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Abstract— Prism-based LiDARs are more compact and
cheaper than the conventional mechanical multi-line spinning
LiDARs, which have become increasingly popular in robotics,
recently. However, there are several challenges for these new
LiDAR sensors, including small field of view, severe motion
distortions, and irregular patterns, which hinder them from
being widely used in LiDAR odometry, practically. To tackle
these problems, we present an effective continuous-time LiDAR
odometry (ECTLO) method for the Risley-prism-based LiDARs
with non-repetitive scanning patterns. A single range image
covering historical points in LiDAR’s small FoV is adopted
for efficient map representation. To account for the noisy data
from occlusions after map updating, a filter-based point-to-
plane Gaussian Mixture Model is used for robust registra-
tion. Moreover, a LiDAR-only continuous-time motion model
is employed to relieve the inevitable distortions. Extensive
experiments have been conducted on various testbeds using the
prism-based LiDARs with different scanning patterns, whose
promising results demonstrate the efficacy of our proposed
approach.

I. INTRODUCTION

Light detection and ranging (LiDAR) sensors can directly
obtain the accurate range measurements in various scenarios
by actively emitting the laser beams, which enables them
to be the essential sensors for perception and navigation.
Currently, the dominant LiDAR odometry approaches [1]–
[5] make use of the multi-line mechanical spinning scanners
due to their simplicity and success in many robotic applica-
tions [6], [7].

With the prevalence of autonomous driving, there is a
demand for consumer-grade vehicle-borne LiDAR. However,
the conventional multi-line spinning LiDAR cannot fulfill the
massive deployment requirements on price, size and reliabil-
ity. To this end, micro-electro-mechanical systems (MEMS)
and rotating prism are two major alternative techniques used
in the consumer market. Both of them try to reduce their
sizes by using fewer pairs of semiconductor transceivers, and
a mechanism to change the light direction at high frequency
in order to cover the area in the limited field of view
(FoV), which makes them appropriately integrate into the
car. In this paper, we focus our attention on the Risley-
prism-based LiDARs [8]. Despite that recent works [9]–[12]
have adopted this LiDAR into odometry task, they are still
variant methods of multi-line spinning LiDAR, and cannot
take full consideration of the new characteristics of prism-
based LiDARs.
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Fig. 1: Spherical projection results of different LiDARs within 0.1 second
of integration duration. Compared to spinning LiDAR (d), the scanning
patterns of SSL (a-c) are sparse with a small FoV.

A significant property of prism-based LiDAR is its limited
horizontal FoV, as shown in Fig. 1, which was previously
regarded as a drawback for registration. In this paper, we
find this property can be utilized for a compact map struc-
ture. Current LiDAR odometry methods [9], [13] usually
maintain a local map and adopt a scan-to-map strategy for
more precise registration. Conventional data structures for
map representation are either KD-tree [9], [11] or voxel
hash table [13]–[15], which may not be the optimal choice
for LiDARs with small FoV. The fundamental problem of
LiDAR odometry is the registration between two consecutive
point clouds, so only the overlap region affects the final
optimization. Keeping all historical points around the current
center within a fixed radius is unnecessary. The region of
interest lies in an area even smaller than LiDAR’s FoV. Thus,
we extend a 2D range image map representation for prism-
based LiDAR, which has been proven accurate and efficient
for spinning LiDAR in diverse scenarios [5], [16], [17]. The
image map is robocentric, and only covers the historical
points in LiDAR’s FoV. This map structure is memory
efficient and friendly for the parallel implementation.

Unfortunately, directly bringing the idea of image map
representation is ineffective for LiDARs with non-repetitive
scanning pattern. Since occlusions are inevitable in this 2D
map structure, the map will get quite noisy with contin-
uous updating. Another common issue for different kinds
of LiDAR is motion distortions, which is more serious in
this new sensor affected by non-repetitive scanning mode.
Moreover, the diverse sparse scanning patterns make the
feature extraction complicated as in [1], [2].

To tackle the above critical issues, we present an effective
Continuous Time LiDAR Odometry (ECTLO) method for
LiDAR with small FoV in this paper. Without extra sensors,
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Fig. 2: Reconstruction results of our proposed approach on the data
collected by Livox Mid-40. Two pictures at the bottom show the details
of structured facades and unstructured streets.

a continuous-time motion model [14] is applied during pose
optimization. To account for the noisy data after 2D image
map updating, we employ a point-to-plane Gaussian Mixture
Model scheme [18] to effectively align the scans. In this
framework, we directly register raw points from LiDAR
to avoid the complicated feature extraction for the diverse
scanning patterns. Fig. 2 shows the mapping result using a
single Livox Mid-40 with a 38.4◦ sparse circular pattern.

In summary, the main contributions of this paper are: 1)
an effective odometry method for LiDAR with small FoV
by taking advantage of range image map representation;
2) a novel robust continuous-time filter registration scheme
handling motion distortions and diverse sparse scanning
patterns; 3) extensive experiments on a series of challenging
datasets demonstrate that our proposed approach outperforms
the state-of-the-art LiDAR-only odometry methods.

II. RELATED WORKS

Our proposed approach aims to deal with the challenge
of LiDAR with small FoV in odometry task. In this section,
we briefly review the most relevant studies on prism-based
LiDAR odometry, motion compensation, and point set reg-
istration.

A. Prism-based LiDAR Odometry

Depending on the prism combinations, the prism LiDARs
have different patterns that are irregular and non-repetitive,
as shown in Fig. 1. Comparing to the conventional multi-line
LiDARs with 360-degree coverage, these LiDARs have the
sparse scanning patterns with small FoVs, which raises many
issues on scan registration. Lin and Zhang [9] firstly employ
a prism-based LiDAR Livox Mid-40 for outdoor scanning.
Liu and Zhang [19] adopt a bundle adjustment framework
with Livox Horizon for structural scene.

Due to the small FoV and low density of point cloud,
the conventional methods cannot handle the fast motion
and jittering. To overcome the limitation of single sen-
sor, Li et al. [10] present a tightly-coupled LiDAR-inertial
odometry framework for Livox Horizon. Moreover, Xu and
Zhang [11] fuse multi-sensor information by an Iterated

Extended Kalman Filter using Livox Avia. To achieve the
accurate registration, both of them rely on the additional
sensor and LiDARs having more dense scanning patterns
with large FoV.

Those methods maintain a local map in KD-Tree that store
points near the current LiDAR center within a fixed radius.
However, overlap regions between the consecutive scans are
restricted in the sensor’s FoV. It is unnecessary to keep such
abundant historical points for LiDAR with small FoV. Thus,
we use a 2D robocentric image in this paper for efficient
representation [5].

B. Motion Compensation

Motion distortions in LiDARs are mainly due to the
continuous movement of laser beam. To address this issue,
a straightforward approach is to make use of the constant
velocity motion model [1], [3], which undistorts the current
point cloud with velocity from previous poses or extra IMU
measurements. However, the constant velocity assumption
may not be valid in real-world applications with fast orienta-
tion or position changes, especially for the handheld devices.
Continuous-time trajectory [20]–[22] is more accurate to
represent the nature continuous motions. To account for
fast motion, it requires a lot of control poses within a
scan. Meanwhile, the strict continuity of spline between
control poses may be sensitive to noise during optimization.
These drawbacks prohibit it from the real-time applications.
Recently, Dellenbach et al. [14] compensate the distortions
in the conventional spinning LiDAR by interpolating the
beginning pose with the end one within a scan, where the
discontinuity between consecutive scans is penalized by the
additional position and velocity constraints.

Generally, motion distortions are more serious in non-
repetitive scanning mode, which brings the extra difficulty for
point registration. Lin and Zhang [9] segment a single scan
into several pieces to reduce the motion distortions. Xu and
Zhang [11] de-skew the points by propagating the relative
pose back from IMU measurements. In our pipeline, we
employ the continuous-time model like [14] in optimization,
which is capable of undistorting the raw points in a scan
without extra sensors.

C. Point Set Registration

Generally, LiDAR odometry is treated as a point-set reg-
istration problem in literature. Given the input point clouds
perceived by LiDAR at two consecutive timestamps, Iterative
Closed Point (ICP) algorithm [23] is the typical solution to
align them, which updates the relative transformation itera-
tively until convergence. LOAM [1] is the most successful
LiDAR odometry approach, which selects the feature points
by computing the roughness of scattered points on each
scan line. Moreover, a variant of ICP algorithm is employed
to make use of both point-to-line [24] and point-to-plane
loss [25], which achieves low-drift odometry with real-time
performance.

The accuracy of ICP registration depends on the reli-
able correspondences between point sets, which is suspect



Fig. 3: Overview of our proposed ECTLO approach. Once the scan is obtained, the optimal state s = [TWLb
,TWLe ] is predicted by continuous-time

filter registration. The mapping module combines the input scan P with the previous range map by the odometry result s to form an updated range image
Imap. The memory consumption of Imap is fixed depending on the user-defined FoV and angular resolution of image.

to noise, outliers, and occlusions [26]. To this end, the
probabilistic model is usually regarded as a more robust
approach to align point sets. Generalized-ICP [27] formulates
the point set registration problem into a probabilistic frame-
work, which unifies point-to-point, point-to-plane and plane-
to-plane ICP by covariance estimation. Similarly, Normal
Distribution Transformation (NDT) [28] replaces the single
point by normal distribution within a pre-defined regular
voxel. These correlation-based registration methods can be
interpreted as minimizing the distance between distributions.

Assuming that each point has a Gaussian variance, point
cloud can be regarded as a Gaussian Mixture Model
(GMM) [26], [29]. However, GMM-based methods are com-
putationally intensive, which hinder them from real-time
applications. Gao and Tedrake [18] present a probabilistic
model, which computes the filter-based correspondences in
E step and updates pose by Gauss-Newton algorithm in M
step. In this paper, we employ filter registration to tackle
the problem from image map representation, in which the
permutohedral filter is replaced by an efficient patch filter
on range image [5].

III. METHODOLOGY

In this section, we present the details of our proposed
odometry approach. Firstly, we use a single 2D range image
for map representation. Then, we suggest a continuous-
time FilterReg method to achieve robust registration and
compensate the severe motion distortions in cost function.
Moreover, the analytic Jacobians are derived for efficient
optimization. Fig. 3 shows the overview of our pipeline.

A. Preliminary

Assume that the point measurement is relative to LiDAR
coordinate system Lt at timestamp t. We denote the orien-
tation and position of LiDAR as TWLt

with respect to the
world frame W at timestamp t, where the world frame is
W = L0 at the starting location.

In this paper, the movement of LiDAR is in special
Euclidean space. To obtain an unconstrained minimization
problem, we apply the twist parameterization from Lie
Algebra [30], where a vector ξ ∈ R6 represents rigid

transformation TWL ∈ SE(3). All operators are right-version
as below

right-⊕ : Y = X ⊕ ξ = XExp(ξ) ∈ SE(3)

right-⊖ : ξ = Y ⊖ X = Log(X−1Y) ∈ R6.
(1)

where X ,Y ∈ SE(3). Log(·) : SE(3) → R6 is the
logarithmic mapping, and Exp(·) : R6 → SE(3) is its inverse
exponential mapping.

B. Range Image Map Representation

As a registration problem, the pose estimation results are
dependent on the overlap region of consecutive scans. Since
the point cloud from multi-line spinning LiDAR has a 360-
degree horizontal FoV, previous methods [9], [11], [15] keep
a local map that stores the historical points around current
center with a fixed radius to achieve better scan-to-map
accuracy. However, the prism-based LiDAR has a limited
horizontal FoV as the camera. The region of interest is
smaller than spinning LiDAR. While we have the option
to choose points within LiDAR’s FoV and maintain KD-
Tree [1], [2] or voxel [28] map representations, the range
image [5] that retains points within FoV proves to be a more
computationally efficient data structure with low memory
consumption.

We extend this representation from the conventional multi-
line spinning LiDARs [5] to small FoV LiDAR.

1) Spherical Projection: A range image is an index table
I : R2 → R3 that reserves the spatial relationship of 3D
point set within single 2D image. Given a point (x, y, z)⊤

relative to range image origin, its correspondence can be
indexed in previous image by spherical projection Π : R3 →
R2[

u
v

]
= Π(x, y, z) =

[(
1/2 + arctan (y/x) · f−1

h

)
w(

1/2− arcsin (z/r) · f−1
v

)
h

]
, (2)

where r =
√

x2 + y2 + z2. The image center correspon-
dence to the current LiDAR center. w and h are the width and
height of image. The pixel length of w and h is proportional
to angular resolution β and FoV, where w = βfh and
h = βfv . Note that fh and fv are the user-defined FoV
rather than the original LiDAR’s, which keeps the historical
points out of the sensor’s FoV to facilitate robust registration.



2) Map Generation and Updating: The generation of
initial range image Imap is just the process that project
points onto an empty image. Fig. 1 shows the single scan
projection results of different LiDARs. For Livox Mid-40,
its single scan is too sparse to register, several consecutive
scans at the static position are used for initialization. If the
projection pixel is already occupied by another point, the
collision is resolved by selecting the nearest points. In our
proposed approach, we only maintain single range image
Imap. This means that the memory consumption of map is
fixed when the FoV and angular resolution of the range
image are determined.

Range Image Imap is a robocentric map representation,
where the projection origin is the last successful registered
LiDAR position. Once current scan can register with previous
Imap, we transfer map points to the local scan coordinate.
Then, all the previous map points and current scan points are
projected onto a new image. We choose the nearest points
when pixels conflict. This new image Imap is the local map
for future registration.

However, occlusion is inevitable when keeping histori-
cal map points in range image representation even with
complicated conflict-resolving solutions. This phenomenon
makes our Imap noisier after continuously updating. Since
the odometry output of current scan is affected by the local
map, it may lead to the inferior pose optimization results.
We handle this issue by applying an efficient GMM-based
registration method.

C. Continuous-time Filter Registration on Range Image

In general, robocentric range image usually reflects the
surface environment in LiDAR’s FoV so that the noisy data
may be injected into this 2D map due to occlusions after
updating. Therefore, the conventional registration methods
like ICP and its variants [1], [4], [9] may not be effective for
this map representation. Another common issue of LiDAR
is motion distortion. Motivated by the probabilistic method
FilterReg [18], we extend it into a continuous-time formula-
tion, which is more robust to noise, outliers and occlusions.
Moreover, a Gaussian filtering algorithm is employed to
efficiently find the correspondences on 2D range image,
where the analytic Jacobians are derived for Gauss-Newton
optimization.

1) Odometry Formulation: The fundamental problem of
LiDAR odometry is to find a series of discrete motion
parameters properly describing the LiDAR movement. Once
the raw scan P is obtained, the transformation between
the current scan P and previous map Q is estimated.
p1,p2, · · · ,pM and q1,q2, · · · ,qN are points in P and Q,
respectively.

We make use of a scan-to-map method, where map Q
stores in Imap. With the continuous updating of the range
map, it becomes quite noisy. Conventional ICP methods
aim to find the exact closest point in the data association
procedure, which is susceptible to noise data. To this end,
we introduce an efficient GMM-based method FilterReg [18]
into our pipeline. To achieve better accuracy in optimization,

we adopt point-to-plane criteria. The original FilterReg esti-
mates the current state s of LiDAR using the EM algorithm,
as follows:

E step: for each point in scan P , compute

m0
pi

=
∑
qj

N (pi(s
old);qj ,Σxyz)

m1
pi

=
∑
qj

N (pi(s
old);qj ,Σxyz)qj

npi = (
∑
qj

N (pi(s
old);qj ,Σxyz)nqj )/m

0
pi

(3)

M step: minimize the following objective function

Ereg(s) =
1

M

∑
pi

m0
pi

m0
pi

+ c
dot

(
npi

,pi(s)−
m1

pi

m0
pi

)2

,

(4)
where c = wi

1−wi

J
M , and wi is the parameter that accounts for

the ratio of outliers. N (·) is Gaussian distribution. Gaussian
kernel Σxyz = diag(σ2, σ2, σ2) is the fixed parameter, and
the variance σ decides the weight of each map points qj

and its normal vector nqj . pi(s) transfers scan points from
local coordinate into world frame, which may extend to
continuous-time form. Practically, it is inefficient to employ
all map points in E step. Thus, we select the neighborhood
points of pi(s) in a window for approximation, where J is
the size of valid neighborhoods. The implementation details
are following.

2) Implementation on Range Image: Just like the closet
point searching in ICP, the E step is to compute the cor-
respondence of scan point pi. The form of m0

pi
,m1

pi
,npi

are Gaussian Transform. Obviously, the bottleneck of this
EM algorithm is how to efficiently compute thousands of the
above independent items in E step. FilterReg [18] employs
a customized permutohedral lattice filter to enable efficient
computation without compromising accuracy. Since the point
registration problem occurs in 3D space rather than the
general N-dimensional space, we utilize a more efficient 2D
Gaussian filter on the range image.

The advantage of range image is to retain the 3D spatial
relationship within a 2D index table, where its neighbor
exists in adjacent pixels. Therefore, the Gaussian Transform
can be efficiently computed by image filter methods like
Gaussian Blur or Bilateral Filter. If the spherical projection
result of pi is (ui, vi), the related map points affecting
the correspondence are in adjacent pixels. Hereby, Gaussian
filter is employed to compute the filter-based correspondence
m0

pi
,m1

pi
,npi

in a pre-defined window Wi with center
(ui, vi).

During scan registration, map points Q are fixed so that
their normal vectors do not change. By making use of point-
to-plane criteria, we convert the previous map Imap into two
temporal index tables, vertex map Iv storing 3D position
information, and normal map In saving their normal vector.
We estimate normals through Eigendecomposition within a
Wn window on the range image. To select valid planar
points, we consider those surface curvatures [5] that fall



below the threshold δσ. In cases where the angle between
the normal vector and the point exceeds 90◦, we flip the
normal direction. It is important to note that we only need
to calculate the normals once before the EM procedure.

3) Motion Compensation: A scan is the accumulated
point cloud during a period of time t ∈ [tb, te). tb is the
starting timestamp of a scan, and te is the end timestamp.
Motion distortion occurs due to assuming that all points are
sampled simultaneously. To address this issue, we employ a
continuous-time model to compensate the motion distortions
in filter registration.

The continuous movement of LiDAR within a scan is
parameterized by the beginning of scan TWLb

and end of
scan TWLe . Therefore, the estimation target is the state
s = [TWLb

,TWLe ], where s is in R12 through the minimal
representation of Lie algebra. Given a raw point measure-
ment pi ∈ R3 at timestamp ti ∈ [tb, te), its corrected
position pi(s) in world coordinate is computed by

τ = TWLe
⊖TWLb

α = (ti − tb)/(te − tb)

TWLi
= TWLb

Exp(ατ )

pi(s) = TWLi
pi

(5)

where τ ∈ R6 is the tangent space of manifold SE(3),
and TWLi

is the LiDAR origin at timestamp ti in world
coordinate. Each 3D point (x, y, z)⊤ is represented in homo-
geneous coordinates as pi = (x, y, z, 1)⊤. As the estimated
state s is updated iteratively until the convergence, the point
pi(s) is recomputed with the newly updated pose at each
iteration.

Ideally, the beginning pose of current scan should be
consistent with the end pose of previous one. Thus, the new
state is initialized by its previous pose as follows

TWLn
b
= TWLn−1

e

TWLn
e
= TWLn

b
(TWLn−1

b
)−1TWLn−1

e
,

(6)

where the first state s0 is set to identity. However, the
optimization may diverge on the noisy data with strict consis-
tency constraints. Therefore, we impose two soft constraints,
the location consistency Eloc(s) = r⊤locrloc and velocity
consistency Evel(s) = r⊤velrvel, where the position difference
is defined as rloc = TWLn

b
⊖ TWLn−1

e
and velocity differ-

ence between the consecutive scans is computed by rvel =
(TWLn

e
⊖ TWLn

b
) − (TWLn−1

e
⊖ TWLn−1

b
). Since handheld

devices exhibit complex and irregular movement compared
to driving scenarios, their scan data contain significant noise.
Thus we apply the state constraint in the SE(3) space, rather
than solely the translation component [14].

With the above proposed motion constraints, we reformu-
late the previous M step in Eqn. 4 into the continuous-time
form,

Ect-reg(s) = Ereg(s) + λlEloc(s) + λvEvel(s), (7)

where λl and λv are two regularization coefficients to
balance the above the energy terms.

4) Gauss-Newton in EM Procedure: The optimization
in the M step involves a least square minimization prob-
lem, which can be reformulated into the generalized form∑

ciri
⊤ri. Here, ci represents the weight coefficient, and

ri denotes the residual of the energy term. In our proposed
approach, there are three kinds of residual, including rireg =
n⊤
pi
(pi(s) − m1

pi
/m0

pi
), rloc and rvel. By the first order

Taylor expansion, the residual around s is approximated as
follows

ri(s+∆s) ≃ ri(s) +
∂ri
∂s

∆s, (8)

where ∂ri
∂s is the Jacobian, and ∆s =

[
∆ξb ∆ξe

]
is the

increment. In Gauss-Newton (GN) algorithm, the optimal
increment minimizing Ect-reg(s) is found by solving the
linear equation H∆s = −b, where the Hessian matrix
H =

∑
ci
(
∂ri
∂s

)⊤ ∂ri
∂s and b =

∑
ci
(
∂ri
∂s

)⊤
ri.

Since TWLb
and TWLe are represented in SE(3), the new

state s for the next E step is updated through s = sold⊕∆s.
Specifically, the two poses are updated as follows

TWLb
← TWLb

⊕∆ξb,TWLe
← TWLe

⊕∆ξe. (9)

The EM procedure will terminate when either the maximum
increment falls below the threshold δm or the number of
iterations exceeds 15.

The computational cost in M step is mainly dominated in
calculating the Jacobian. To this end, we derive the analytic
Jacobians of each residual with respect to the beginning pose
TWLb

and the end pose TWLe
for efficient optimization. The

analytic Jacobian of registration term is computed by

∂rireg

∂s
= n⊤

pi

∂(TWLi
pi)

∂TWLi

[
∂TWLi

∂TWLb

∂TWLi

∂TWLe

]
∂(TWLipi)

∂TWLi

=
[
RWLi

−RWLi
[pi]×

]
∂TWLi

∂TWLb

= (1− α)Jr((α− 1)τ )J−1
l (τ )

∂TWLi

∂TWLe

= αJr(ατ )J
−1
r (τ ),

(10)

As in [30], Jr(·) and Jl(·) are the right- and left- Jacobians,
respectively. [·]× denotes the skew symmetric matrix.

Similarly, the analytic Jacobians of motion constraints can
be derived as below

∂rloc

∂s
=
[
J−1
r (rloc) 0

]
∂rvel

∂s
=
[
−J−1

l (τ ) J−1
r (τ )

]
.

(11)

IV. EXPERIMENT

In this section, we present the details of our experiments
and discuss the results of LiDAR odometry. We evaluate our
proposed approach on several datasets collected by various
prism-based LiDAR with different scanning patterns. An
ablation study proves the effectiveness of our continuous-
time filter registration module. Additionally, we present
the efficiency analysis on both commodity laptop and the
embedded devices. Our method is implemented in C++ with



TABLE I: Parameter Settings of Our Method

Parameter value Parameter value

fh, fv (Livox Mid-40) 50◦, 50◦ λl, λv 0.1, 0.1
fh, fv (Livox Horizon) 90◦, 30◦ σ 0.25
fh, fv (Livox Avia) 80◦, 80◦ wi 0.2

fh, fv (Livox Mid-70) 80◦, 80◦ β 10 pixels/◦
Wi 7× 7 δσ 0.055
Wn 5× 5 δm 5e-4

CUDA. The experiments are performed on a laptop computer
with an Intel Core i7-9750H CPU@2.60 GHz having 16GB
RAM and an NVIDIA GeForce RTX 2060 GPU. Besides,
we evaluate the computational time of our proposed approach
on NVIDIA Jetson AGX, which are the popular embedded
devices in robotics. For simplicity, we name our method as
‘ECTLO’. Table I gives the parameter settings.

A. Performance Evaluation

We compare our presented ECTLO method against the
state-of-the-art LiDAR approaches with publicly available
implementations, including LOAM-Livox [9]1, BALM [19]2,
and Livox-mapping3.

1) Qualitative Comparison: The testing data is adopted
from the previous studies [9] with a Livox Mid-40. Since the
dataset does not have ground truth for validation, we select
two sequences ‘loop hku main’ (389m) and ‘loop hku zym’
(290m) whose beginning and end positions are the same.

Fig. 4 plots the trajectories of each valid method. It can
be clearly seen that our proposed ECTLO approach achieves
the lowest drift even without the extra loop closure module,
which obtains the high reconstruction quality by taking
advantage of the accurate continuous-time filter registration.
Livox-mapping is the official odometry package from Livox,
however, its mapping results have the obvious drifts. It is
worthy of mentioning that BALM totally fails to obtain the
correct results with this small FoV LiDAR.

To examine the gap between LiDAR-only odometry and
sensor fusion methods, we compare our proposed LiDAR
only approach against the state-of-the-art LiDAR-inertial
odometry FAST-LIO2 [11] in a large-scale outdoor sequence
‘hkust campus 01’ (1524m) from R3LIVE [31] collected by
Livox Avia. The end-to-end drift of ECTLO is 4.72m in
contrast to 0.31m drift of FAST-LIO24. LOAM Livox cannot
generalize to Livox Avia, and Livox mapping has large drift.
Moreover, we plot the mapping result in Fig. 5.

2) Quantitative Comparison: The Hilti SLAM Challenge
Dataset [32] is a multi-sensor collection containing challeng-
ing featureless areas and varying illumination conditions. We
evaluate different odometry by computing absolute trajectory
error (ATE) [33] using Livox Mid-70 data. Meanwhile,
SVO2 [34] and hdl graph slam [35] are two baselines of
VIO and multi-line spinning LiDAR odometry, respectively.
The Mid-70 Data in Lab sequence is invalid at the beginning

1https://github.com/hku-mars/loam livox
2https://github.com/hku-mars/BALM
3https://github.com/Livox-SDK/livox mapping
4https://github.com/hku-mars/FAST LIO

where the sensor is too close to the wall. Thus, we select
other five sequences with ground truth for evaluation.

Table II shows the ATE on Hilti SLAM Challenge dataset,
where LOAM Livox and BALM fail to track on all se-
quences. Sequence ‘RPG Area’ and ‘Basement1’ have the
degenerated scenarios, where data is recorded in front of a
textureless wall for a long time. It is challenging for both
camera and LiDAR with small FoV. It can be observed that
ECTLO outperforms SVO using the visual-inertial sensor
and Livox mapping using Livox Mid-70 at a large margin.
Our result is even close to the method using 360◦ scanning
LiDAR Ouster OS0-64.

Although FAST-LIO2 using Livox Mid-70 and IMU has
better performance at outdoor sequences, it drifts signifi-
cantly in the indoor basement even with an extra sensor. This
reflects that our robocentric image representation is a more
appropriate structure for LiDAR with small FoV in narrow
space. Overall, our ECTLO achieves the lowest average ATE
on the Hilti Dataset with single small FoV LiDAR.

B. Ablation Study

The main contributions of our proposed method are
continuous-time model for motion compensation and GMM-
based filter registration for LiDAR odometry. To investigate
the effectiveness of each module, we conduct an ablation
study with various settings. The experiments are performed
on three sequences with different scanning patterns, includ-
ing private ‘ZJU-M0’, ‘ZJU-H0’ and public ‘hku park 00’.
The private datasets are collected by ourselves, which are
publicly available5. Table III shows the end-to-end er-
rors of different combinations. It can be observed that
the continuous-time filter registration significantly improves
the odometry accuracy. Although continuous time module
performs well on the easy sequences like ‘ZJU-M0’ and
‘hku park 00’, it fails on the challenging ‘ZJU-H0’ sequence.
It can be concluded that both continuous-time and GMM-
based registration are essential to achieving the robust and
accurate odometry results in various scenarios.

To fairly evaluate each module, we compute the ATE
on three sequences of Hilti Dataset. Sequence ‘RPG Area’
is in middle size indoor space. Sequence ‘Basement4’ has
low-speed motion in the structural environment and ‘Con-
struction2’ has fast motion in the complex outdoor large-
scale scenario. Continuous-time filter registration achieves
the lowest ATE in all sequences.

C. Evaluation on Computational Efficiency

The computational load of our approach is mainly domi-
nated by normal estimation and filter registration. By taking
advantage of the effective range image representation, the
spatial relationship among points can be used to speed
up the millions of latent data associations. To demonstrate
the efficiency of our presented method, we evaluate the
computational costs at different stages, including data upload
from CPU to GPU, normal estimation, filter registration, and

5https://github.com/kevin2431/ECTLO



Fig. 4: The trajectory and reconstruction results of different methods on public Livox Mid-40 dataset. The green line in (a) is the trajectory with an extra
loop closure module. The red line indicates the result without loop closure.

TABLE II: ATE (m) on the Hilti SLAM Challenge Dataset

Sensor RPG Area Basement1 Basement4 Construction2 Campus2 Average ATE

SVO [34] Camera + IMU 1.927 0.815 2.609 2.986 8.948 3.618

hdl graph slam [35] Ouster-64 0.350 0.279 0.336 0.741 0.353 0.445

Livox mapping Mid-70 6.043 ×1 1.988 15.479 10.924 -

Fast-LIO2 [11] Mid-70 + IMU 0.242 2.334 1.407 0.206 0.091 0.856

ECTLO Mid-70 0.394 0.334 0.124 0.253 0.356 0.282
1 Fail registration in this sequence.

TABLE III: Ablation Study on Our Proposed Approach.

CT Module GMM Registration End-to-end Error (m) ATE (m)

ZJU-M0 ZJU-H0 hku park 00 RPG Area Basement4 Construction2

%1 %2 ×3 × 37.02 17.32 7.67 ×
% ! 6.74 17.33 24.95 6.16 0.25 ×
! % 0.53 44.33 0.38 0.46 0.54 ×
! ! 0.77 2.52 0.32 0.39 0.12 0.25

1 Without continuous-time motion model.
2 Using point-to-plane ICP in [5] for registration.
3 Fail registration in this sequence.

map updating. Once the input point cloud is transferred to
GPU memory, all the remaining steps are computed on GPU
using CUDA. Additionally, we deploy our approach into
the embedded devices Jetson AGX, which is wildly used
in autonomous driving.

The computational time is highly affected by the total
number of scattered points within a scan. For fair compari-
son, we set the output frequency of each LiDAR to 10 Hz.
Therefore, the total number of points in single scan is 10K
for Livox Mid-40 (‘ZJU-M0’), and 24K for Livox Horizon
(‘ZJU-H0’) and Avia (‘ZJU-A0’). We make use of all the
raw points without downsampling. As depicted in Table IV,
our proposed approach runs around 480 frame per second on
the commodity laptop, and 110 frame per second on Jetson
AGX. In practice, we do not have to update the map and
compute normal for each scan. Instead, we just need update a

TABLE IV: Evaluation on Computational Time (ms)

Dataset Data
Upload

Normal
Estimation

Filter
Registration

Map
Updating

Total
Time

A
G

X ZJU-M0
ZJU-H0
ZJU-A0

0.36
0.53
0.57

2.36
4.50
9.23

4.46
9.33
7.72

1.87
3.12
4.75

9.05
17.48
22.27

L
ap

to
p ZJU-M0

ZJU-H0
ZJU-A0

0.10
0.19
0.23

0.51
1.04
2.19

1.02
2.73
2.17

0.45
0.77
1.08

2.08
4.73
5.67

portion of points by downsampling the raw input data. Thus,
our presented scheme can achieve real-time performance for
various LiDAR even on a low-end embedded device.

V. CONCLUSION

This paper proposed an effective continuous-time odom-
etry approach to LiDAR with small FoV by taking advan-
tage of filter registration. We made use of the continuous-
time model to compensate the motion distortions. Moreover,



Fig. 5: Our mapping result on large-scale outdoor sequence
‘hkust campus 01’.

GMM-based filter registration was employed to robustly
align sparse point clouds to the noisy map after map up-
dating. Additionally, we employed the efficient range image
representation, which not only consumes few memory in map
updating but also can be easily implemented in parallel on
GPUs. We have conducted the extensive evaluations, whose
promising results demonstrated that our proposed approach
is very effective.

Currently, our method only takes considerations of LiDAR
data, which may lead to the sensor degeneration in some
cases. For future work, we will incorporate various sensors
into the optimization framework.
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