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Abstract— Recently significant progress has been made in
vehicle prediction and planning algorithms for autonomous
driving. However, it remains quite challenging for an au-
tonomous vehicle to plan its trajectory in complex scenarios
when it is difficult to accurately predict its surrounding vehicles’
behaviors and trajectories. In this work, to maximize perfor-
mance while ensuring safety, we propose a novel speculative
planning framework based on a prediction-planning interface
that quantifies both the behavior-level and trajectory-level
uncertainties of surrounding vehicles. Our framework leverages
recent prediction algorithms that can provide one or more
possible behaviors and trajectories of the surrounding vehicles
with probability estimation. It adapts those predictions based on
the latest system states and traffic environment, and conducts
planning to maximize the expected reward of the ego vehicle
by considering the probabilistic predictions of all scenarios and
ensure system safety by ruling out actions that may be unsafe in
worst case. We demonstrate the effectiveness of our approach in
improving system performance and ensuring system safety over
other baseline methods, via extensive simulations in SUMO on
a challenging multi-lane highway lane-changing case study.

I. INTRODUCTION

Autonomous driving has shown great promise to revolu-
tionize the transportation system by improving its safety [1],
[2], [3], [4], [5], [6] and performance [7], [8], [9], [10], [11].
Extensive research has been conducted to improve the per-
ception, prediction, and planning modules of individual ve-
hicles for autonomous driving. However, some driving tasks
and scenarios still remain quite challenging [12], [13], [14],
[15], especially when there are complex interactions [16]
between the ego vehicle and its surrounding vehicles and
it is difficult for the ego vehicle to accurately predict the
behavior of its neighbors [17].

While connectivity technology [18] has the potential to
greatly mitigate the challenges in predicting the intention
and future trajectory of surrounding vehicles [19], [20], [21],
[22], it is expected that there will be a long transition
period before the full deployment of connected vehicles
and traffic infrastructures [23]. Moreover, in mixed traffic,
human drivers have different driving patterns, which can even
change over time [24], while autonomous vehicles designed
by different companies can have varied driving strategies for
similar scenarios [25]. All these make it critically important
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Fig. 1. Representative case study: In a multi-lane highway, an ego vehicle
E goes straight and a surrounding vehicle S indicates a right turn to change
lanes. However, the intention of S is ambiguous. It can change lane once
and follow the route 1, or change lanes twice and follow the route 2, or exit
the highway after lane changing and follow the route 3.

in autonomous driving to accurately predict the surrounding
vehicles’ behavior and effectively leverage the prediction
results in planning.

Our work focuses on addressing complex driving scenar-
ios where the surrounding vehicles’ intentions and planned
trajectories have multiple possibilities in prediction. For
example, we consider the lane changing in a multi-lane
highway as a representative application in this work (while
our proposed approach can be extended to other driving tasks
and scenarios). As shown in Fig. 1, the system includes an
ego vehicle E going straight and a surrounding vehicle S
indicating a right turn to change lanes. However, the intention
of the surrounding vehicle is ambiguous. It can change lane
once and follow the route 1, or change lanes twice and follow
the route 2, or exit the highway after lane changing and
follow the route 3. Each possible route may be associated
with a probability, i.e., p1, p2 and p3. Moreover, besides the
behavior-level uncertainty on taking which route, the exact
parameters for defining each trajectory are also uncertain.

In the literature, some recent prediction algorithms can
provide one or more most possible trajectories of a surround-
ing vehicle, albeit does not emphasize their behavior-level
difference [26], [27], [28], [29]. Some planning algorithms
are designed to prevent traffic accidents for the most possible
predicted trajectory, but ignore other possibilities and cannot
guarantee safety in those cases [30], [31]. There are other
planning strategies that consider all possible predicted trajec-
tories of a surrounding vehicle. However, it would be over-
conservative if the most cautious action is always selected in
considering all possibilities [32]. Directly taking a ‘weighted’
action across all possibilities can also be risky [13], [12] – for
example, when the traffic signal in an intersection just turns
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yellow, it may be safe for a vehicle to maintain its velocity
and pass the intersection before the traffic signal turns red
or decelerate and stop before the intersection, but unsafe for
it to take a weighted action like hesitating and entering the
intersection at a low speed.

To overcome these challenges, we propose a safety-
assured speculative planning framework with adaptive pre-
diction. The framework leverages prediction algorithms that
can provide one or more possible behaviors and future
trajectories of surrounding vehicles [33], [28], [34]. During
planning, the framework considers all those possibilities
and first rules out the actions that may be unsafe in the
worst case. Within the remaining actions, it selects the one
that maximizes the expected reward (representing system
performance) of all possible intentions and trajectories in
prediction results, with larger weights assigned to the more
likely ones. We consider such planning speculative because
the prediction results are likely to change over time. Thus,
our framework also checks the updated prediction results
over time and adapts them based on system states and traffic
environment, to filter out those impossible behaviors and
trajectories of the surrounding vehicles for more effective
planning. Moreover, we incorporate the prediction of the
aggressiveness level of the surrounding vehicles into our
prediction-planning interface, which may further reduce pre-
diction uncertainty and improve system performance.

In summary, the contributions of our work include:

• We propose a speculative planning method to address
the challenges in ambiguous scenarios where multiple
behaviors and trajectories of surrounding vehicles exist.
Our method considers all possible predicted behaviors and
trajectories, ensures system safety by ruling out actions
that may be unsafe in the worst case, and improves system
performance by sampling all possibilities and choosing the
action that maximizes the expected reward.

• Our planner leverages a prediction-planning interface that
incorporates uncertainty on both behavior level and trajec-
tory level, including the probability distribution of relevant
parameters. It reacts to the prediction changes in real time
and adapts the prediction results based on the system
states and traffic environment, to filter out impossible
behaviors and trajectories of surrounding vehicles as time
goes by for further improving system performance.

• We demonstrate the advantages of our approach over base-
line methods in improving system performance and en-
suring system safety, through extensive simulations under
various scenarios. Note that our approach is guaranteed to
be safe if the prediction results are conservative and there
exists a safe planning decision at the initial state.

The rest of the paper is organized as follows. In Section II,
we review related works on prediction and planning in
challenging scenarios. In Section III, we present our method
of speculative planning with adaptive prediction. Section IV
shows the experimental results and Section V concludes the
paper.

II. RELATED WORK

With the wide adoption of machine learning-based tech-
niques [35], the performance of trajectory prediction has sig-
nificantly improved over the last several years. Most works
predict the trajectories of traffic participants and evaluate
their accuracy [36], [27], [34], [37]. There are also some
works that consider both high-level behaviors and low-level
trajectories in the prediction algorithms. For instance, [38]
proposes an integrated lane change prediction model to pre-
dict the lane change decisions and lane change trajectories.
[39] develops a domain generalization method for prediction
in unseen scenarios, and mainly works on behavior predic-
tion. [40] performs both standard forecasting and the novel
task of conditional forecasting, which reasons about how all
agents will likely respond to the goal of a controlled agent. It
points out that goal/intent-conditioned trajectory forecasting
can improve joint-agent and per-agent predictions, compared
to unconditional forecast. [33] proposes a framework that
first explicitly predicts the distribution of an agent’s endpoint
over a discretized goal set and then completes the trajectories
conditioned on the selected goal points. The goal set is
designed with domain knowledge.

Planning has been a popular research topic for many years
in areas including robotics, automotive engineering, trans-
portation and autonomous driving. Various planner designs
are reviewed in [41], [42], [43], [44]. These planners can be
classified according to the inputs and assumptions. Most of
these planners such as [30], [45] take the latest system states
and environmental information as inputs, e.g., position and
velocity of surrounding vehicles, road geometry, and so on.
Based on the position and velocity of surrounding vehicles,
it is usually assumed that vehicles keep the same velocity
in the next few seconds [46], thus the trajectory is acquired.
Thus it is appropriate and convenient to take more accurately
predicted trajectories as inputs to these planners [30], [47].
There are also many planners with embedding models for
surrounding vehicles, which describe the reward function
with a set of parameters [24], [48] or neural networks [49],
[50]. These methods can model the interaction between
the ego vehicle and surrounding vehicles, and the future
trajectories of these agents are derived at the same time.

Significant progress has been made recently to reduce
the uncertainty and safety risks during interactions among
vehicles. Some works propose that it is safer and more
effective to conduct motion planning with pre-determined or
predicted behavior of surrounding vehicles [13], [51], [12].
Confidence-based methods [52], [53] are also promising in
human-robot interaction, where robots are designed to use
confidence-aware game theoretic models of human behavior
when assessing the safety [53]. Confidence gets updated
after comparing real human behavior and its predictions,
and safety is ensured by switching to a safe planner when
necessary. [31] integrates a probabilistic prediction model
into the design of reachability-based safety controllers to
achieve more efficient two-car collision avoidance. However,
it cannot ensure safety because it only reacts to the most



possible predicted trajectories of surrounding vehicles. [54]
introduces a Bayesian Long Short-term Memory (BLSTM)
model to predict the probability distribution of surrounding
vehicles’ positions, which are used to estimate dynamic
conflict risks. Model Predictive Control is then incorporated
to navigate vehicles through safe paths with the least pre-
dicted conflict risk. However, it only considers trajectory-
level uncertainty, and it could be over-conservative because
collision risk is the only term for optimization.

Some prediction methods provide more information to
quantify the uncertainty, which can improve the performance
of planners in uncertain and dynamic environments. For
instance, [55] uses Gaussian Mixture Model to describe the
predicted intentions, detailed waypoints, and corresponding
covariance for each waypoint. [26], [27] work on multimodal
trajectory predictions, and produce every trajectory’s prob-
ability by a prediction network. [56] predicts multimodal
potential trajectories with corresponding probabilities based
on a set of anchors. [28], [29] first predict possible goals
for surrounding vehicles and then generate multiple detailed
future trajectories. Our planner is compatible with a gen-
eral interface, which can include both behavior-level and
trajectory-level uncertainties.

III. OUR PROPOSED FRAMEWORK

A. An Illustrating Example

As stated in Section I, we consider lane changing in
multi-lane highway as a representative application. Fig. 2
shows an example scenario where the prediction for the
surrounding vehicle gets adapted to the system states and the
ego vehicle adjusts its action accordingly. Initially, as shown
in the subplot (a), when the two vehicles are still far away
from the highway off-ramp, the ego vehicle predicts that the
probabilities of different routes for the surrounding vehicle
are p1 = 0.8, p2 = 0.02 and p3 = 0.18. A few seconds later,
as shown in subplot (b), the surrounding vehicle is changing
to the right-most lane before the off-ramp. The prediction
gets adapted as the route 1 is no longer possible. Finally, as
shown in subplot (c), the surrounding vehicle exits from the
off-ramp, and route 3 becomes the only possible one.

We assume that the reward function measuring system
performance is the average speed of the ego vehicle. Our
planner behaves as follows. During (a), the ego vehicle
may keep its speed or accelerate since route 1 has the
highest probability for the surrounding vehicle, as long as
it is impossible to collide even in the worst case under all
three possible routes. During (b), the ego vehicle remains
safe because the less possible scenario (b) was considered
in the planning process during (a). The ego vehicle will
not necessarily decelerate harshly because route 3 is the
most possible one. During (c), the ego vehicle finds that the
surrounding vehicle indeed took the most possible route 3
in the prediction during (b), and can now accelerate without
hesitance.

Our speculative planning method maximizes the expected
reward, while leaving enough buffer space to ensure safety
for those less possible predicted scenarios, as shown below.

Fig. 2. The subplots (a), (b) and (c) show that the system states and the
prediction for the surrounding vehicle change as time goes on. Solid lines
and dash lines represent possible and impossible routes at that time. Note
that the surrounding vehicle’s states in (b) do not match the route prediction
with the highest probability in (a), but our planner can still ensure system
safety as it considers all possible predicted behaviors and trajectories.

B. Problem Formulation
We denote the system state with S= {dE ,dS,vE ,vS, lE , lS},

where d, v and l denote the traveled distance, the velocity of
the vehicle, and the lane that the vehicle is in, respectively.
The subscript E and S of these variables correspond to ego
vehicle and surrounding vehicle, respectively.

The probabilistic prediction of the surrounding vehicle’s
future trajectory can be represented as

P= {{ri, pi, fi(wi)}, i = 1,2, · · · ,N}, (1)

where ri denotes the discrete route choice, pi denotes the
probability of the route choice, wi denotes the vector of
related parameters to define a trajectory corresponding to
the route ri, and fi(wi) defines the probability distribution
of wi under the route ri. Assume that there are N different
possible route choices, we have

N

∑
i=1

pi = 1. (2)



We assume that the prediction is conservative such that
the real trajectory of the surrounding vehicle is always
included and bounded by the prediction. The real trajectory
is represented with {r̂, ŵ}, which are sampled from random
variables r and w given P. We have

r̂ = rk, fk(ŵ)> 0, ∃k ∈ {1,2, · · · ,N}. (3)

The system dynamics can be formulated as:

ḋE(t) = vE(t),
v̇E(t) = u(t),
lE(t)≡ lE(t0),
ḋS(t) = vS(t),
v̇S(t) = φ(ŵ),
lS(t) = ψ(r̂, ŵ,dS(t)),

(4)

where u(t) is the control input, representing the acceleration
for the ego vehicle E. t0 is the initial time, and lE(t)≡ lE(t0)
means that the ego vehicle will go straight and stay in the
lane. φ(ŵ) is a function to derive acceleration of surround-
ing vehicle S from the parameter vector ŵ. The function
ψ(r̂, ŵ,dS(t)) can determine the lane that the surrounding
vehicle is in. As shown in Fig. 1, we assign ids {0,1,2,3}
to lanes from the leftmost to the rightmost, and lane 3
corresponds to the off-ramp.

To ensure safety, the system need to satisfy

lE(t) ̸= lS(t) ∨ |dE(t)−dS(t)| ≥ dm, ∀t ≥ t0
∀r̂, ŵ, s.t. Eq. (3),

(5)

where dm is the minimum distance gap between vehicles to
prevent collisions. Let J(t) denote the reward function1. The
sum of reward function over horizon t ∈ [t0, th], ∑

th
t=t0 J(t), can

be transferred to another function Q(u(t0), ū, r̂, ŵ)2, based on
Eq. (4). Since r̂ and ŵ are unknown, our goal is to maximize
the expectation of Q(u(t0), ū,r,w) given the probabilistic
prediction P. Then we have

u(t0) = argmax
u(t0)

E(r,w)∈P

[
max

ū
(Q(u(t0), ū,r,w))

]
s.t. Eq. (5).

(6)

Similar to the receding horizon method in the Model Pre-
dictive Control, we will use only u(t0) for the current time
step, and run the optimization in Eq. (6) periodically for the
following control inputs.

C. Speculative Planning with Adaptive Prediction

Next we present our speculative planning algorithm, as
shown in Algorithm 1, which generates control input for
maximizing the expected reward. First, we set the initial
value of u(t) to be 0, representing no acceleration (line
1). Similarly, we set the initial values for reward Ω, safety
indicator Θ and the minimum distance gap between vehicles
δd (lines 2-4). Both Θ and δd are acquired by the safety

1J(t) is the short form of J(dE (t),dS(t),vE (t),vS(t), lE (t), lS(t),u(t)).
2ū represents a series of control inputs excluding u(t0), i.e., u(t0 + δ t :

δ t : th).

Algorithm 1: Speculative planning
Result: Control input u(t)
Input: S(t) = {dE(t),dS(t),vE(t),vS(t), lE(t), lS(t)},

P= {{ri, pi, fi(wi)}, i = 1,2, · · · ,N}
1 u(t)← 0.0;
2 Reward Ω← 0;
3 Safety indicator Θ← 1;
4 Minimum gap δd← 100;
5 at ← amin;
6 while at ≤ amax do
7 Θt ,δdt ← Sa f etyEval(S(t),P,at);
8 Ωt ← ExpectedReward(S(t),P,at);
9 if Θ == 1 && Θt == 0 then

10 u(t)← at ;
11 Ω←Ωt ;
12 Θ←Θt ;
13 δd← δdt ;
14 else if Θ == 0 && Θt == 0 && ϕ(Ωt ,δdt)≥

ϕ(Ω,δd) then
15 u(t)← at ;
16 Ω←Ωt ;
17 δd← δdt ;
18 end
19 at ← at +δa;
20 end

evaluation algorithm, as shown in Algorithm 2. Θ is a binary
variable, Θ = 0 denotes that the system is safe now and
there exists a series of control inputs ū to keep the system
safe, Θ = 1 denotes that the system is possible to be unsafe
given P. Then let the temporary variable at loop through
the acceleration range [amin,amax] (lines 5-6). We evaluate
the system safety (line 7) and compute the expected reward
given the probabilistic prediction P (line 8) for each at . If
we get safety assurance with current action at (line 9), or we
get a higher reward and a larger distance gap (line 14), we
update the control input u(t) and its corresponding reward,
safety indicator and minimum distance gap. ϕ(Ωt ,δdt) is a
function to balance reward and minimum gap, and a larger
value is preferred. We will prove the safety guarantee of our
algorithm (under certain conditions) later in Section III-D.

Safety evaluation is conducted as shown in Algorithm 2.
We initially assume that it is safe (line 1) and set the
minimum distance gap to be 100 (line 2). Then for every
possible route (line 3), we assess whether it is still feasible
according to the latest status of the surrounding vehicle S
(line 4). For example, if the surrounding vehicle is already
on the off-ramp to exit the highway, routes 1 and 2 become
impossible. We compute the union set of all possible future
spatial-temporal trajectories [57] of the surrounding vehicle,
Ti, even if the probability is small according to fi(wi) (line
5). Assume that the ego vehicle adopts the control input
at at the current time step, and it is allowed to take any
acceleration in the range [amin,amax] for the following steps to
prevent overlap with Ti. We compute the minimum distance



Algorithm 2: SafetyEval(): Safety evaluation
Result: Safety indicator Θt , minimum gap δdt
Input: S(t) = {dE(t),dS(t),vE(t),vS(t), lE(t), lS(t)},

P= {{ri, pi, fi(wi)}, i = 1,2, · · · ,N}, at
1 Θt ← 0;
2 δdt ← 100;
3 for i ∈ {1,2, · · · ,N} do
4 if IsFeasible(ri,dS(t), lS(t)) then
5 Ti← Tra j(dS(t),vS(t), lE(t), lS(t),ri, fi(wi));
6 δdmin←MinGap(Ti,dE(t),vE(t),at);
7 δdt ← min(δdt ,δdmin);
8 end
9 end

10 if δdt ≤ δds then
11 Θt ← 1;
12 end

gap between Ti and the future trajectory of ego vehicle, δdmin
(line 6). We will update δdt with δdmin acquired under route
ri (line 7). If the gap is even less than the threshold δds, it
is unsafe (lines 10-12). As stated before, this result is used
in Algorithm 2 (line 7).

Algorithm 3 presents the computation of the expected
reward given P. Let Ωt and pt denote the sum of weighted
reward and the sum of weights (i.e., probabilities), respec-
tively. We assign initial values for them (lines 1-2). Similarly
to Algorithm 2, we loop through each feasible route ri (lines
3-4) and adapt our prediction and probability distribution
according to the latest status of the surrounding vehicle (line
5). For example, assume that there is an appropriate road
segment for the lane changing, as the surrounding vehicle
moves forward towards the end of the road segment, the
range of possible lane-changing positions can be smaller,
thus the weight (i.e., probability) for the certain route needs
to be adjusted. Under the specific route ri, we sample the
vector of parameters wi,k to generate the trajectory of the
surrounding vehicle for Ns times (lines 7-8). We compute the
reward of the ego vehicle for each sample {ri,wi,k}, and Ωt,i
is the sum of all rewards (line 9). As Ωt,i/Ns is the averaged
reward under route ri, we update Ωt and pt accordingly (lines
11-12). Finally, Ωt is scaled to be the expected reward (line
15), which as stated before, is used in Algorithm 1 (line 8).

The prediction adaptation is based on two assumptions: (1)
the surrounding vehicle does not move backward; (2) after
a complete and safe lane changing, the surrounding vehicle
does not return back to the original lane. When the prediction
is outdated, we filter out those impossible behaviors and
trajectories of the surrounding vehicle based on its latest
status, and scale the probabilities of the remaining such that
the sum is still 1.

D. Safety Guarantee

Theorem 3.1: For a dynamical system defined by Eq. (4),
our proposed planner (Algorithms 1, 2 and 3) will ensure
system safety, if Eq. (3) holds and there exists a safe planning

Algorithm 3: ExpectedReward(): Computation of the
expected reward

Result: Reward Ωt
Input: S(t) = {dE(t),dS(t),vE(t),vS(t), lE(t), lS(t)},

P= {{ri, pi, fi(wi)}, i = 1,2, · · · ,N}, at
1 Ωt ← 0;
2 pt ← 0;
3 for i ∈ {1,2, · · · ,N} do
4 if IsFeasible(ri,dS(t), lS(t)) then
5 p

′
i, f

′
i (wi)← Adapt(dS(t), lS(t),ri, pi, fi(wi));

6 Ωt,i← 0;
7 for k ∈ {1,2, · · · ,Ns} do
8 wi,k← Sample( f

′
i (wi));

9 Ωt,i←Ωt,i +maxū(Q(at , ū,ri,wi,k));
10 end
11 Ωt ←Ωt + p

′
iΩt,i/Ns;

12 pt ← pt + p
′
i;

13 end
14 end
15 Ωt ←Ωt/pt ;

decision at the initial state of the system.
Proof: Let us prove this by contradiction. We first

assume that there exists a time ts such that Θ(ts) = 0 and
Θ(ts + δ t) = 1. According to Algorithm 1, if there exists
u(ts +δ t) such that Θt(ts +δ t) = 0, then Θ(ts +δ t) = 0. So
we have Θt(ts + δ t) = 1, ∀u(ts + δ t). According to Algo-
rithm 2, there exists at least one feasible route ri such that
δdmin(ts + δ t) ≤ δds < δdmin(ts), ∀u(ts + δ t). Since dE(ts +
δ t) and vE(ts + δ t) are acquired by substituting u(ts) into
Eq. (4), there exists an action at(ts+δ t) such that δdmin(ts+
δ t) = MinGap(Ti(ts + δ t),dE(ts + δ t),vE(ts + δ t),at(ts +
δ t)) = MinGap(Ti(ts + δ t),dE(ts),vE(ts),at = u(ts)). Thus,
MinGap(Ti(ts + δ t),dE(ts),vE(ts),at = u(ts)) < δdmin(ts) =
MinGap(Ti(ts),dE(ts),vE(ts),at = u(ts)). It requires Ti(ts +
δ t)\Ti(ts) ̸= /0. However, Ti is the union set of all possible
future spatial-temporal trajectories of the surrounding vehi-
cle, Ti(ts + δ t) ⊆ Ti(ts). From this contradiction, we know
that Θ≡ 0 and the system is safe under our proposed planner.

E. Surrounding Vehicle’s Model

It is worth noting that the generality of our planning
method will not be affected by the model of the surrounding
vehicle.

For longitudinal motion, we assume that the surrounding
vehicle is controlled to maintain the desired speed vd under
the acceleration function φ(ŵ). For lateral motion, we as-
sume that the surrounding vehicle indicates a right turn and
intends to change lanes when dS = d0

lc. The route is randomly
determined according to p1, p2 and p3. Route 1 corresponds
to change lane once, while route 2 and 3 need to change lanes
twice. Based on the selected route, the execution of first and
second lane changing happen at d1

lc and d2
lc, respectively.

We assume that d1
lc − d0

lc and d2
lc − d1

lc are closely related



to the personality of the driver, which is represented by
aggressiveness [24], [48]. We then have

δdlc = daqa +dc +dn, (7)

where qa, the aggressiveness level, is a real variable satisfy-
ing −1 ≤ qa ≤ 1. A larger qa represents a more aggressive
driver. da < 0 is the coefficient for the aggressiveness term,
and dc is a constant. With the noise term dn, d1

lc− d0
lc and

d2
lc−d1

lc are not necessarily the same. For a more aggressive
surrounding vehicle, d1

lc−d0
lc and d2

lc−d1
lc are smaller, which

leaves less time for the ego vehicle to react.

IV. EXPERIMENTAL RESULTS

A. Effectiveness of Our Approach

We compare system safety and performance under differ-
ent planners to demonstrate the strength of our approach:
baseline methods ‘IDM1’, ‘IDM2’ and ‘IDM3’ are all based
on Intelligent Driver Model [58], [59], which is a common
car following model in the transportation domain. ‘IDM1’
is the original version that the ego vehicle only follows the
surrounding vehicle in the same lane, ‘IDM2’ means that the
ego vehicle will follow the surrounding vehicle that intends
to change lanes from the adjacent lane as well, ‘IDM3’
means that the ego vehicle follows the surrounding vehicle
in any of the three lanes in the highway. A larger subscript
corresponds to earlier reactions to the surrounding vehicle,
which is expected to be safer and less efficient. Baseline
method ‘MPC’ represents the Model Predictive Control
approach [47], [60], [61], which can address the uncertainty
in the behavior and trajectory of the surrounding vehicle.
However, it does not consider the underlying probability
distribution. ‘SPAP’ is our proposed method, Speculative
Planning with Adaptive Prediction. For the reward function,
without losing generality, we assume that J(t) = vE(t).
’MPC+agg’ and ’SPAP+agg’ are extensions of MPC and our
method with consideration of vehicle aggressiveness.

We set the horizon of each simulation to be 12 seconds,
and the simulation step size and control step size δ t are both
at 0.1 second. The desired speed is vd = 25 m/s, and the
speed limit is 30 m/s in the highway. We randomly sample
the values for p1, p2 and p3 and evaluate the performance of
different planners with or without the predicted aggressive-
ness of the surrounding vehicle, as shown in Table I. Each
row corresponds to the averaged results of 10,000 simula-
tions. We can see that our SPAP and SPAP+agg planners
provide significant improvement on system performance
(larger average speed) over the baseline planners, while
ensuring system safety. SPAP+agg and MPC+agg provide
improvement over SPAP and MPC, as we assume that the
aggressive prediction is accurate and can help reduce the
uncertainty in predicting surrounding vehicle behavior (if
not, they may not provide such improvement).

We conduct additional experiments to further study the
impact of different route probabilities. Fig. 3 presents the
safety rate and average speed of the ego vehicle when the
probability of route 1, p1, changes. We set p3 = 0.2, and p2
is determined such that p1 + p2 + p3 = 1. As we expected,

TABLE I
SAFETY AND PERFORMANCE EVALUATION FOR DIFFERENT PLANNERS

WITH OR WITHOUT PREDICTED AGGRESSIVENESS OF THE

SURROUNDING VEHICLE.

Planners safety rate average speed final speed
IDM1 94.73% 24.73 m/s 24.68 m/s
IDM2 96.57% 23.76 m/s 23.38 m/s
IDM3 100% 22.96 m/s 23.82 m/s
MPC 100% 25.85 m/s 29.21 m/s

MPC+agg 100% 26.45 m/s 29.26 m/s
SPAP 100% 27.56 m/s 29.45 m/s

SPAP+agg 100% 27.90 m/s 29.53 m/s

Fig. 3. Safety rate and average speed of the ego vehicle under different
planners are compared when the probability of route 1, p1, changes. The
probabilities of the other two routes are set as p2 = 0.8− p1 and p3 = 0.2.

since it is route 2 that has the most interference with the ego
vehicle, the safety rate is the lowest when p1 = 0 and p2 =
0.8 for planners IDM1 and IDM2. The safety rate increases
when p1 increases gradually. For planners IDM3, MPC and
SPAP, there is no any collision. IDM3 is over-conservative
by its nature, MPC is formulated with safety constraints,
and our proposed SPAP has safety guarantee, as presented
in Section III-D.

Fig. 3 also shows that the average speed increases slightly
as p1 increases. For the three IDM-based planners, it meets
our expectation that a larger subscript corresponds to a less
efficient planner, thus resulting in a lower average speed.
MPC performs better than these IDM-based planners.

B. Real-Time Computation Complexity

Since the control step size is set to 0.1 second, the planner
could only be employed in real-time if the computation time
is within 0.1 second. To evaluate the real-time computation
complexity of our approach, we set p1 = 0.4, p2 = 0.4,



TABLE II
COMPUTATION TIME, SAFETY AND PERFORMANCE EVALUATION UNDER

DIFFERENT SAMPLING TIMES Ns .

Ns time cost safety rate average speed final speed
10 0.03 s 100% 26.21 m/s 28.39 m/s
25 0.04 s 100% 26.82 m/s 28.47 m/s
50 0.07 s 100% 27.30 m/s 28.64 m/s

100 0.12 s 100% 27.31 m/s 28.63 m/s
200 0.22 s 100% 27.27 m/s 28.64 m/s

p3 = 0.2 and conduct experiments in a server with Intel(R)
Xeon(R) Gold 6130 CPU @ 2.10GHz. We choose the
number of sampling times Ns to be 10, 25, 50, 100 and
200. Intuitively, the larger the Ns, the more accurately the
planner samples the prediction distribution and the better the
performance, however at a higher computational cost.

From the results in Table II, we can see that when Ns
increases from 10, 25 to 50, there is a substantial increase
of system performance (i.e., average speed the vehicle can
safely achieve). Further increasing Ns to 100 and 200 will
not lead to significant change in performance. Thus, Ns = 50
seems to be the sweet spot that balances performance and
computational load for this application. Note that the real-
time computation demand can be satisfied when Ns = 50, as
the time cost of 0.07 second is smaller than 0.1 (moreover,
the reported average computation time includes not only the
time spent on planning, but also the time on the simulator;
the real computation time is lower). We plan to conduct more
evaluations on other driving tasks and computing platforms
in the future work.

V. CONCLUSION

We presented a speculative planning framework to ensure
safety and improve performance in uncertain and ambiguous
traffic scenarios. By adapting the prediction results according
to the system states, impossible behaviors and trajectories of
the surrounding vehicle are filtered out, thus leading to more
effective planning. Through the case study of lane changing
in a multi-lane highway, we demonstrate the advantages of
our proposed planner over various baseline methods.

REFERENCES

[1] S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, and F. Diermeyer,
“Survey on scenario-based safety assessment of automated vehicles,”
IEEE access, vol. 8, pp. 87 456–87 477, 2020.

[2] D. Lee and D. J. Hess, “Regulations for on-road testing of connected
and automated vehicles: Assessing the potential for global safety
harmonization,” Transportation Research Part A: Policy and Practice,
vol. 136, pp. 85–98, 2020.

[3] A. Sinha, S. Chand, K. P. Wijayaratna, N. Virdi, and V. Dixit,
“Comprehensive safety assessment in mixed fleets with connected
and automated vehicles: A crash severity and rate evaluation of
conventional vehicles,” Accident Analysis & Prevention, vol. 142, p.
105567, 2020.

[4] R. Jiao, H. Liang, T. Sato, J. Shen, Q. A. Chen, and Q. Zhu, “End-to-
end uncertainty-based mitigation of adversarial attacks to automated
lane centering,” in 2021 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2021, pp. 266–273.

[5] K. K.-C. Chang, X. Liu, C.-W. Lin, C. Huang, and Q. Zhu, “A safety-
guaranteed framework for neural-network-based planners in connected
vehicles under communication disturbance,” in 2023 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE). IEEE, 2023,
pp. 1–6.

[6] X. Liu, “Safe and secure design of connected and autonomous
vehicles,” Ph.D. dissertation, Northwestern University, 2023.

[7] Q. Guo, L. Li, and X. J. Ban, “Urban traffic signal control with
connected and automated vehicles: A survey,” Transportation research
part C: emerging technologies, vol. 101, pp. 313–334, 2019.

[8] U. Montanaro, S. Dixit, S. Fallah, M. Dianati, A. Stevens, D. Oxtoby,
and A. Mouzakitis, “Towards connected autonomous driving: review
of use-cases,” Vehicle system dynamics, vol. 57, no. 6, pp. 779–814,
2019.

[9] Y. Guo, J. Ma, C. Xiong, X. Li, F. Zhou, and W. Hao, “Joint
optimization of vehicle trajectories and intersection controllers with
connected automated vehicles: Combined dynamic programming and
shooting heuristic approach,” Transportation research part C: emerg-
ing technologies, vol. 98, pp. 54–72, 2019.

[10] C. Stogios, D. Kasraian, M. J. Roorda, and M. Hatzopoulou, “Simu-
lating impacts of automated driving behavior and traffic conditions on
vehicle emissions,” Transportation Research Part D: Transport and
Environment, vol. 76, pp. 176–192, 2019.

[11] P.-C. Chen, X. Liu, C.-W. Lin, C. Huang, and Q. Zhu, “Mixed-traffic
intersection management utilizing connected and autonomous vehicles
as traffic regulators,” in Proceedings of the 28th Asia and South Pacific
Design Automation Conference, 2023, pp. 52–57.

[12] Z. Cao, E. Bıyık, W. Z. Wang, A. Raventos, A. Gaidon, G. Rosman,
and D. Sadigh, “Reinforcement learning based control of imitative
policies for near-accident driving,” arXiv preprint arXiv:2007.00178,
2020.

[13] X. Liu, C. Huang, Y. Wang, B. Zheng, and Q. Zhu, “Physics-aware
safety-assured design of hierarchical neural network based planner,”
in 2022 ACM/IEEE 13th International Conference on Cyber-Physical
Systems (ICCPS), 2022, pp. 137–146.

[14] W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann,
J. Kummerle, H. Konigshof, C. Stiller, A. de La Fortelle, et al.,
“Interaction dataset: An international, adversarial and cooperative
motion dataset in interactive driving scenarios with semantic maps,”
arXiv preprint arXiv:1910.03088, 2019.

[15] R. Jiao, X. Liu, T. Sato, Q. A. Chen, and Q. Zhu, “Semi-supervised
semantics-guided adversarial training for trajectory prediction,” arXiv
preprint arXiv:2205.14230, 2022.

[16] X. Liu, R. Jiao, B. Zheng, D. Liang, and Q. Zhu, “Safety-driven
interactive planning for neural network-based lane changing,” in
Proceedings of the 28th Asia and South Pacific Design Automation
Conference, 2023, pp. 39–45.

[17] R. Jiao, J. Bai, X. Liu, T. Sato, X. Yuan, Q. A. Chen, and Q. Zhu,
“Learning representation for anomaly detection of vehicle trajectories,”
arXiv preprint arXiv:2303.05000, 2023.

[18] Y. Jin, X. Liu, and Q. Zhu, “Dsrc & c-v2x comparison for connected
and automated vehicles in different traffic scenarios,” arXiv preprint
arXiv:2203.12553, 2022.

[19] X. Liu, N. Masoud, Q. Zhu, and A. Khojandi, “A markov decision
process framework to incorporate network-level data in motion plan-
ning for connected and automated vehicles,” Transportation Research
Part C: Emerging Technologies, vol. 136, p. 103550, 2022.

[20] X. Liu, B. Luo, A. Abdo, N. Abu-Ghazaleh, and Q. Zhu, “Securing
connected vehicle applications with an efficient dual cyber-physical
blockchain framework,” in 2021 IEEE Intelligent Vehicles Symposium
(IV). IEEE, 2021, pp. 393–400.

[21] X. Liu, R. Jiao, B. Zheng, D. Liang, and Q. Zhu, “Connectivity
enhanced safe neural network planner for lane changing in mixed
traffic,” arXiv preprint arXiv:2302.02513, 2023.

[22] X. Liu, Y. Luo, A. Goeckner, T. Chakraborty, R. Jiao, N. Wang,
Y. Wang, T. Sato, Q. A. Chen, and Q. Zhu, “Invited: Waving the
double-edged sword: Building resilient cavs with edge and cloud
computing,” in Proceedings of the 60th Annual Design Automation
Conference, 2023, pp. 1–4.

[23] B. Luo, X. Liu, and Q. Zhu, “Credibility enhanced temporal graph
convolutional network based sybil attack detection on edge computing
servers,” in 2021 IEEE Intelligent Vehicles Symposium (IV). IEEE,
2021, pp. 524–531.

[24] H. Yu, H. E. Tseng, and R. Langari, “A human-like game theory-based



controller for automatic lane changing,” Transportation Research Part
C: Emerging Technologies, vol. 88, pp. 140–158, 2018.

[25] P.-Y. Huang, K.-W. Liu, Z.-L. Li, S. Park, E. Andert, C.-W. Lin,
and A. Shrivastava, “Compatibility checking for autonomous lane-
changing assistance systems,” in 2022 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2022, pp. 1161–
1164.

[26] H. Cui, V. Radosavljevic, F.-C. Chou, T.-H. Lin, T. Nguyen, T.-K.
Huang, J. Schneider, and N. Djuric, “Multimodal trajectory predictions
for autonomous driving using deep convolutional networks,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 2090–2096.

[27] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urta-
sun, “Learning lane graph representations for motion forecasting,” in
Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part II 16. Springer, 2020,
pp. 541–556.

[28] H. Zhao, J. Gao, T. Lan, C. Sun, B. Sapp, B. Varadarajan, Y. Shen,
Y. Shen, Y. Chai, C. Schmid, et al., “Tnt: Target-driven trajectory
prediction,” in Conference on Robot Learning. PMLR, 2021, pp.
895–904.

[29] J. Gu, C. Sun, and H. Zhao, “Densetnt: End-to-end trajectory pre-
diction from dense goal sets,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 15 303–
15 312.

[30] Y. Luo, Y. Xiang, K. Cao, and K. Li, “A dynamic automated lane
change maneuver based on vehicle-to-vehicle communication,” Trans-
portation Research Part C: Emerging Technologies, vol. 62, pp. 87–
102, 2016.

[31] A. Li, L. Sun, W. Zhan, M. Tomizuka, and M. Chen, “Prediction-based
reachability for collision avoidance in autonomous driving,” in 2021
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021, pp. 7908–7914.

[32] W. Zhan, C. Liu, C.-Y. Chan, and M. Tomizuka, “A non-conservatively
defensive strategy for urban autonomous driving,” in 2016 IEEE
19th International Conference on Intelligent Transportation Systems
(ITSC). IEEE, 2016, pp. 459–464.

[33] L. Sun, C. Tang, Y. Niu, E. Sachdeva, C. Cho, T. Misu, M. Tomizuka,
and W. Zhan, “Domain knowledge driven pseudo labels for in-
terpretable goal-conditioned interactive trajectory prediction,” arXiv
preprint arXiv:2203.15112, 2022.

[34] Y. Liu, J. Zhang, L. Fang, Q. Jiang, and B. Zhou, “Multimodal motion
prediction with stacked transformers,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
7577–7586.

[35] Q. Zhu, C. Huang, R. Jiao, S. Lan, H. Liang, X. Liu, Y. Wang,
Z. Wang, and S. Xu, “Safety-assured design and adaptation of
learning-enabled autonomous systems,” in Proceedings of the 26th
Asia and South Pacific Design Automation Conference, 2021, pp. 753–
760.

[36] R. Jiao, X. Liu, B. Zheng, D. Liang, and Q. Zhu, “Tae: A semi-
supervised controllable behavior-aware trajectory generator and pre-
dictor,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2022, pp. 12 534–12 541.

[37] M. Ye, T. Cao, and Q. Chen, “Tpcn: Temporal point cloud networks for
motion forecasting,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 11 318–11 327.

[38] Q. Xue, Y. Xing, and J. Lu, “An integrated lane change predic-
tion model incorporating traffic context based on trajectory data,”
Transportation Research Part C: Emerging Technologies, vol. 141,
p. 103738, 2022.

[39] Y. Hu, X. Jia, M. Tomizuka, and W. Zhan, “Causal-based time
series domain generalization for vehicle intention prediction,” in 2022
International Conference on Robotics and Automation (ICRA). IEEE,
2022, pp. 7806–7813.

[40] N. Rhinehart, R. McAllister, K. Kitani, and S. Levine, “Precog:
Prediction conditioned on goals in visual multi-agent settings,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 2821–2830.
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