiple
RTSs involves time synchronization and extrinsic calibration
to fuse the data of all RTSs in a common frame [7]. Both this
synchronization and calibration carry noises and uncertain-
ties that must be studied. Uncertainty analysis is not usually
part of the Simultaneous Localization and Mapping (SLAM)
algorithms evaluation pipelines, as the most common metric
for comparing trajectories is the Euclidean distance. How-
ever, as current algorithms are developed with the intention
to be accurate, an evaluation that does not consider uncer-
tainties will lead to biased results. Moreover, uncertainty es-
timations for ground truth trajectories are missing in state-
of-the-art outdoor SLAM datasets. Two factors could explain
this: 1) Since ground truth trajectory noises are considered
negligible, uncertainty is not computed. 2) It can be com-
plex to model the uncertainty of a reference system, such as
Global Navigation Satellite Systems (GNSSs). Uncertainty
models were developed for RTSs [8], but they were never
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used for trajectory evaluations on mobile robots driven in
outdoor environments.

This work is based on our previous research to develop an
RTS setup for trajectory evaluations [4], [7]. In this paper, we
propose a method to model RTS uncertainties with the objec-
tive to better compare six-DOF trajectories. For that purpose,
we carried out a Monte Carlo (MC) method that includes
five different sources of uncertainty relative to multiple RTS
measurements in outdoor environments. These uncertainties
are then interpolated over time by a Gaussian Process (GP)
and propagated to the reference pose of a robot by using
another MC method. A detailed qualitative analysis of the
different noise sources is presented, as well as their impact
on the final resulting six-DOF trajectories. The experimental
data used to compute the results was gathered during a whole
year of deployments, with over 50 km of recorded trajecto-
ries in different weather conditions and environments. Both
our source code and our dataset are freely available in our
RTS Project repository.1

II. RELATED WORK

We first describe the current uses of RTSs to obtain refer-
ence trajectories for mobile robotics. Then, we present differ-
ent studies of RTS-related uncertainties and we expose differ-
ent methods that are used in the state of the art to model and
propagate uncertainties. Finally, we address the use of these
methods in mobile robotics and we discuss their properties.

RTS-based positioning systems are quite common in mo-
bile robotics. The number of RTSs in an experimental setup
is determined by the number of prisms that can be handled
by the robotic platform, as well as the number of DOFs in
the desired resulting trajectory. A single RTS was used to
acquire the three-DOF position of a prism mounted on differ-
ent robotic platforms, such as a planetary rover [9], a tracked
robot [10], an unmanned surface vessel [11], a skid steered
robot [12], and a Unmanned Aerial Vehicle (UAV) [13]. It is
possible to reduce the uncertainty of the reference position by
adding a second RTS to track the same prism. Reitbauer et al.
[14] have used a second RTS to follow two different prisms
on a compost turner, enabling the measurement of four DOFs
on the platform (i.e., the position and the yaw angle). To
obtain the full pose reference of a static robotic platform, it
is possible to manually measure three prisms with a single
RTS [3]. Furthermore, this setup provides a quantitative way
to analyze uncertainty through inter-prism distances. These
distances can be compared with values that were accurately
determined in a controlled environment. For a moving plat-
form, Vaidis et al. [4] developed the first method to compute
and interpolate six-DOF poses of a robot, with the measure-
ments of three RTSs. In this paper, we build on this method
by providing a continuous six-DOF pose uncertainty model
that relies on RTSs measurements.

Many noise sources can be modeled and used to estimate
the uncertainty of a RTS’s measurement. Each noise model
has an impact on different parts of a RTS processing pipeline,

1https://github.com/norlab-ulaval/RTS_project

from the raw measurements of the RTS to the estimated
Cartesian position of a prism. Most uncertainty sources are
directly related to the devices (measuring instruments and
prisms). Distances and angles uncertainties can be estimated
with manufacturer’s specifications, or with experimental re-
sults, done both in laboratories. Outside these controlled en-
vironments, the atmospheric factors (e.g., temperature, pres-
sure, and humidity) need to be considered, due to EDM
sensitivity [5]. As such, a variation on 1 °C can lead to an
error of 0.2 mm on a measured distance of 200 m [15]. The
noise of a Robotic Total Station’s electronic compensator
can be estimated through manufacturer specifications, yet the
associated uncertainty is often disregarded when conducting
precise surveying [16]. Moreover, time synchronization er-
rors and uncertainties can occur in the communication be-
tween a RTS and an external controller or data acquisition
system [17]. When using multiple RTSs, the accuracy of the
extrinsic calibration between all RTSs influences the accu-
racy of the estimated prism positions. Vaidis et al. [7] im-
plemented a pipeline to filter outliers on RTS data and pro-
posed an extrinsic calibration method that corrects the error
on the poses, yet uncertainty remained. Finally, a moving tar-
get creates some additional uncertainties that are difficult to
quantify. This noise comes from the limitations of the RTSs
angular tracking system, especially at high prism speeds and
accelerations [18]. When using multiple prisms, the inter-
prism distances can be used to filter imprecise results with
a threshold on prism speeds [4]. This paper examines all
these sources of uncertainty, to model the global uncertainty
of each RTS measurement under different atmospheric con-
ditions.

There are two main ways to model the total uncertainty
of a RTS, based on the aforementioned sources of uncer-
tainty: either with an approach that is based on the Guide
to the expression of Uncertainty in Measurement (GUM),
or with MC simulations. The GUM [19] divides uncertain-
ties into two types, between those obtained from statistical
analysis on a series of observations (defined as Type A), and
those expressed by average manufacturer-specified or user-
defined values (defined as Type B). With the GUM method,
an uncertainty budget of a RTS allows one to express the
total uncertainty of this RTS as an isotropic noise [20]. This
method works well for noise sources that can be linearized,
but it can be complex to implement for non-linear noise,
such as weather conditions. For this reason, MC simula-
tions are widely used to determine the uncertainty of RTS,
whether for simple models [21], or very complex models
taking into account non-linear noise, such as atmospheric
factors [8]. Moreover, the resulting uncertainty is modeled as
anisotropic. Generally, a MC method relies on between 103

to 105 samples to have coherent generated results, making
this method computationally greedy for large datasets [22].
Both of these methods give an estimate of a prism’s po-
sition uncertainty, yet it is unsuitable for mobile robotics
when the uncertainty is propagated into the reference frame
of a robotic platform. Several algorithms exist to propagate
uncertainty in a system. An Unscented Kalman filter can



be used to estimate the resulting noise [23]. The Unscented
transform method has been carried out to tackle computa-
tional resources issues, with as accurate results for uncer-
tainty estimation as with MC [24]. This method is based on
the key idea that it should be easier to approximate a proba-
bility distribution than to approximate an arbitrary nonlinear
function. Yet, the Unscented transform is only applied to
points of a specific covariance distribution at a time. Since
three-RTSs positioning systems give three different covari-
ance distributions, other methods that can process multiple
distributions are more appropriate. Other studies have used
Lie Algebra to link and interpolate the pose of a system to its
uncertainty. Barfoot et al. [25] formalized ways to work with
noise in sep3q and applied them to propagate the noise from
a camera over a trajectory. Anderson et al. [26] developed a
library called Simultaneous Trajectory Estimation And Map-
ping (STEAM) that uses GPs to interpolate the covariance
matrix of a system for nonlinear optimization problems with
continuous-time components. In this article, we combine the
research of Ulrich [8] and Anderson et al. [26] to propagate
the uncertainty to the pose of a robotic platform.

III. THEORY

We first present our approach for modeling uncertainty of
RTS measurements with the MC method. Then, we show
how we interpolate data with GPs for prism measurement
uncertainties. Next, we describe how we use another Monte
Carlo method to propagate uncertainty from interpolated
prism measurements to six-DOF vehicle poses.

A. Robotic Total Station noise models

As highlighted in Section II, the uncertainty on the mea-
surement from a RTS is impacted by different noise sources.
Each noise source can be defined with a stochastic model,
hence the possibility to use a MC method to estimate the re-
sulting combination of all sources of uncertainty on a single
RTS measurement. We defined a trajectory Pi in the frame
F i, where i P t1, 2, 3u is the index of a single RTS, as a set
of normalized homogeneous prism coordinate measurements
tpi

1, . . . ,p
i
ni

u such that pi
k is the kth measurement of Pi

with k P t1, niu and ni P N˚ is the number of measurements
for the i-th RTS. By merging all different kinds of noises
with a MC method, we are able to determine the spatial
covariance Σi

k around each measurement pi
k. In the follow-

ing paragraphs, we define five uncertainty models with their
parameters that were used to describe the noise encountered
during our deployments with multiple RTSs.

RTS instrument noises – These noise sources are directly
coming from multiple errors in the instrument calibration,
namely the vertical collimation error, the centering error, the
horizontal collimation error, and the eccentricity error. They
alter the raw measurements given by the RTS, namely the
distance ρ, and both the horizontal and vertical angular val-
ues, ϕ and θ, which are used to compute prism coordinates.
Their standard deviations σρ, σϕ and σθ, respectively for
the distance, horizontal and vertical deviation, are given by
manufacturers in the instrument specifications. Then, errors

on measurements can be represented by a zero-mean normal
distribution, respectively ϵρ „ N p0, σρq, ϵϕ „ N p0, σϕq and
ϵθ „ N p0, σθq.

Tilt compensator – Modern RTS are equipped with an
electronic angular compensator that allows the instrument to
correct pitch and roll values, with its estimated gravity vec-
tor. This compensator has an inherent noise ϵtilt represented
by a zero-mean normal distribution ϵtilt „ N p0, σtiltq as
described by Lienhart et al. [16].

Atmospheric factors and weather – Since distance mea-
surements are taken with EDM, they are subject to the influ-
ence of atmospheric factors, specifically temperature T , pres-
sure P , and humidity H [8]. These atmospheric factors are
represented by uniform distributions ϵT , ϵP , and ϵH . Accord-
ing to equations proposed by Rueger et al. [5], these uniform
distributions will lead to the estimation of a correction factor
α (expressed in ppm) to rectify a measured distance ρ. The
aforementioned measurement noise sources (ϵρ, ϵϕ, ϵθ, ϵtilt
and the correction α) are combined to include uncertainties
to raw RTS measurements:

pρ “ pρ ` ϵρqp1 ` αq, (1)
pθ “ θ ` ϵθ ` ϵtilt, (2)
pϕ “ ϕ ` ϵϕ ` ϵtilt cotppθq. (3)

Time synchronization – Data acquisition made by several
RTSs leads to a time synchronization error ϵts , expressed
in seconds. The resulting uncertainty ϵt alters the Cartesian
coordinates of a prism and is related to the velocity vi

k

at which it moves. According to Ulrich [8], this time syn-
chronization uncertainty follows a normal distribution ϵt „

N pµt,σtq that depends on the time synchronization error
ϵts „ N pµts , σtsq and the prism velocity vi

k „ N pµv,σvq:

µt “ µtsµv (4)

σ2
t “ µ2

tsσ
2
v ` σ2

tsµv
2, (5)

where µts represents the mean time synchronization error,
σts its standard deviation and µ2

v “

”

µ2
vx µ2

vy µ2
vz

ı⊺
is

the square of the average prism velocity vector with a covari-
ance σ2

v “

”

σ2
vx σ2

vy
σ2
vz

ı⊺
. The prisms’ velocities are

estimated by differentiating the prism Cartesian coordinates
with respect to time, by considering computed uncertainties
from eqs. (1) to (3), such that:

pi
k “

”

xρk sinxϕk cos pθk xρk sinxϕk sin pθk xρk cosxϕk

ı⊺
(6)

vi
k “

pi
k`1 ´ pi

k

tk`1 ´ tk
. (7)

The values of µv and σv can be estimated for each prism
position by applying a MC method to prism speeds given
by eqs. (6) and (7). A time synchronization error ϵts can be
estimated over a span of time, by taking into account the rate
at which the external system’s clock diverges from the RTS’s
clock. The time synchronization method presented by Vaidis
et al. [4] yields time drift measurements, equal to the worst
drift at the end of every time synchronization period (5 min



in the current case). When these measurements are recorded
for all deployments on the field, they form a distribution of
drifts, among which we can statistically determine the values
of µts and σts . The estimated error ϵt is then added to each
prism position.

Extrinsic calibration – This calibration determines the
rigid transformations W

i T between the reference frame FW

and the frame F i of each RTS. Our previous work [7]
exposed many extrinsic calibration methods, including the
static Ground Control Points (GCPs) calibration, that will be
used in this paper. As defined in [7], a GCP is a position
measured on the ground with a static prism used as a target.
A number n of GCPs is measured in an environment with
all RTSs. The outcome of this calibration will have some
noise, as the earlier-mentioned uncertainties on single mea-
surements propagate in the process. As the extrinsic cali-
bration is complex to model, its uncertainty is estimated by
applying another MC method to each GCP. The instrument
noises, tilt compensator noise, and atmospheric factors are
considered for this MC method. Time synchronization was
not included due to the static nature of GCPs, and because
extrinsic calibration yields results that are independent of
time. An extrinsic calibration is computed for each set of MC
samples for each GCPs. The resulting rigid transformation is
then applied to each prism trajectory as Qi “ W

i
pT Pi, where

Qi “ tqi
1, . . . , q

i
ni

u represents the prism trajectory of the i-
th RTS in the global frame FW . The extrinsic calibration
uncertainty is estimated from the distribution of the points
along those trajectories.

Applying all the noises on RTS measurements with a MC
method enables us to estimate the covariance matrix Σi

k of
each measurement qik in Qi. In the rest of this paper, the
frame of the first RTS F1 is chosen as the global frame.

B. Prism position uncertainty interpolation

The aim of trajectory evaluation for SLAM is to compare
a reference trajectory with a six-DOF trajectory of a robotic
platform computed from various sensors (e.g., lidar, Inertial
Measurement Unit (IMU), GNSS), usually defined with dif-
ferent acquisition rates. Therefore, interpolation is required
to synchronize both trajectories. A GP regression approach
is chosen for this state estimation, as proposed by Anderson
et al. [27]. This allows us to represent the prism trajectories
in continuous time in order to query position values for a
desired timestamp. To guarantee a unique solution, we mod-
elize a prior distribution of the potential trajectories, as a
unidimensional GP, such that:

xptq „ GPpx̌ptq, P̌ pt, t1qq, t0 ă t, t1 (8)
yn “ gpxptnqq ` nn, t1 ă tn ă tN , (9)

where xptq represents the normalized homogeneous prism
coordinates at time t, x̌ptq is the prior mean function, P̌ pt, t1q

is the prior covariance function between two different times
t and t1, yn are measurements, nn „ N p0,Σq is a Gaus-
sian measurement noise, gp¨q is a nonlinear measurement

model, and tt1, . . . , tn, . . . , tNu is a sequence of measure-
ment times.

In this paper, yn are the measurements in Qi, the covari-
ance Σ of nn is estimated by the MC method presented
in Section III-A (i.e., Σi

k), gp¨q is the non-linear process of
having the measurements in Qi by the RTS and tn are the
timestamps of qi

k. The interpolated results pQi, which are
expressed by xptq, are computed by the STEAM library [26]
for desired query times. As a result, each estimated point
pqi
j in pQi has its associated estimated covariance matrix pΣi

j

coming from the GP interpolation, where j P t1, Ju is the
interpolated prism positions index, and J P N˚ is the total
number of interpolated prism positions.

C. Uncertainty propagation to ground truth trajectory

With only one RTS, the uncertainty pΣi on the reference
trajectory can be exploited right away to evaluate the ref-
erence position of a robotic platform. However, the robotic
platform’s pose needs to be evaluated in six-DOF. With three
RTSs, it is possible to obtain the reference pose by doing a
point-to-point minimization between the triplets of measured
prism coordinates, and the reference triplets measured in lab-
oratory [4], [7]. Prism uncertainties can be propagated by ap-
plying a MC sampling with this point-to-point minimization.

After the GP interpolation, a setup of three RTS yields
a set of three paths t pQ1, pQ2, pQ3u of interpolated measure-
ments, with their respective covariance tpΣ1, pΣ2, pΣ3u. We
define pQj as the j-th triplet of interpolated prism positions
with its corresponding triplet pΣj of covariances, such that
pQj “ tpq1

j , pq
2
j , pq

3
j u, and pΣj “ tpΣ1

j ,
pΣ2
j ,
pΣ3
ju, as shown

in Figure 2. A reference triplet R contains normalized ho-
mogeneous points ri, where R “ tr1, r2, r3u with a co-
variance Ui associated to each point ri. These reference
points are defined in another world frame FL and were stat-
ically estimated with measurements from a single RTS after
each deployment. To apply a MC method, we sample M
points

␣

si1, . . . , s
i
m, . . . , siM

(

from every Gaussian distribu-
tion N ppqi

j ,
pΣi
jq, and M points from the Gaussian distribution

N pri,Uiq defined for the triplet of points in R along with
their covariances Ui.

For every sample sm P ts1, . . . , sMu, we applied the
point-to-point minimization with:

1
L
pTj,m “ argmin

T

3
ÿ

i“1

∥∥∥pqi
j ´ Tri

∥∥∥
2

2
, (10)

where 1
L
pTj,m P R4ˆ4 is the resulting rigid transformation

of the MC method between the frame FL and the global
frame of prism measurements (F1, in the current case), for
a sample sm in the j-th triplet.

The subsequent M poses form a distribution, of which
we can extract an average translation and rotation defined
by ξj P R6 in the global frame FW for every j P t1, Ju.
The covariance Λj P R6ˆ6 of this distribution of poses
yields the uncertainty on every vehicle pose ξj . The re-
sulting reference trajectory is defined as the set ξ of poses
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Fig. 2: Visualization of error propagation of the Monte Carlo
(MC) method applied with a point-to-point minimization.
Each triplet of interpolated prism measurements pqi

j of tra-
jectories xQi in the world frame FW are denoted by crosses
enclosed within ellipses representing their corresponding co-
variances pΣi

j . The points r1, r2, and r3 are the reference
prism positions taken in laboratories, along with their co-
variance. A point-to-point minimization minimizes the dis-
tance between samples of the same color, in both kinds of
distributions. The result of this minimization is the estimated
vehicle pose ξj along with its covariance Λj .

␣

ξ1, . . . , ξj , . . . , ξJ
(

. Λ is a set that contains the covariance
Λj of every pose ξj along ξ. These ground truth uncertainties
can be used for the evaluation of six-DOF trajectories. In the
next sections, we will characterize the impact of the source
of noise over the uncertainty models of the prism trajectories
and of the reference trajectory.

IV. EXPERIMENTS

We used three Trimble S7 RTSs to track three Trimble
MultiTrack Active Target MT1000 prisms with a measure-
ment rate of 2.5 Hz. The Table I gives the different kinds of
noises that were modeled, in accordance with the specifica-
tions of the Trimble S7. Following the GUM guidelines [19],
these noises have been divided into two types (i.e., A and B).
The former is determined through experimental values (e.g.,
extrinsic calibration, time synchronization error). The latter
is given by the specifications of the measuring instrument
(e.g., range, angle, tilt compensator), or from an environmen-
tal model (i.e., atmospheric factors).

As shown in Figure 1, all three prisms were mounted on
a Clearpath Warthog Unmanned Ground Vehicle (UGV). A
Robosense RS-32 and a XSens MTi-10 IMU were used as
part of an Iterative Closest Point (ICP)-based SLAM frame-
work, working at a rate of 10 Hz.2 The experiments were
conducted from February 2022 to January 2023. They in-
clude 20 deployments, of which 18 took place on the campus
of Université Laval and two were done in the Montmorency

2https://github.com/norlab-ulaval/norlab_icp_
mapper

TABLE I: Trimble S7 RTS uncertainty parameters. These
uncertainties have been categorized according to their type,
source, distribution and values. Zero means are considered
for each normal distribution, except for the time synchro-
nization error as described in Section III-A. All standard de-
viation values are given for 2σ according to the ISO norm
ISO17123-3. The abbreviation ppm means parts per million,
and 1 ” “ 4.85 ˆ 10´6 rad

Influence factors Distribution Values

Extrinsic calibration
- Translation Normal σtx, σty , σtz

Type A - Rotation Normal σrx, σry , σrz

Time synchronization
- Velocity Normal µv , σv

- Time error Normal µts “ 1.2ms,
σts “ 0.8ms

Instrument
- Distances Normal σρ “ 4mm ` 2 ppm

- Horizontal directions Normal σϕ “ 2 ”

- Vertical directions Normal σθ “ 2 ”

Type B Tilt compensator
- Angle bias Normal σtilt “ 0.5 ”

Atmospheric factors
- Temperature Uniform σT “ r0, 1 ˝Cs

- Pressure Uniform σP “ r0, 10 hPas

- Humidity Uniform σH “ r0, 2%s

research forest, 75 km north of Quebec City. These 20 de-
ployments allowed us to conduct 48 experiments, for a total
of 50 km of RTS-tracked prism trajectories.

The same procedure was applied during each experiment,
in order to collect consistent and standardized data during
the whole year. Also, each deployment was completed by
measuring accurately the position of the three prisms, rigidly
installed on the robot, with a single RTS. These measure-
ments are used as reference points to compute the inter-prism
distances, as a way to control data for each experiment. The
point-to-point minimization method presented in Section III-
C is also relying on these measurements. Weather conditions
and atmospheric values were obtained through the weather
service of Environment and Climate Change Canada.3

V. RESULTS

A. Influence of the sources of uncertainty over the results

We first evaluated the impact of different sources of noise
on the prism position uncertainty. These sources of noise are
1) the RTS instrument noises, 2) the tilt compensator noises,
3) the atmospheric factors, 4) the time synchronization, and
5) the extrinsic calibration. Every source of noise was repre-
sented by a distinct covariance matrix, on which we applied
the Frobenius norm [25] to evaluate their effect on the prism
position uncertainty. These uncertainties were also compared
for different ranges, to determine how it is impacted by the
RTS-prism distance.

3https://climate.weather.gc.ca/historical_data/
search_historic_data_e.html



Figure 3 shows that, for every noise source except the
time synchronization noise, a longer range will lead to higher
uncertainty. This relation is especially the case for extrinsic
calibration, with a median value of 0.91 mm in the range of
0 to 75 m, a median value of 1.88 mm in the range of 75 to
150 m, and a median value of 5.49 mm in the range of more
than 150 m. Moreover, this noise source affects the majority
of the total uncertainty for the complete range, with a me-
dian value of 1.32 mm. This observation is coherent with the
description of extrinsic calibration given in Section III-A, as
this calibration relies on measurements that are all impacted
by the other sources of uncertainty, causing its covariance to
be higher. However, this impact on the uncertainty is only
considerable at a long-range, while the noises inherent to the
RTS have the highest median regardless of the distance. With
a median value of 2.1 mm, we confirmed that the uncertainty
level from the instrument is in the range of the manufac-
turer’s specifications. This noise also increases with long-
range measurements, with a median value of 2.78 mm for
distances of more than 150 m. Meanwhile, the other sources
of noise were less significant. The time synchronization noise
has a median value of 0.4 mm, and does not depend on the
measurement range. Similarly, the atmospheric factors have
a median value of 0.16 mm, while the tilt noise has a median
value of 0.06 mm. Both of these noise sources increase ac-
cording to the measurement range. In a field deployment, it
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Fig. 3: Influence of the noise sources from Table I, in relation
with the measured distance between an RTS and its assigned
prism. The square root of the Frobenius norm is used to
estimate the similarity between covariance matrices.

would be important to keep in mind the two factors that have
the highest influence on the results. Therefore, it is crucial to
achieve a good extrinsic calibration, as it is the main source
of uncertainty for long-range measurements. Otherwise, it is
important to gather as much data as possible with ranges
lower than 150 m. The median for all sources on the com-
plete range is close to the median for shorter ranges, as we
gathered more data at short distances than at long distances:
80 % of the data was taken with distances between 0 and

75 m, 14 % between 75 and 150 m and 6 % for more than
150 m. Consequently, the results could be impaired by the
lack of long-range measurements. Overall, since the RTS has
an inherent noise, better results could be obtained with other
instruments that would be more precise.

B. Trajectories with uncertainty

We used the pipeline from [7] to filter the raw prism
measurements to increase the accuracy of the results. The
modules (1 and 2) from this pipeline were used with the
parameters τr “ 2m s´1, τa “ τe “ 1 deg s´1, τs “ 3 s and
τl “ 2 s. Instead of using linear interpolation in the third
module, we computed a GP interpolation with the STEAM
library. This GP was used to interpolate the uncertainties
from the MC method, as explained in Section III-B.

An example of this interpolation is shown in Figure 4,
which represents the results of a deployment at the Mont-
morency forest. The interpolated prism measurements are
displayed with red, blue, and green dots, along with their
uncertainties as shaded ellipsoids. The orange dots represent
measurements from a GNSS system on the robot that took
data at a rate of 5 Hz. As in the fourth module of the pipeline
in [7], the uncertainty has been filtered for values over 20 cm,
while the inter-prism distances are kept under 10 cm to en-
sure that the values are precise enough for ground truth gen-
eration. The point-to-point method described in Section III-
C propagates the prisms uncertainties among the reference
pose of the Warthog, as shown with black dots in Figure 4.
The six-DOF pose and uncertainties on the ground truth tra-
jectory can be compared with an estimated robot trajectory
through the use of other metrics than the Euclidean norm.

Even if RTS measurements are more accurate than GNSS
(2-3 cm), they gather fewer data over time. Therefore, with
the GP interpolation, the uncertainty on the RTSs measure-
ments increases over time. It can reach as much as 5 cm, as
shown in the zoomed section of Figure 4. This issue can be
solved by using RTSs with a higher measurement rate. More-
over, the MC method used with the point-to-point method
spreads the error on the final robot pose. Finally, as RTSs
requires direct line-of-sight with a prism, fewer data can be
measured in obstructed environments such as forests. This
constraint is visible on Figure 4, where the RTS-estimated
poses only appear in areas with a direct line-of-sight from
the RTSs.

C. Impact of models over pose-uncertainty results

The Figure 5 shows that the uncertainty on the position and
orientation of a robot is not prominently affected by a single
source of noise. For instance, no matter the source of uncer-
tainty, the medians are 2.5 m and 0.76 rad for the position and
the orientation, respectively. This stability might come from
the point-to-point minimization which smoothens the trajec-
tory and therefore minimizes some of the errors that could
be caused by the different sources of uncertainty (i.e., uncer-
tainty inherent to the RTS, the tilt, the atmospheric condi-
tions, the extrinsic calibration, and the time synchronization).



Fig. 4: Top view of a reference trajectory generated from a
deployment in the Montmorency forest. Interpolated prism
paths pQi are represented by dots in red (prism 1), blue (prism
2), and green (prism 3). The RTS-estimated pose ξ is dis-
played by black points, along with a GNSS-estimated posi-
tion represented in orange. Both covariances pΣi

j and Λj are
shown with shaded ellipsoids. RTSs positions are indicated
by an indigo cross, along with the start and stop positions
indicated by red stars.
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Fig. 5: Impact of noise sources on the final pose uncertainty,
for both the translation and the orientation, respectively in
blue and red.

The values given by the Frobenius norm square root for
the robot position (in Figure 5) are larger by an order of
magnitude than the uncertainty computed on a prism position
(in Figure 3). This can be related to the GP interpolation
in the pipeline, as the interpolation drastically increases the
uncertainty in proportion to the speed of the vehicle. Also,
the point-to-point minimization propagates the prism uncer-
tainties on the vehicle pose uncertainty. These results can
be compared to the one obtained by Vaidis et al. [4], where
they show the same kind of uncertainty on the final pose of
a vehicle, with a comparable amount of uncertainty on the
prism positions.

VI. CONCLUSION

In this paper, we proposed a MC method to model the
uncertainties coming from multiple RTSs with the intent to
better compare six-DOF trajectories. The estimated uncer-
tainty of a prism measurement is then interpolated with a
GPs, and propagated to the estimated six-DOF pose of a
robotic platform with a MC method, used with a point-to-
point minimization. We have highlighted that the main source
of noise when using multiple RTSs is coming from the extrin-
sic calibration, besides the uncertainty that is inherent to the
instrument. Our model has demonstrated that the uncertainty
on a prism measurement is proportional to the distance be-
tween that prism and a RTS. Moreover, none of the sources
of noise have a certain impact on the uncertainty of a pose
that is computed with point-to-point minimization. This can
be caused by the minimization method that smoothens the
effect of different noise sources to an average value.

Future works would include the optimization of our extrin-
sic calibration method to minimize resulting uncertainties.
Other atmospheric factors such as snow or rain would also
need to be experimentally characterized. The uncertainty of
GNSSs could be modeled in the same manner to compare it
with the uncertainty obtained with our method. This would
allow us to evaluate localization and mapping algorithms by
merging information from RTS-based ground truth trajecto-
ries with GNSS-based ground-truth trajectories.
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