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Abstract— We consider a search problem where a robot has
one or more types of sensors, each suited to detecting different
types of targets or target information. Often, information in
the form of a distribution of possible target locations, or
locations of interest, may be available to guide the search.
When multiple types of information exist, then a distribution
for each type of information must also exist, thereby making
the search problem that uses these distributions to guide the
search a multi-objective one. In this paper, we consider a multi-
objective search problem when the ”cost” to use a sensor is
limited. To this end, we leverage the ergodic metric, which
drives agents to spend time in regions proportional to the
expected amount of information there. We define the multi-
objective sparse sensing ergodic (MO-SS-E) metric in order
to optimize when and where each sensor measurement should
be taken while planning trajectories that balance the multiple
objectives. We observe that our approach maintains coverage
performance as the number of samples taken considerably
degrades. Further empirical results on different multi-agent
problem setups demonstrate the applicability of our approach
for both homogeneous and heterogeneous multi-agent teams.

I. INTRODUCTION
In several applications, robots need to explore a target

region and gather information about it, typically to cover the
region or to locate objects of interest. Many such search and
coverage applications require balancing multiple objectives.
For example, in planetary exploration the goal is to maximize
the amount of scientific information retrieved by a planetary
rover, while avoiding risky areas. Many of these objectives
can be encoded as information distributions called objec-
tive maps. Different objective maps could require different
types of sensors to read in information, leading to robots
having to consider multiple objectives simultaneously while
coordinating different sensors. In applications where sensing
measurements are expensive, difficult, or limited in number,
optimizing the use of available sensors while effectively
gathering information about the region is important.

In this work, we embrace an information-based search
strategy, called ergodic search, to address the multi-objective
and limited sensing budget issues. Trajectories planned using
ergodic optimization drive the search agent to spend time in
regions of the search domain in proportion to the expected
amount of information there, thus balancing exploration and
exploitation [1]. Optimizing the ergodic metric ties to better
coverage of the a priori information distribution. Ergodic
search processes can be leveraged to tackle both aspects of
the multi-objective sparse sensing problem. Ergodic search
processes can be augmented to incorporate sampling decision
times that are solutions to a convex optimization problem,
where the sampling solutions result in improved coverage of
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Fig. 1: A heterogeneous multi-agent team covers multiple
objectives using sparse sensor measurements. The agent
trajectories are shown in gray on a scalarized combination
of three objective maps - blue, yellow, and green. Sensing
locations are indicated using the corresponding sensor’s
color. Each agent is equipped with a different set of sensors,
indicated by the colored circles within each agent, where
each sensor can read information from its corresponding
objective map. The color of the agent corresponds to the
sensor currently being used to take a measurement. Agents
are white when they are not taking any measurements.

the search region [2]. Further, ergodic search processes also
lend themselves to multi-objective planning [3].

This paper presents an approach to planning resource-
efficient trajectories that balance multiple objectives for
robots with multiple sensors (example result shown in Fig 1).
We introduce a metric that takes into account multiple
objectives and sensing decisions for multiple sensors. Us-
ing this metric in ergodic optimization, we experimentally
show improved coverage of multiple objective maps while
requiring fewer sensing measurements. We demonstrate the
efficacy of this approach both on synthetic and real-world
data, for both single and multi-agent coverage scenarios.

II. BACKGROUND AND PRIOR WORK

A. Multi-Objective Planning

A popular existing approach to multi-objective trajectory
planning is genetic algorithms. These require generating
many full solutions, which can be time- and memory-
intensive [4]–[7]. Graph-based approaches tend to utilize Di-
jkstra’s algorithm, A*, or D* search [8]–[10].Such methods
are effective for applications that have well-defined start and
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goal locations, but are not well-suited to exploration-focused
problems, since they don’t focus on covering a region.

Recent work has focused on ergodic planning over mul-
tiple objective maps. The Multi-Objective Ergodic Search
(MO-ES) method finds a set of Pareto-optimal trajectories
given multiple objective maps [3]. The Pareto-optimal set
of trajectories is built by employing single-objective ergodic
search on scalarized combinations of the multiple objectives.
The scalarized combinations are defined by a set of “weight
vectors”, one for each Pareto-optimal trajectory, which de-
scribes how the objective maps were weighted and added
together to form a “scalarized” objective map that was used
to plan the corresponding trajectory.

B. Sparse Sensing in Ergodic Optimization

Sparse sensing techniques are useful in applications
plagued by resource limitations. Most prior work focuses on
using sparse sensor measurements (and therefore sparse data)
to accomplish tasks like localization and SLAM [11], [12]
and depth reconstruction [13]. However, post-optimizing for
sparse data points does not help reduce costs for limited on-
board resources. While intelligently using limited data does
help improve the performance of resource-limited robotic
systems, further improvements can be made by deciding
when and where to take these limited measurements. This
can be done by leveraging ergodic optimization to determine
where to take the most informative measurements.

The proportion of time a robot spends at a state x ∈ X ,
where X ⊂ IRd is the d-dimensional search domain is called
the spatial time-average statistic of the trajectory (γ), and is
defined as

Ct(x, γ(t)) =
1

t

∫ t

0

δ(x− γ(τ))dτ, (1)

where the Dirac delta function is denoted as δ.
The time-averaged statistics of a robot’s trajectory should

match the expected information density across the map. The
difference between these two distributions is computed using
the Fourier decomposition of each. The weighted sum of the
difference between the distributions’ Fourier coefficients is
called the ergodic metric [1], Φ(·), and is defined as

Φ(γ(t)) =

K∑
k=0

αk |ck(γ(t))− ξk|2 , (2)

where K is the number of Fourier bases chosen, ck and ξk are
the Fourier coefficients of the time-average statistics of the
trajectory and the objective map being covered respectively,
and αk are the weights of each coefficient difference.

The required set of sensor measurements can be found
using sparse ergodic optimization [2]. The sparse ergodic
optimization problem is posed as follows,

u∗(t), λ∗(t) = argminu,λ Φ
′(γ(t)),

subject to q̇ = f(q(t),u(t)), ∥u(t)∥ ≤ umax

(3)

where q ∈ Q is the state, u ∈ U denotes the set of controls,
and λ(t) ∈ {0, 1}. λ(t) represents the decision variable for
choosing whether to take a sensor measurement or not at a
given location in the search domain. Sparsity is promoted

Fig. 2: A single agent (left) and a heterogeneous multi-agent
team (right) cover multiple objectives using sparse sensor
measurements. Agent trajectories are shown on a scalarized
combination of three objective maps - blue, yellow, and
green. The colored circles on each agent represent the sensors
onboard each agent. The color of the agent corresponds to the
sensor currently being used to take a measurement. Agents
are white when they are not taking any measurements.

in the sample measurements by regularizing λ with an L1

optimization [14]. The sparse ergodic metric, Φsparse(·) is,

Φsparse(γ(t)) =

K∑
k=0

αk |ck(γ(t), λ(t))− ξk|2+
∑

|λk|. (4)

The spatial time-average statistics of the agent’s trajectory
for the sparse ergodic optimization problem are,

Ct
sparse(x, γ(t)) =

1∑
t λ(t)

t∑
τ=0

λ(t)δ(x− γ(τ)), (5)

where λ(t) ∈ {0, 1}.
Defining λ(t) to be an integer results in Eq 3 being a mixed

integer programming problem. Due to a lack of gradient
information from the integer variables, such mixed integer
programming problems are computationally very expensive
to solve [15]. The sparse ergodic optimization problem can
be relaxed by defining λ(t) to be a bounded continuous
variable λ(t) ∈ [0, 1], and projecting the resulting continuous
values to the nearest integer values while adhering to the
sensing budget. This relaxation has been experimentally
shown to significantly reduce computation time without
sacrificing performance of the planned trajectories [2].

III. MULTI-OBJECTIVE SPARSE ERGODIC OPTIMIZATION

A. Multi-Objective Sparse Sensing Ergodic Metric

This work approaches multi-objective sparse sensing in
two steps. First, we extend the ergodic metric to define the
multi-objective sparse sensing ergodic metric, which takes
into account multiple objective maps, and sampling decisions
for different sensors. Second, we apply this formulation
to three different coverage problem variations: single agent
exploration, exploration using a homogeneous multi-agent
team, where each agent is equipped with the same sensor
suite, and exploration using multiple heterogeneous agents,
where each agent is equipped with a different sensor suite.

Our approach to multi-objective sparse ergodic optimiza-
tion is based on crafting a metric that drives trajectories to
balance the multiple objectives, while jointly optimizing the



trajectory and sampling decision variables associated with
different sensors. To this end, we propose a multi-objective
sparse sensing variant of the ergodic metric, that we call
the MO-SS-E metric, by defining two parts to the multi-
objective sparse sensing ergodic optimization problem. First,
the ergodic value as defined in Eq. 2 of the agent’s trajec-
tory is evaluated on a weighted combination of the given
objectives. Second, sparse ergodic optimization is extended
to incorporate sampling decision vectors for multiple sensors.
Note that each sensor in consideration is associated with one
of the given objectives. Further, in this work we assume that
an agent can use only one sensor at a time. An example
trajectory for single agent optimization using the MO-SS-E
metric is shown in Fig 2.

We construct the MO-SS-E metric by augmenting the
ergodic metric in the following manner

ΦMO-SS-E(γ(t)) =

Trajectory and sensing decisions for each objective map︷ ︸︸ ︷
N∑
i=1

K∑
k=0

αk |ck(γ(t), λi(t))− ξi,k|2

+

N∑
i=1

K∑
k=0

|λi,k|︸ ︷︷ ︸
Promote sample sparsity

+

K∑
k=0

αk

∣∣∣ck(γ(t))− ξ
′

k

∣∣∣2︸ ︷︷ ︸
Trajectory on combined objective maps

(6)

where ck and ξk are the Fourier coefficients of the time-
average statistics of an agent’s trajectory γ(t) and the ith

desired spatial distribution of N given objective spatial
distributions, and αk are the weights of each coefficient
difference. ξ

′

k is the Fourier coefficients of the N objective
distributions combined into one.

The spatial time-average statistics of the agent’s trajectory
are also modified to be,

Ct
MO-SS-E(x, γ(t)) =

1∑N
i=1

∑
t λi(t)

N∑
i=1

t∑
τ=0

λi(t)δ(x−γ(τ)),

(7)
where λi(t) ∈ {0, 1}∀i ∈ [0, N).

We optimize for agent trajectory using the MO-SS-E
metric by posing the following optimization problem,

u∗(t),Λ∗(t) = argminu,Λ Φ′(γ(t)),

subject to q̇ = f(q(t),u(t)), ∥u(t)∥ ≤ umax

(8)

where q ∈ Q is the state, u ∈ U denotes the set of controls,
and {λ0(t), ...λN−1(t)} ∈ Λ where λi(t) ∈ {0, 1}∀i ∈
[0, N). λi(t) represents the decision variable for sampling
with the ith sensor at a given location in the search domain.
We promote sparsity in samples by regularizing λi∀i ∈
[0, N) with an L1 optimization [14].

We leverage the MO-ES approach [3] to combine the
given objectives in order to derive ξ

′

k. MO-ES gives a set
of pareto-optimal weighting schemes to combine a given set
of objective maps into one information distribution using
a weighted sum. In order to maintain autonomy in our
approach, and avoid the need for a human making the choice,
we use the TOPSIS method [16] to select a weighting scheme

from the pareto set, which has been shown to be a good
choice for this purpose [17].

λi(t) is defined to be an integer (i.e. λi(t) ∈ {0, 1}),
resulting in Eq 8 being a mixed integer programming prob-
lem. As explained in Sec II, we employ a relaxation of the
problem Eq 8 by defining λi(t) to be a bounded continuous
variable λ(t) ∈ [0, 1], and projecting λi from the continuous
domain to the nearest integer value after optimization, while
adhering to the sensing budget.

B. Multi-Objective Coverage Problem Variants

We consider multi-objective coverage problems in three
categories (depicted in Fig 3): single-agent exploration,
homogeneous multi-agent exploration, and heterogeneous
multi-agent exploration. In both the single agent and the
homogeneous multi-agent cases, each agent is equipped with
all of the required sensors. In the heterogeneous multi-agent
case, each agent is equipped with a subset of sensors.

In single agent coverage problems, the agent is equipped
with multiple sensors, one for each of the objective maps in
consideration. For example, if we consider blue, green, and
yellow objective maps, as in Fig 2, the search agent has a
blue sensor, a green sensor, and a yellow sensor on board.
The presented formulation of the MO-SS-E metric (Eq 6) is
directly applied to the single agent case.

For a multi-agent team covering a set of objective maps,
the limited number of measurements can be distributed
among the different agents and different sensors. For a team
of M agents, the modified joint spatial time-average statistics
of the set of agent trajectories {γi}Mi=1 are defined as

C ′t(x, γ(t)) =
1

Mt
∑M−1

i=0

∑N−1
i=0

∑
t λm,i(t)

M−1∑
i=0

N−1∑
i=0

t∑
0

λm,i(t)δ(x− γm(τ)),

(9)

where λm,i(t) ∈ {0, 1}∀ integers i ∈ [0, N),m ∈ [0,M).
In the case of a homogeneous multi-agent team, each agent

is equipped with all of the sensors in consideration, so, we
can directly apply the MO-SS-E metric (Eq (6)).

For a heterogeneous multi-agent team, we account for the
different sensors on-board each robot by setting the sensing
decision vectors for all sensors not on-board to zero. For
example, consider a coverage problem where the number
of objectives N = 3, and the number of agents M = 3.
Let agent m = 0 have sensor i = 0, agent m = 1 have
sensor i = 1, and agent m = 2 have sensor i = 0. In this
setup, we set λ0,1 = 0⃗ and λ0,2 = 0⃗ in the MO-SS-E metric
(Eq (6)). Similarly, we set λ1,0 = 0⃗, λ1,2 = 0⃗, λ2,0 = 0⃗, and
λ2,1 = 0⃗. The same method is used to account for agents
being equipped with different subsets of sensors.

IV. EXPERIMENTS

Our approach to multi-objective sparse sensing ergodic
optimization is evaluated on two different kinds of data:
synthetic Gaussian information distributions (representing
objective maps in general search and coverage tasks), and



Fig. 3: The different agent setups being considered in this
work, with sensor suites defined assuming three objective
maps - blue, yellow, and green.

objective maps from data collected of Cuprite, NV using
remote sensing instruments (Fig 4). This section details how
the objective maps are generated, and the experimental setups
used to evaluate our approach.

A. Synthetic Data

The objective maps used for our synthetic data experi-
ments are generated by placing Gaussian peaks at different
locations to represent the entropy or uncertainty of the
corresponding region, with higher values corresponding to
higher uncertainty of information.

B. Real-World Data

1) Entropy Map: The static entropy map encodes the un-
certainty of scientific information, and therefore the interest
in exploring each region. We use the entropy map formu-
lation proposed by Candela et al. with the low-resolution
Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) satellite data as the prior [18], [19].
We use high-resolution Airborne Visible Near Infrared Spec-
trometer - New Generation (AVIRIS-NG) data as a proxy
for in-situ samples [20], [21]. In order to focus the ergodic
search on areas of high entropy, we threshold the entropy
maps (setting areas of high entropy above 75% of the max
value to 1).

2) Shade Map: This static objective is a map of the
shadowed areas of the search region, called the shade map.
The rover is solar powered, so in order to increase power
generation, the rover should prefer visiting sunlit areas. We
use raycasting on a digital elevation model (DEM) of the
field site to generate a map of shaded regions. Shadows have
a low value while sunlit regions have a high value, which
encourages the rover to stay in sunny areas.

3) Slope Map: The slope of the terrain in our test site
acts as a proxy for risk, so the rover avoids high sloped
areas and prefers driving over low slopes. In order to do
this, the rover needs a good understanding of the slope of
the regions it traverses. To generate this risk map, we use a
Sobel image filter (used for edge detection) on a DEM of
the region. We opt to use slope as an estimate of risk for
simplicity and because of the limited information available
for slip characterization [18].

(a) Entropy map (b) Shade map (c) Slope map

Fig. 4: Set of objective maps derived from real-world data.

C. Experiment Scenarios

For each of the agent setups described, namely single
agent, homogeneous multi-agent, and heterogeneous multi-
agent, we test our approach on three-objective coverage
problems using each data set. We assume that each agent can
only use one sensor at a time, based on simplified version of
applications like planetary exploration. For the multi-agent
experiments, we average results across different team sizes
(three to ten agents). Due to numerical differences, we report
the results for the two data sets separately.

We compare our coverage results to two different baseline
approaches. The first is standard ergodic optimization, where
sensor measurements are uniformly distributed along the
optimized trajectory. The second is a probabilistic heuris-
tic with a two step process: first we optimize an ergodic
trajectory, then we sample measurement locations based on
the distribution of information under the ergodic trajectory.
Coverage performance on all objective maps is evaluated
using the ergodic metric described in Eq 2. A lower ergodic
metric value signals better coverage of the objective map.

The performance statistics for each method and sensing
budget are averaged across 25 randomized experiment setups
each, where initial information maps are varied between
experiments. For each method, four different sensing budgets
were used. Agents’ starting positions, initial information
maps, and sensing budgets are kept identical among experi-
ments with different controllers to ensure comparable results.

V. RESULTS AND DISCUSSION

We empirically show that ergodic optimization using the
MO-SS-E metric results in better performance on multiple
objectives with lower sensing budgets in comparison to
baseline methods. We demonstrate that our approach can
be applied to single agent, homogeneous multi-agent, and
heterogeneous multi-agent multi-objective coverage prob-
lems. Further, we experimentally show that our approach
is effective for both simulated and real-world data. In this
section we detail our numerical results.

Looking at the results of the single agent experiments
(detailed in Table I), using the MO-SS-E metric resulted in
better coverage performance compared to baseline methods,
in terms of the ergodic metric, on many objective maps, as
the sensing budget is reduced. For some of the objectives,
such as the shade map and the slope map, the MO-SS-E met-
ric approach shows a bigger performance degradation with
sensing budget reduction. This could be a function of how
similar the different objective maps are, since the shade and



Single Agent Experiments on Synthetic Data
Φ(γ) of Objective 1 Φ(γ) of Objective 2 Φ(γ) of Objective 3

Sensing Budget Percent 10 25 50 85 10 25 50 85 10 25 50 85
Uniform Sampling 0.081 0.079 0.075 0.074 0.137 0.134 0.130 0.126 0.073 0.071 0.070 0.067

Probabilistic Heuristic 0.075 0.061 0.053 0.072 0.115 0.100 0.088 0.125 0.064 0.061 0.057 0.067

MO-SS-E Metric 0.076 0.065 0.052 0.071 0.114 0.089 0.087 0.125 0.062 0.058 0.052 0.064

Single Agent Experiments on Real-World Data
Φ(γ) of Entropy Map Φ(γ) of Shade Map Φ(γ) of Slope Map

Sensing Budget Percent 10 25 50 85 10 25 50 85 10 25 50 85
Uniform Sampling 5.494 5.109 4.803 4.120 6.928 6.109 5.718 4.994 5.464 5.129 4.843 4.350

Probabilistic Heuristic 5.198 4.354 3.815 4.123 6.532 5.237 4.059 4.977 5.056 4.300 3.899 4.089

MO-SS-E Metric 5.124 4.349 3.812 4.093 6.578 5.249 4.013 4.963 5.104 4.319 3.852 4.043

TABLE I: Comparative evaluation of single agent experiments using the ergodic metric (Φ(γ)).
Homogeneous Multi-Agent Experiments on Synthetic Data

Φ(γ) of Objective 1 Φ(γ) of Objective 2 Φ(γ) of Objective 3
Sensing Budget Percent 10 25 50 85 10 25 50 85 10 25 50 85

Uniform Sampling 0.080 0.079 0.077 0.075 1.159 1.135 1.127 1.102 0.074 0.069 0.065 0.063

Probabilistic Heuristic 0.073 0.071 0.066 0.074 1.093 1.036 0.096 1.093 0.065 0.057 0.057 0.059

MO-SS-E Metric 0.071 0.068 0.062 0.068 1.119 1.041 0.084 1.088 0.067 0.057 0.052 0.058

Homogeneous Multi-Agent Experiments on Real-World Data
Φ(γ) of Entropy Map Φ(γ) of Shade Map Φ(γ) of Slope Map

Sensing Budget Percent 10 25 50 85 10 25 50 85 10 25 50 85
Uniform Sampling 5.411 5.106 4.793 4.053 6.855 6.084 5.677 5.015 5.431 5.036 4.808 4.425

Probabilistic Heuristic 5.074 4.222 3.806 4.069 6.510 5.207 4.035 4.958 5.003 4.225 3.830 3.979

MO-SS-E Metric 5.076 4.252 3.796 4.019 6.520 5.225 3.987 4.914 5.014 4.249 3.781 3.968

TABLE II: Comparative evaluation of homogeneous multi-agent experiments using the ergodic metric (Φ(γ)).
Heterogeneous Multi-Agent Experiments on Synthetic Data

Φ(γ) of Objective 1 Φ(γ) of Objective 2 Φ(γ) of Objective 3
Sensing Budget Percent 10 25 50 85 10 25 50 85 10 25 50 85

Uniform Sampling 0.080 0.074 0.073 0.069 1.360 1.333 1.285 1.254 0.075 0.071 0.069 0.066

Probabilistic Heuristic 0.074 0.064 0.062 0.069 1.116 0.979 0.090 1.113 0.064 0.057 0.052 0.061

MO-SS-E Metric 0.071 0.063 0.059 0.068 1.112 0.978 0.075 1.099 0.065 0.059 0.048 0.059

Heterogeneous Multi-Agent Experiments on Real-World Data
Φ(γ) of Entropy Map Φ(γ) of Shade Map Φ(γ) of Slope Map

Sensing Budget Percent 10 25 50 85 10 25 50 85 10 25 50 85
Uniform Sampling 5.434 4.992 4.654 4.370 6.889 6.021 5.676 5.090 5.381 4.956 4.725 4.480

Probabilistic Heuristic 5.049 4.228 3.718 4.049 6.443 5.054 3.873 4.949 4.973 4.188 3.838 3.967

MO-SS-E Metric 5.056 4.248 3.715 4.025 6.478 5.101 3.857 4.858 5.010 4.237 3.816 3.928

TABLE III: Comparative evaluation of heterogeneous multi-agent experiments using the ergodic metric (Φ(γ)).

slope maps are highly correlated (as described in Sec IV).
We assume that an agent can only take a measurement with
one sensor at a time, which negatively impacts performance
on coverage problems with highly correlated objective maps,
since information can be gathered from only one objective
map at a time, leading to an agent needing to spend more
time in any region that is interesting in multiple objectives.

The results of multi-agent experiments (detailed in Ta-
bles II and III) show the same comparative results: opti-
mization with the MO-SS-E metric outperforms both taking
uniform samples and using a probabilistic heuristic to dis-
tribute samples over standard ergodic trajectories as sensing
budget reduces. An example result from our heterogeneous
multi-agent experiments is shown in Fig 2.

We observe that the probabilistic heuristic approach leads
to better coverage performance than the MO-SS-E metric

approach at very low sensing budgets for multi-agent ex-
periments run on real-world data collected at Cuprite, NV.
In addition to the performance degradation caused by each
agent being able to use only one sensor at a time, the
performance differences could be an artifact of the way
we combine objective maps. For example, if the chosen
weighting scheme in these cases weights one objective map
significantly higher than the others, optimization using the
MO-SS-E metric would result in trajectories that focus on
covering the higher weighted objective, leading to worse
performance on the other objectives.

Our empirical results support the notion that jointly opti-
mizing for agent trajectory and sensing locations improves
performance. Further, we see that specifically accounting for
balancing multiple objectives in sparse ergodic optimization
leads to better use of limited sensing resources.



VI. CONCLUSIONS

In this paper we extend the ergodic metric to jointly
optimize for coverage of multiple information distributions,
sensing trajectory, and the decision of where to take sensing
measurements with different sensors. We define the multi-
objective sparse sensing ergodic metric in which the decision
to take a measurement with each sensor is encoded in a
vector of decision variables, and the sensing trajectory is
additionally optimized over a pareto-efficient combination
of the objective maps. We further explore the application of
the MO-SS-E metric to multi-objective coverage problems
using a single agent, homogeneous multi-agent teams, and
heterogeneous multi-agent teams.

This work experimentally shows that optimizing trajec-
tories with the MO-SS-E metric leads to better coverage
performance with smaller numbers of samples. Numerical
results on both simulated Gaussian information maps and
real-world data show that ergodic optimization with the
MO-SS-E metric leads to better coverage performance than
baseline approaches, particularly for lower sensing budgets.
The performance of this formulation could lead to wider
applicability of robotic solutions in resource-limited settings.

Future work will look into sensor fusion and accounting
for taking multiple measurements simultaneously. This work
assumes the availability of accurate a priori information
maps, and accurate sensor measurements, which is not the
case for many real-world applications. Future work will
investigate using the MO-SS-E metric with inaccurate a
priori information, and incorporating sensor noise.
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