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Abstract— Autonomous navigation of ground robots on un-
even terrain is being considered in more and more tasks.
However, uneven terrain will bring two problems to motion
planning: how to assess the traversability of the terrain and
how to cope with the dynamics model of the robot associated
with the terrain. The trajectories generated by existing methods
are often too conservative or cannot be tracked well by the
controller since the second problem is not well solved. In this
paper, we propose terrain pose mapping to describe the impact
of terrain on the robot. With this mapping, we can obtain
the SE(3) state of the robot on uneven terrain for a given
state in SE(2). Then, based on it, we present a trajectory
optimization framework for car-like robots on uneven terrain
that can consider both of the above problems. The trajectories
generated by our method conform to the dynamics model of
the system without being overly conservative and yet able to
be tracked well by the controller. We perform simulations and
real-world experiments to validate the efficiency and trajectory
quality of our algorithm.

I. INTRODUCTION

An increasing number of tasks require ground robots to
navigate autonomously on uneven terrain, such as forest
rescue, wilderness exploration, mining transportation, etc. As
well as localization, mapping, and control, motion planning
is a crucial part of autonomous navigation systems. Exist-
ing 2D indoor navigation techniques for ground robots are
relatively mature, and there are many open-source, practical
motion planning algorithms [1]–[3]. However, none of them
can be directly adapted to uneven terrain, since most of
them ignore the essential fact that some properties of the
terrain (such as height and curvature) will change with
spatial location. Considering this fact mainly brings two new
problems for motion planning:

1) How do we measure and consider the traversability of
terrain in motion planning?

For example, in general, we want the robot to travel on flat
terrain instead of steep areas; even for similarly traversable
terrain, one with firm, gentle soil while the other filled with
rough gravel, we prefer the robot to travel on the former since
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Fig. 1: A car-like robot driving on uneven terrain, the
green line indicates the trajectory optimized by the proposed
method.

the latter is more rugged and driving on it may be detrimental
to other modules of the robot. Thus, the slope and roughness
of the terrain should be considered in the planner.

2) How should we deal with the dynamics model of the
robot associated with the terrain?

As shown in the bottom right corner of Fig. 1, suppose
the car-like robot is driving on a sloping surface. The throttle
required for the robot to reach the same acceleration in the
body frame is different for uphill and downhill due to the
presence of gravity. If the planner ignores the terrain in the
dynamics model, the planned trajectory may be infeasible
for the robot. Thus, it is necessary to handle the dynamics
coupled with the terrain so that the controller can better track
the trajectory.

An effective planner for robots on uneven terrain should
consider both of these problems. The first problem is related
to the safety of the robot, and the second problem is
related to the executability of the trajectory. Attributed to the
nonlinearity of the terrain, the rising dimensionality of the
problem due to the high-dimensional robot state space, and
the coupling of the robot dynamics model with the changing
terrain, most existing work [4]–[9] cannot address the second
problem well. As a result, the trajectories generated by these
methods are often too conservative or cannot be tracked well
by the controller.

To compensate for the shortcomings of existing methods
due to the above factors, in this paper, through a mapping for
describing the interaction between the terrain and the robot,
we design an efficient optimization-based planning frame-
work for car-like robots, which allows to considering both
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the first and the second problem effectively. The trajectories
generated by our method conform to the dynamics model of
the system without being overly conservative and yet able to
be tracked well by the controller.

We model the motion planning problem of car-like robots
on uneven terrain as an optimal control problem. Then, we
propose terrain pose mapping to describe the impact of
terrain on the robot. With this mapping, we can obtain the
SE(3) state of the robot on uneven terrain for a given state in
SE(2). Also, we will show an algorithm that approximately
constructs this mapping. Finally, we use piecewise polynomi-
als to represent the trajectory and simplify the problem to a
nonlinear constrained optimization problem containing con-
straints of non-holonomic dynamics, curvature, etc, which
can be solved using numerical optimization algorithms. Be-
sides, We perform comprehensive tests in simulation and real
world to validate our method. Contributions of this paper are:

1) We propose terrain pose mapping to describe the impact
of terrain on the robot and present an efficient algorithm
to construct it approximately.

2) We propose an optimization-based planning framework
for car-like robots on uneven terrain, which allows
considering terrain curvature and dynamics of the robot.

3) We open source our software1 for the reference of the
community.

II. RELATED WORKS

A. Motion Planning for Car-like Robots

The popularity of autonomous driving has extensively
promoted the research of motion planning for car-like robots.
Existing approaches can be roughly divided into sampling-
based and optimization-based methods. The former is repre-
sented by RRT* [10] and its variants, which ensure global
optimality with sufficiently dense sampling. For the non-
holonomic constraint of car-like robots, many algorithms that
consider the nonlinear dynamics of the robot while sampling
have been proposed [11]–[14], enhancing the efficiency
of sampling-based planners in more scenarios. Although
sampling-based methods can avoid local minima in non-
convex environments, they confront a dilemma between
computation overhead and trajectory quality.

Optimization-based approaches [15]–[20] usually model
the motion planning problem of a car-like robot as an optimal
control problem (OCP) and represent the trajectory with
discrete state points, then simplify the problem to nonlinear
model predictive control (NMPC) problem [18] or simpler
quadratically constrained quadratic programming, quadratic
programming [15], [16], which can be solved by numerical
optimization algorithms.

B. Motion Planning on Uneven Terrain

In recent years, many works are trying to solve the two
problems mentioned in Sec.I, and most of them focus on the
first one by combining various geometric information [4]–
[8], exploiting conditional value-at-risk [21], fusing semantic

1https://github.com/ZJU-FAST-Lab/uneven_planner

information [22], [23], etc. For the second problem, most of
them either avoid it in planning [5], [8] or consider only the
geometric properties of the trajectory [4], [7], leaving the
other problems to the controller.

Krüsi et al. [4] presented a practical approach to global
motion planning and terrain assessment for car-like robots
in generic 3D environments, which assesses the traversability
of terrain on demand during motion planning. However, in
the face of complex environments, this work often requires
a huge number of samples to generate trajectories, which
does not guarantee real-time performance. To address the
shortcomings of this method, Jian et al. [6] proposed a plane-
fitting based uneven terrain navigation framework, which uti-
lizes informed-RRT* [24] as the front end. It refines the path
using Gaussian Process Regression [25] and finally generates
dynamically feasible local trajectories by solving an NMPC
problem. Although this work considers the changing terrain
within NMPC, their method is inefficient in generating long
trajectories because the complexity of the NMPC problem
will rise dramatically as the planning horizon becomes
longer. In order to assess the traversability more precisely,
Zhang et al. [26] considers the suspension system when the
robot is stationary, but it requires an accurate identification
of the robot’s physical parameters and estimation of landing
points of the four tires, which is less efficient.

The work [27] uses surfel to represent the points cloud,
incorporating both kinematic and physical constraints of
robots, enabling efficient sampling-based planners for chal-
lenging navigation on uneven terrain. Nevertheless, the gen-
erated trajectory does not contain information about the
robot’s speed and acceleration with respect to time. Besides,
when employing Dubins or Reeds Sheep state spaces, this
method takes too long to converge to near-optimal paths.
Wang et al. [9] proposed an optimization-based planning
framework for ground robots considering both active and
passive height changes on the z-axis. The trajectories planned
by their method can provide dynamical information related
to time and have excellent smoothness, benefiting from the
penalty field for chassis motion constraints defined in R3.
Although this method considers the velocity and acceleration
of the trajectory in 3D space, the optimized trajectory is
often dynamic infeasible or too conservative as the dynamics
coupled with the changing terrain is not taken into account.

III. PLANNING FRAMEWORK

A general motion planning problem for ground robots on
uneven terrain can be expressed as the following optimal
control problem:

min
u(t)

∫ tf

0

τ(s(t), s(1)(t), ..., s(s)(t),u(t))dt+ ρ(tf ) (1)

s.t. ṡ(t) = f(s(t),u(t)), (2)
Ter(s(t)) = 0, (3)

Cp(s(t), s(1)(t), ..., s(s)(t),u(t)) ⪯ 0, (4)

where s is the state of the robot, s(∗) is the ∗-th order
derivative of s, u is the control input of the robot, ρ :

https://github.com/ZJU-FAST-Lab/uneven_planner


[0,∞) 7→ [0,∞) is the time regularization. τ(∗) denotes the
cost associated with the task, such as energy, risk, etc. Eq.(2)
and Eq.(3) denote the state transfer equation and terrain
contact constraint, respectively. In this work, we assume
that the robot must be in contact with the terrain and its
wheels do not slip. Eq.(4), where Cp(∗) : ∗ 7→ RNp and
0 = [0, 0, .., 0]T ∈ RNp , denote Np inequality constraints
of the robot, including dynamics constraints, traversability
constraints, etc.

In this section, we will present how we simplify the state
description of a car-like robot on uneven terrain by a mapping
F called terrain pose mapping, and give a specific algorith-
mic procedure for constructing this mapping. Then, we pa-
rameterize the state trajectory as piecewise polynomials and
give explicit expressions for the control inputs, dynamical
variables with the help of this mapping and the state transfer
equation. Since τ(∗) may differ from task to task, in this
paper, we propose an exemplary cost function that combines
terrain curvature and trajectory smoothness. Finally, we will
analyze the more specific trajectory optimization problem
after these processes, which can be solved using numerical
optimization algorithms.

A. Terrain Pose Mapping

Using the simplified bicycle model [28] and describing
the state of a car-like robot on uneven terrain by a SE(3)
state with the position p = [x, y, z]T ∈ R3 and the attitude
R = [xb, yb, zb] ∈ SO(3), we can write the robot’s model as
follows:

ṗ = xb · vx, (5)

Ṙ = R⌊vx tan δ
Lw

· zb⌋, (6)

where vx is the velocity along the body axis xb, δ is the
steering angle, Lw is the wheelbase length of the robots, the
operation ⌊∗⌋ takes a vector to a skew-symmetric matrix. It
is worth noting that on flat ground, the state of the robot can
be represented using only sr = [x, y, θ]T ∈ SE(2). However,
due to the presence of uneven terrain, we need to use a higher
dimensional representation for the state.

In this work, we consider the terrain contact constraint
(4) brings about actually a mapping relation called terrain
pose mapping F : SE(2) 7→ R × S2+, where S2+ ≜ {x ∈
R3 | ∥x∥2 = 1, x · b3 > 0},b3 = [0, 0, 1]T. This means that
the state in SE(2), which is originally on flat ground, is
given height and attitude, with elements in R representing
the height z, elements in S2+ representing the body axis zb.
It is worth noting that we do not use the entire 2D sphere
S2 ≜ {x ∈ R3 | ∥x∥2 = 1}, but S2+, because in a common
task, we do not want the body axis zb to face the lower
half-plane, which requires high speed and is not safe.

Let xyaw = [cos θ, sin θ, 0]T denote the direction of yaw
angle, the mapping F can be expressed as two functions:

z = f1(x, y, θ), (7)
zb = f2(x, y, θ). (8)

Using the Z-X-Y Euler angles to represent the attitude of the
robot, we can obtain:

p = [x, y, z]T = [x, y, f1(x, y, θ)]
T, (9)

yb =
f2(x, y, θ)× xyaw

∥f2(x, y, θ)× xyaw∥
, (10)

xb = yb × f2(x, y, θ). (11)

Thus, the terrain contact constraint allows us to still use
elements in SE(2) to describe the state of the robot on
uneven terrain.

Many methods can be used to construct the mapping F ;
the most accurate method is to remotely drive the robot onto
real terrain, collect accurate localization data and fit it, but
this method is ineffective for regions that the robot has not
reached. Usually, it is easier for the robot to obtain the point
cloud of the environment by some LIDAR-based SLAM
algorithms [29]. Thus, in this paper, we propose a simple
and efficient method to obtain the mapping F from the
point cloud by using an iterative plane-fitting strategy while
considering the size and attitude of the robot. The pipeline
for processing each SE(2) state is shown in Algorithm 1.

Algorithm 1: Get the result of F at a SE(2) state
Input: state sr ∈ SE(2), Iteration times Niter,

Ellipsoidal parameters (ex, ey, ez)
Output: zb, z
begin

zb ← b3;
z ← FindNearestXYPointZ(sr);
for each i ∈ Niter do

(pi, Ri)← CalculateSE3(sr, z, zb);
Gi ← FindEllipsoidPoints(pi, Ri, ex, ey, ez);
pmean ← GetMeanPosition(Gi);
Cov ← ZeroSquareMatrix3();
for each pj ∈ Gi do

pe ← pj − pmean;
Cov ← Cov + pep

T
e ;

pmean ← pmean/NumOf(Mi);
Cov ← Cov/NumOf(Mi);
zb ← GetMinEigenVec(Cov);
z ← pmean.GetZ();

return zb, z;

For a SE(2) state, zb is first initialized to b3, then we
search the point cloud for a neighboring point whose (x, y)
coordinate is nearest, and use the height of this point as the
initial value of z. Thus, we can obtain the corresponding
SE(3) state of the robot. Next, the points in an ellipsoidal
region related to the robot’s size, position, and attitude will
be taken out. And so, zb will be updated by the eigenvector
corresponding to the smallest eigenvalue of their covariance
matrix, z will be updated by the average of the heights of
the points, which allows us to obtain the new ellipsoid region
for the next iteration.



(a) process of the construction.

(b) when θ = θ0. (c) when (x, y) = (xc, yc).

Fig. 2: The Process and Results of Constructing Mapping
F . Figure (a) illustrates the process of Algorithm 1, where
the gray vehicles indicate the robot poses obtained in each
iteration. Figures (b) and (c) show the different z and zb
when θ or position (x, y) is fixed, respectively, where the
blue points are the original point cloud. The heights of the red
points in Figure (b) and Figure (c) indicate the height z ∈ R.
The black line on each point indicates the zb ∈ S2+ with the
direction pointing from the point to the sky. In Figure (c),
black lines and red dot heights on each circle indicate zb and
z respectively when the position is the center of the circle
(xc, yc) but θ ∈ SO(2) is different. Here, zb may vary with
θ at the same position (xc, yc), since the neighboring area
of the robot may be rugged rather than a flat plane.

We discretize SE(2) space into grids and fit F for the
state corresponding to each grid. When the value or gradient
corresponding to a SE(2) state is required, we then compute
it using trilinear interpolation, where operations on manifold
[30] are used for the processing of SO(2) and S2+. Fig. 2
illustrates the process and results of constructing mapping
F through the example environments.

B. Trajectory Parameterization

In this paper, we use quintic piecewise polynomials to
represent state trajectories. Since the mapping F allows state
space of the robot still be SE(2), each piece of trajectory
can be denoted as:

xi(t) = cT
xi
γ(t), t ∈ [0, Ti]; (12)

yj(t) = cT
yj
γ(t), t ∈ [0, Tj ]; (13)

θk(t) = cT
θk
γ(t), t ∈ [0, Tk]; (14)

where i = 1, 2, ..., Ni; j = 1, 2, ..., Nj ; k = 1, 2, ..., Nk is the
index of piecewise polynomial, T∗, ∗ = {i, j, k} is the dura-
tion of a piece of the trajectory, c∗ ∈ R6, ∗ = {xi, yj , θk} is
the coefficient of polynomial, γ(t) = [1, t, t2, ..., t5]T is the
natural base.

We also add the constraint that the trajectory is four times
continuously differentiable at the segmented points to obtain
more continuous trajectories. Thus, let the whole trajectory

be x(t) = [x(t), y(t), θ(t)]T, yyaw = [− sin θ, cos θ, 0]T,
combining with Eq.(5) and Eq.(6), we can compute the con-
trol inputs and dynamical variables analytically as follows:

vx =
v

cosϕx
, (15)

ax =
at

cosϕx
+ g sinφx, (16)

ay =
an

cosϕy
+ g sinφy, (17)

ωz =
ω

cos ξ
, (18)

κ =
vx
ωz

, (19)

δ = arctan(Lw · κ), (20)

where

v =
√

ẋ2 + ẏ2, (21)
at = ẍ cos θ + ÿ sin θ, (22)
an = −ẍ sin θ + ÿ cos θ, (23)

ω = θ̇, (24)

cosϕx = xT
bxyaw, cosϕy = yT

byyaw, (25)

sinφx = xT
bb3, sinφy = yT

bb3, (26)

cos ξ = zT
bb3, (27)

ax, ay, ωz, κ denote longitude acceleration, latitude accelera-
tion, angular velocity, and curvature, respectively. It is worth
noting that cosϕx, cosϕy, sinφx, sinφy, cos ξ are all related
to Eq.(8). When zb = b3, both control inputs and dynamical
variables degenerate to the case that the ground is flat.

C. Trajectory Optimization

In this paper, we propose the cost function τ = j(t)Tj(t)+
ρter · σ(x(t)), where j(t) = x(3)(t) denotes the jerk of the
trajectory, and its square integral represents the smoothness
of the trajectory, ρter is a constant. σ(x(t)) is Surface Vari-
ation proposed by [31] to approximate the terrain curvature,
which can be obtained while calculating F , since σ(x) =
λ0/

∑2
i=0 λi, where λ0 ≤ λ1 ≤ λ2 are eigenvalues of the

covariance matrix of points in the ellipsoidal region near x.
We formulate the trajectory optimization problem for car-

like robots on uneven terrain as:

min
cxy,cθ,Txy,Tθ

∫ Ts

0

(j(t)Tj(t) + ρterσ(x(t)))dt+ ρTTs (28)

s.t. ẋ sin θ − ẏ cos θ = 0, (29)
Mxycxy = bxy, Mθcθ = bθ, (30)
Txy ⪰ 0, Tθ ⪰ 0, (31)

v2x − v2max ≤ 0, (32)

a2x − a2mlon ≤ 0, (33)

a2y − a2mlat ≤ 0, (34)
ω2
z

v2x + δ+
− tan2 δmax

L2
w

≤ 0, (35)

cmin − cos ξ ≤ 0, (36)
σ(x)− σmax ≤ 0, (37)



where cxy = [[cx1
, cy1

]T, [cx2
, cy2

]T, ..., [cxM
, cyM

]T]T ∈
R6M×2, cθ = [cT

θ1
, cT

θ2
, ..., cT

θΩ
]T ∈ R6Ω×1 are coefficient

matrix, M and Ω represent the number of pieces of the
piecewise polynomial of x, y and θ, respectively. In this
paper, we make the trajectory of theta have more pieces (i.e.
Ω > M ) to better fit the non-holonomic constraint (29).

Txy = [T1xy, T2xy, ..., TMxy]
T ∈ RM , Tθ =

[T1θ, T2θ, ..., TΩθ]
T ∈ RΩ are time vectors, satisfying

∥Txy∥1 = ∥Tθ∥1 = Ts. Eq.(30) is combination of the conti-
nuity constraint mentioned in last subsection and boundary
condition of the trajectory:

[x(0), x(1)(0), x(2)(0)] = [xinit, x(1)init, x(2)init], (38)

[x(Ts), x(1)(Ts), x(2)(Ts)] = [xfina, x(1)fina, x(2)
fina], (39)

so Mxy ∈ R(5M+1)×6M , Mθ ∈ R(5Ω+1)×6Ω.
Conditions (32)∼(35) are dynamic feasibility constrains,

including limitation of longitudinal velocity vx, longitude
acceleration ax, latitude acceleration ay , and curvature κ,
where v2max, a

2
mlon, a

2
mlat, δmax are constants. δ+ in con-

dition (35) is a very small positive constant to avoid the
zero denominators. Conditions (36) and (37) are limitations
of attitude and terrain curvature, where cmin, σmax are
constants. We consider it unsafe for the robot to have too
large ξ or too large terrain curvature.

To deal with Eq.(30), we use the method proposed by
work [32], which allows eliminating Eq.(30) and converting
the optimization variable cxy, cθ to the segmentation point
positions qxy ∈ R(M−1)×2 and qθ ∈ RΩ−1, thus reducing
the dimensionality of the problem. Moreover, we refer to
the differential homogeneous mapping [33], using the C2

function mentioned in work [34] to map each element T∗ ∈
R+ in Txy and Tθ to R, eliminating the constraints (31). As
for the remaining non-holonomic constraint (29) and other
inequality constraints (32)∼(37), we discretize each piece of
the duration Tixy as K time stamps t̃ij = (j/K) · Tixy ,
(i = 1, 2, ...,Mxy, j = 0, 1, ...,K − 1), and impose the
remaining constraints on these time stamps, thus the number
of constraints of the problem (28) becomes 7KMxy . We also
use this method to discretize σ(x(t)) and obtain its integral
accumulatively.

Then, we use PHR Augmented Lagrange Multiplier
method [35] (PHR-ALM) to solve the simplified problem,
which is a method for solving constrained optimization prob-
lems, smoothing the dual function by adding quadratic terms,
iteratively solving the approximate unconstrained problem
and updating the dual variables. Besides, L-BFGS [36] is
chosen as the unconstrained optimization algorithm to work
with PHR-ALM. It is a quasi-Newton method that can
estimate the Hessian matrix from the previous objective
function values and gradients with limited memory.

Last but not least, the gradients of the objective function
and the constraints need to be calculated explicitly. It is
easy to derive them using the chain rule, except for σ and
cosϕx, cosϕy, sinφx, sinφy, cos ξ with respect to f2. For σ,
since we can obtain it together with f2, the gradient can be
obtained using trilinear interpolation as well; for the others,

let zb ≜ [a, b, c]T, sin θ ≜ sθ, cos θ ≜ cθ, r ≜ cθa + sθb,
s ≜ asθ − bcθ, we give their gradients with respect to state
x as follows:

∇x cosϕx = ∇x(
√
1− r2) = −r(1− r2)−

1
2∇xr, (40)

∇x cosϕy = ∇x(
c√

1− r2
) (41)

= (1− r2)−
1
2∇xc+ r(1− r2)−

3
2 c∇xr, (42)

∇x sinφx = ∇x(−
rc√
1− r2

) (43)

= −r(1− r2)−
1
2∇xc− (1− r2)−

3
2 c∇xr (44)

∇x sinφy = ∇x(
s√

1− r2
), (45)

= (1− r2)−
1
2∇xs+ r(1− r2)−

3
2 s∇xr, (46)

∇x cos ξ = ∇x(bT
3zb) = ∇xc. (47)

In this work, we use the points in a unit circle on the X-
Y plane to represent zb ∈ S2+, i.e., a2 + b2 < 1, c =√
1− a2 − b2. Thus, ∇xs,∇xr are easily obtained since
∇xa,∇xb are obtained by trilinear interpolation. For ∇xc,
due to c =

√
1− a2 − b2, ∇xc = −(a∇xa+ b∇xb)/c.

IV. RESULTS

A. Implementation details

In order to validate the performance of our method in real-
world applications, we deploy it on a car-like robot, as shown
in Fig. 3. All computations are performed by an onboard
computer NVIDIA Jetson Nano. We utilize NOKOV Mo-
tion Capture System2 for localization. Furthermore, a MPC
controller [37] with position feedback is fitted to the robot
for trajectory tracking. We adopt the lightweight hybridA*
algorithm as the front end of the planner and use Dubins
Curve [38] to shoot the end state for earlier termination of the
search process. Besides, the implementation of the L-BFGS
utilizes an open-source library LBFGS-Lite3. All simulations
are run on a desktop with an Intel i7-12700 CPU.

B. Real-World Experiments

In the real-world experiments, as seen in Fig. 3, we require
the car-like robot to traverse two terrain models made of
foam with distinct raised areas, obstacles, and slopes in order
to test whether the proposed mapping F can help the plan-
ner generate safe and dynamically feasible trajectories for
robots on uneven terrain. Limitation of longitudinal velocity,
longitude acceleration, latitude acceleration, steering angle,
attitude, and terrain curvature are set to vmax = 0.8m/s2,
amlon = 5.0m/s2, amlat = 5.0m/s2, δmax = 0.505,
cmin = 0.86 and σmax = 0.05, respectively. Meanwhile,
we set the time weight ρT = 500 and the terrain curvature
weight ρter = 10 to ensure the aggressiveness of the tra-
jectory. Fig. 6 shows some cases with different starting and
ending points in our tests.

Furthermore, to know the variation of relevant variables
(e.g., attitude ξ̂, forward velocity v̂x, etc.) during the motion

2https://en.nokov.com/
3https://github.com/ZJU-FAST-Lab/LBFGS-Lite

https://en.nokov.com/
https://github.com/ZJU-FAST-Lab/LBFGS-Lite


Fig. 3: Real-World Experiments: In this case, the car-like
robot needs to go downhill and uphill twice, traverse two
terrains, and avoid the not traversable area determined by
conditions (36) and (37). The length of the planned trajectory
in 3D space (the red curve) is 5.496m, planning time
consuming is 1.603s. The bottom half of this figure shows
the visualization in RViz.

of the robot, we make statistics in Tab. I for the case shown
in Fig. 3. As we can see, the robot maintains a relatively
high speed and small tracking error throughout to reach the
target state without violating the constraints we set. More
demonstrations can be found in the attached multimedia.

C. Simulation Experiments

To testify the effectiveness of our method in more ex-
tensive and complex environments, we build an open-source
simulation environment based on Gazebo4. There are some
typical uneven terrain, including deserts, mining area, vol-
canic area, etc. We simulate a car-like robot driving in
different environments. For example, in the uneven forest, the
robot needs to avoid obvious obstacles such as shrubs and
trees; in an extinct volcanic environment, the robot needs
to find a flatter entrance when crossing the crater. As for
desert and mining area, the robot must maintain a balance
between traversability and path length while planning the
trajectory to traverse them. Fig. 4 shows the robot navigating
autonomously through different simulation scenarios.

4https://gazebosim.org/

Fig. 4: A car-like robot navigating autonomously through
different uneven terrain.

TABLE I: Statistics in Real-World Experiments

Statistics Mean Max STD.

v̂x (m/s) 0.684 0.800 0.212

ξ̂ (rad) 0.117 0.366 0.108

Tracking Error (m) 0.059 0.109 0.025

D. Benchmark Comparisons

In this subsection, we compare the proposed planning
algorithm with Krüsi’s [4], Jian’s [6] and Wang’s [9] meth-
ods. We first compared the velocity curve of the trajectory
with the last two works. The comparison is conducted on
mountainous terrain, as shown in Fig. 5a. In addition, the
maximum velocity and longitude acceleration were set to
vmax = 0.5m/s and amlon = 5.0m/s2, respectively. As can
be seen from the curves in Fig. 5b, our trajectory planner can
better utilize the maneuverability of the robot. The trajectory
planned by Wang’s method [9] is shorter. However, because
their method does not consider the terrain contact constraint,
it is easy to optimize the trajectory to a not traversable area.
Moreover, the generated trajectory violates the constraint
of maximum velocity(vx) of the robot since the dynamics
coupled with the changing terrain is not taken into account.
Regarding Jian’s method [6], although the changing terrain
is modeled in the NMPC problem, for two reasons, the
trajectory planned by their method is less optimal and has
a longer execution time and length. The first reason is that
they do not consider the execution time in the optimization.
The second one is the insufficient iterations of the sampling-
based front end.

To further quantitatively measure the performance of the
trajectory with existing methods, some generic evaluation
metrics are used to compare, including the mean of planning
time consuming (tp), mean curvature of the trajectory (κm)
which reflects the smoothness of the trajectory, and mean of
tracking error (Traerr). We chose four scenes in our simu-
lation environment mentioned in Sec. IV-C. All parameters
are finely tuned for the best performance of each method.

More than one thousand comparison tests are performed in
each scene with random starting and ending states. Since the
trajectory generated by Krüsi’s method [4] does not provide

https://gazebosim.org/


(a) Trajectory visualization in mountainous terrain.

(b) Comparison of velocity curves of trajectories.

Fig. 5: Trajectory Visualization and Comparison

TABLE II: Benchmark Comparison

Method
tp(s) κm(m−1) Traerr(m)

proposed 0.301 0.710 0.086
Krüsi’s [4] 4.696 1.530 -
Jian’s [6] 0.450 0.910 0.101

Wang’s [9] 0.960 0.717 0.117

time-related information, we did not count its Traerr. The
result is summarized in Table II. It states that mean planning
time of Krüsi’s method [4] is much longer than that of other
three. This is because the maximum curvature constraint of
the robot limits the size of the trajectory library used in this
method. Wang’s method [9] also has a long planning time
due to the absence of a better heuristic function for graph
search. Our trajectories are smooth and have a small mean
curvature since the polynomial is used to represent the trajec-
tory and the norm of its high-order derivatives is minimized.
Moreover, thanks to our rational formulation of the problem
and optimization strategy providing better continuity of the
robot states and their finite-dimensional derivatives, as well
as our effective consideration of traversability using terrain
curvature, our trajectories are easier to track by the controller.

In Table II, our method achieves better performance in
terms of mean of planning time consuming tp, mean cur-
vature of the trajectory κm and mean of tracking error
Traerr, which shows that the algorithm we propose is more
efficient and effective. The trajectories generated based on
the proposed planning framework have higher quality.

V. CONCLUSION

In this paper, we propose the mapping F : SE(2) 7→
R × S2+ to describe the impact of terrain on the robot and
present an efficient algorithm to construct it approximately.
Using this mapping to model the motion of a car-like
robot on uneven terrain, we present a trajectory optimization
framework for car-like robots on uneven terrain that can
consider terrain curvature and dynamics of the robot. Real-
world experiments and simulation benchmark comparisons
validate the efficiency and quality of our method. In fact,
more factors can also be considered in this framework in the
form of constraints, such as obstacles and user-defined risks.

However, there is still space for improvement in our
method. We did not consider the suspension system of the
robot, the interaction of the robot’s tires with the ground and
the possible tire skidding. Also, in more complex scenarios
(e.g., weedy land, deserts, muddy land), it is challenging to
construct accurate dynamics models of the robot in contact
with the terrain, which may require a combination of other
tools, such as neural networks, stochastic processes, etc.

In the future, we will extend this algorithm to multi-layer
environments and more difficult field environments. Besides,
to further exploit the advantages of the efficiency of our
method, local re-planning will be considered and adapted
to the dynamic environments.
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generic sensor fusion algorithms with sound state representations
through encapsulation of manifolds,” Information Fusion, vol. 14,
no. 1, pp. 57–77, 2013.

[31] M. Pauly, M. Gross, and L. P. Kobbelt, “Efficient simplification
of point-sampled surfaces,” in IEEE Visualization, 2002. VIS 2002.
IEEE, 2002, pp. 163–170.

[32] Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically constrained tra-
jectory optimization for multicopters,” IEEE Transactions on Robotics,
vol. 38, no. 5, pp. 3259–3278, 2022.

[33] J. Leslie, “On a differential structure for the group of diffeomor-
phisms,” Topology, vol. 6, no. 2, pp. 263–271, 1967.

[34] Z. Han, Y. Wu, T. Li, L. Zhang, L. Pei, L. Xu, C. Li, C. Ma, C. Xu,
S. Shen, et al., “Differential flatness-based trajectory planning for
autonomous vehicles,” arXiv preprint arXiv:2208.13160, 2022.

[35] R. T. Rockafellar, “Augmented lagrange multiplier functions and du-
ality in nonconvex programming,” SIAM Journal on Control, vol. 12,
no. 2, pp. 268–285, 1974.

[36] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for
large scale optimization,” Mathematical programming, vol. 45, no. 1,
pp. 503–528, 1989.

[37] K. R. Muske and J. B. Rawlings, “Model predictive control with linear
models,” AIChE Journal, vol. 39, no. 2, pp. 262–287, 1993.

[38] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of mathematics, vol. 79, no. 3, pp.
497–516, 1957.


	Introduction
	Related Works
	Motion Planning for Car-like Robots
	Motion Planning on Uneven Terrain

	Planning Framework
	Terrain Pose Mapping
	Trajectory Parameterization
	Trajectory Optimization

	Results
	Implementation details
	Real-World Experiments 
	Simulation Experiments 
	Benchmark Comparisons

	Conclusion
	References

