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Task and Configuration Space Compliance of
Continuum Robots via Lie Group and Modal Shape Formulations

Andrew L. Orekhov1,2, Garrison L. H. Johnston1, Nabil Simaan1†

Abstract— Continuum robots suffer large deflections due to
internal and external forces. Accurate modeling of their passive
compliance is necessary for accurate environmental interac-
tion, especially in scenarios where direct force sensing is not
practical. This paper focuses on deriving analytic formulations
for the compliance of continuum robots that can be modeled
as Kirchhoff rods. Compared to prior works, the approach
presented herein is not subject to the constant-curvature as-
sumptions to derive the configuration space compliance, and
we do not rely on computationally-expensive finite difference
approximations to obtain the task space compliance. Using
modal approximations over curvature space and Lie group
integration, we obtain closed-form expressions for the task and
configuration space compliance matrices of continuum robots,
thereby bridging the gap between constant-curvature analytic
formulations of configuration space compliance and variable
curvature task space compliance. We first present an analytic
expression for the compliance of a single Kirchhoff rod. We then
extend this formulation for computing both the task space and
configuration space compliance of a tendon-actuated continuum
robot. We then use our formulation to study the tradeoffs
between computation cost and modeling accuracy as well as the
loss in accuracy from neglecting the Jacobian derivative term in
the compliance model. Finally, we experimentally validate the
model on a tendon-actuated continuum segment, demonstrating
the model’s ability to predict passive deflections with error
below 11.5% percent of total arc length.

I. INTRODUCTION

In this paper, we consider how to compute the passive
compliance matrix of continuum and soft robots modeled
as Kirchhoff rods (i.e. Cosserat rods with negligible shear
strains and extension). The local compliance matrix provides
a local prediction of the robot’s passive deflections as a result
of small changes in external loads, so it is useful for design
and planning to ensure accurate physical interaction with
the environment. The compliance matrix also needs to be
computed for online passive stiffness modulation [1–3] and
active stiffness/compliant motion control [4–6].

Many prior works presented mechanics models to predict
the overall deflection of a continuum or soft robot for a given
set of actuation and external loads [7–9]. However, relatively
few studied the local compliance, i.e. the small change in
shape due to small changes in the applied forces [6], [10–
12]. These prior works on local compliance have defined the
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compliance matrix in two different ways: configuration space
or task space compliance, depending on the application need.

The configuration space compliance relates external
wrenches projected into the robot’s configuration space to the
ensuing changes in the configuration variables. This notion of
compliance was used in [6] for compliant motion control, in
[13], [14] for force regulation without dedicated end-effector
force sensing, and in [15] for force-controlled shape scanning
of organs. Configuration space compliance can be computed
analytically, but prior work has only presented it under the
assumption of a constant-curvature shape.

The task space compliance is the more conventional notion
of compliance that provides the twist that a robot experiences
as a result of a small change in an applied external wrench.
While using finite differences to compute this compliance
is possible, this approach is computationally expensive and
does not provide analytic expressions of the compliance.
Another method, applied to a concentric tube robot in
[11], integrates an additional set of differential equations
together with the standard Cosserat rod equations. This can
be combined with finite difference steps to compute the
compliance matrix of a parallel continuum robot[12]. In the
mechanics literature, variational formulations were also used
to derive stiffness matrices for geometrically exact mechanics
models [16], [17], but these methods have not been translated
into a robotics context. Finally, [10] presented the task-space
compliance of a continuum segment with discrete actuators
applying moment loads along the segment’s body. This work
used modal basis functions to describe the backbone bending
angle, resulting in an analytic expression for the task-space
compliance, but it was limited to planar deflections.

The contribution of this paper is a compliance matrix
formulation that bridges the gap between constant-curvature
configuration space compliance and geometrically-exact task
space compliance. We present analytic expressions for both
configuration and task space compliance. The analytic nature
of the formulation enables sensitivity analysis of individual
model parameters on the resulting configuration. As an ex-
ample, we show how the term associated with the derivatives
of the task space Jacobian and the external loading has a
significant effect on the accuracy of the compliance model.
We also show how our approach enables a tradeoff to be
made to between model accuracy and computation cost,
which is more difficult to achieve using prior geometrically
exact mechanics models.

In Section II, we present the kinematic equations describ-
ing the variable curvature kinematic shape of the robot. In
Section III, we then show how to derive the task space
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compliance of a single Kirchhoff rod from the modal shape
kinematics and local rod stiffness. We then extend this to
the task space and configuration space compliance of a
tendon-actuated continuum segment in Section IV. Finally,
in Section V, we present a simulation case study of a
single Kirchhoff rod and an experimental validation of the
compliance matrix on a tendon-actuated continuum segment.

II. LIE GROUP KINEMATICS PRELIMINARIES

In this section, we summarize the kinematic expressions
that underpin our proposed compliance matrix formulation in
this paper. The Lie group kinematics was presented in [18] as
part of a formulation for continuum robot shape estimation
from intrinsic string encoder measurements. Prior works
have used modal shape functions to model hyper-redundant
[19] and continuum/soft robots [20–25], but the kinematic
expressions presented herein are most similar to those used in
[26], [27] for continuum robot mechanics, where the modal
shape functions approximate the local backbone curvature.

A. Central Backbone Kinematics

Referring to Fig. 1, we define the arc length distance
along the central backbone as s ∈ [0, L], where L is the
total length of the central backbone. We also assume the
central backbone has a high slenderness ratio consistent with
the assumption of negligible shear strains, i.e. a Kirchhoff
rod. The central backbone can therefore be described by the
curvature distribution along the backbone in three directions,
u(s) = [ux, uy, uz]

T ∈ IR3. At a given arc length s, we
assign a local body frame T(s) ∈ SE(3) with its z-axis
tangent to the central backbone curve:

T(s) =

ï
0Rt(s)

0p(s)
0 1

ò
∈ SE(3), s ∈ [0, L] (1)

where 0Rt(s) and 0p(s) are the orientation1 of the local
body frame in the base frame {0} and the position of
the origin of frame {T} in frame {0}. As the body frame
traverses the central backbone curve, it undergoes a twist
η(s) = [u(s)T, eT3 ]

T ∈ IR6, where e3 = [0, 0, 1]T denotes
the local tangent unit vector. Furthermore, it satisfies the
following differential equation [28]:

T′(s) = T(s)η̂(s), η̂(s) =

ï
û(s) e3
0 0

ò
∈ se(3) (2)

where (·)′ denotes the derivative with respect to s and the
hat operator ( ·̂ ) forms the standard matrix representations of
so(3) and se(3) from the vector forms u and η, respectively.

We now make a choice to express the curvature distri-
bution u(s) as a weighted sum of polynomial functions.
We denote the polynomial functions as ϕx(s), ϕy(s), and
ϕz(s) and the weights as cx, cy , and cz , for the x, y, and

1We use the notation bRa to denote the orientation of frame {A} with
respect to frame {B}. Also, frame {A} has its origin denoted by a.

Fig. 1: Kinematic parameters used in our modal-shape com-
pliance matrix model.

z directions, respectively. The curvature u(s) is therefore:

u(s) =

ϕT
x cx

ϕT
y cy

ϕT
z cz

 =

ϕT
x 0 0

0 ϕT
y 0

0 0 ϕT
z

cxcy
cz

 = Φ(s)c (3)

where the columns of Φ(s) ∈ IR3×m form a modal shape
basis, and c ∈ IRm is a vector of constant modal coefficients.

We choose the Chebyshev polynomials of the first kind for
the modal functions since their roots are also the Chebyshev
nodes, resulting in optimal approximation. They can be
computed recursively:

T0 = 1, T1(x) = x

Tn(x) = 2xTn−1(x)− Tn−2(x), n = 2, 3, ...
(4)

where we shift the domain x ∈ [−1, 1] to s ∈ [0, L] via the
transformation x(s) = (2s−L)/L. The benefit of this modal
shape approach to modeling the kinematics of continuum
robots is that variable curvature shapes with any desired
choice of fidelity can be modeled by a suitable choice of
the modal shape basis order. We will show below how this
approach bridges the gap between prior constant-curvature
configuration-space compliance and Kirchhoff rod task-space
compliance models.

For a given configuration c, the body frame T(s) is found
by integrating (2). As reviewed in [29], a variety of Lie
group integration methods could be used for this, including
an approach based on the Magnus expansion that we use
here, following our result in [30]. After integrating (2), the
spatial curve is given via a product of matrix exponentials:

T(s) = T(0)

k∏
i=0

eΨi , Ψi ∈ se(3) (5)

where the particular form of Ψi depends on the choice of
integration method [29], [30].

B. Tendon Routing Kinematics

To model the kinematics of the tendon paths, we follow
the approach used in [31]. Assuming p tendons, the tendon
path is expressed in the moving frame T(s) and is given by:

tri(s) = [rxi
(s), ryi

(s), 0]T, i = 1, 2, . . . , p (6)



The position of a point along the tendon path is given in the
world frame by:

0wi(s) =
0p(s) + 0Rt(s)

tri(s) (7)

Noting that vector norms are invariant under rotations, the
length of the ith tendon is therefore given by:

ℓi =

∫ sai

0

∥tw′
i(s)∥ ds, i = 1, 2, . . . , p (8)

where sai
is the central backbone arc length at which

the tendon is anchored to the spacer disk/end disk, and
tw′

i(s) =
0R

T
t
0w′

i(s) is found by taking the derivative of
(7) with respect to s and substituting (3), 0p′(s) = 0Rt(s)e3,
and 0R′

t(s) =
0Rt(s)û(s):

tw′
i(s) = e3 − tr̂i(s)Φ(s)c+ tr′i(s), i = 1, 2, . . . p (9)

C. Instantaneous Kinematics Jacobians

Using the equations above, we also define two instanta-
neous kinematics Jacobians that will be used to formulate the
configuration space and task space compliance matrices. Not-
ing that the vector of modal coefficients c uniquely defines
the configuration of the robot, we define the configuration
space Jacobian as the Jacobian relating small changes in the
tendon lengths to small changes in the modal coefficients:

dℓ = Jℓcdc, Jℓc ∈ IRp×m (10)

Jℓc is found by taking derivatives of (8). We also define
the body Jacobian relating small changes in the modal
coefficients to body frame changes at arc length s:

ξ(s) = Jξc(s)dc, ξ ∈ se(3) (11)

Jξc(s) is found via the derivative of the exponential mapping
together with (5).

III. COMPLIANCE MATRIX OF A KIRCHHOFF ROD

We now build on the kinematic equations above to formu-
late the compliance matrix of a Kirchhoff rod. We follow a
similar set of steps as the derivation of the stiffness matrix
for a parallel robot in [1] and the statics [32] and stiffness
of multi-backbone robots [6]. We begin by defining a small
perturbation (i.e. a twist) in the end effector pose T(L),
denoted as δxh, which we find by computing the body twist
and then transforming into the hybrid frame that is coincident
with the body frame T(L) but aligned with the world frame:

δxh = hSb

(
T−1(L)δT(L)

)∨ ∈ IR6

hSb =

ï
wRb 03x3

03x3
wRb

ò
∈ IR6×6

(12)

where wRb ∈ SO(3) is the rotation matrix of the body frame
expressed in the world frame and the “vee" operator (∨)
extracts a vector x from its corresponding skew-symmetric
cross-product matrix x∧ ∈ se(3). We then define the task-
space compliance matrix of a single rod as:

δxh = Cxrod
δwh, Cxrod

∈ IR6×6 (13)

where δwh = [δmT
h , δf

T
h ]T ∈ IR6 is a small change in the

applied wrench written in the hybrid frame2 and with the
moment followed by the force.

We assume here the rod is massless, and that shear
strains and extension are negligible. We denote Kbt =
diag(EIx, EIy, JG) ∈ IR3×3 as the diagonal bending/torsion
stiffness matrix of the rod’s cross section. The bending
energy in the rod is given by

E =

∫ L

0

1

2
u(s)TKbtu(s) ds =

1

2
cT
Ç∫ L

0

ΦTKbtΦ ds

å
︸ ︷︷ ︸

Φk

c

(14)
where we have substituted the modal shape basis curvature
from (3). Note that the matrix Φk can be computed offline
if the modal shape functions are chosen a priori.

For the work done by the applied wrench as it produces a
small displacement δx, there is a corresponding small change
in bending energy δE:

wT
h δxh = δE (15)

Recalling the body Jacobian from (11), we denote the
relationship between δxh and δc as:

δxh = hSbJξcδc = J̃ξcδc (16)

and substitute this into (15):

wT
h J̃ξcδc =

Å
∂E

∂c

ãT
δc (17)

By the principle of virtual work, to be in static equilibrium
we require the virtual displacements associated with δc to
vanish, resulting in:

J̃T
ξcwh =

∂E

∂c
(18)

Denoting ci as the ith element of c and taking small
perturbations about the equilibrium configuration:

δ
Ä
J̃T
ξc

ä
wh + J̃T

ξcδwh = δ

Å
∂E

∂c

ã
(19)

By substituting δ
Ä
J̃T
ξc

ä
=

n∑
i=1

[
∂J̃T

ξc

∂ci

]
δci and δ

(
∂E
∂c

)
=î

∂2E
∂c2

ó
δc and solving for δc we obtain:

δc =

(
∂2E

∂c2
−

[
∂J̃T

ξc

∂c1
wh . . .

∂J̃T
ξc

∂cn
wh

])−1

J̃T
ξcδwh (20)

Recalling (13) and substituting (20) into δxh = J̃ξcδc results
in the analytic expression for the compliance matrix:

Cxrod
= J̃ξc

(
∂2E

∂c2
−

[
∂J̃T

ξc

∂c1
wh . . .

∂J̃T
ξc

∂cn
wh

])−1

J̃T
ξc

(21)

2The hybrid frame has its origin coincident with the origin of the local
frame {T} and its axes parallel to the base frame {0}.



The above result matches with the congruence transformation
of stiffness as discussed in [33] for serial robots. The energy
Hessian ∂2E

∂c2 , which can be computed offline, is found by
differentiating (14) twice:

∂E

∂c
=

1

2

Ä
Φk +ΦT

k

ä
c ⇒ ∂2E

∂c2
=

1

2

Ä
Φk +ΦT

k

ä
(22)

IV. COMPLIANCE MATRICES OF A TENDON-ACTUATED
CONTINUUM SEGMENT

We now extend the example above for a single rod to
the case of a tendon-actuated continuum segment. We first
derive a statics model similar to the constant curvature model
in [34] but for a variable curvature segment. We then use this
statics model to arrive at the task-space compliance matrix,
in an analytic form as a result of our Lie group modal
shape formulation. Finally, we present the variable curvature
configuration-space compliance matrix.

A. Task-space compliance

For a given external wrench wh on the tip of the seg-
ment and a perturbation δxh in the end pose, we have a
corresponding change in the forces applied to the actuation
tendons τ and a corresponding change in the bending energy
stored in the segment, where the bending energy is given by
(14). Following the principle of virtual work, we have:

wT
h δxh + τTδℓ− δE = 0 (23)

where δℓ is a change in the tendon length. Referring to (11)
and (10), we substitute (16) and δE = ∂E

∂c

T
δc to arrive at

the statics of the segment about a given configuration:

JT
ℓcτ =

∂E

∂c
− J̃T

ξcwh (24)

We then take small perturbations of this statics expression:

Cτδc+ JT
ℓcδτ =

∂2E

∂c2
δc−Cwh

δc− J̃T
ξcδwh (25)

where Cτ and Cwh
are defined as:

Cτ =

ï
∂JT

ℓc

∂c1
τ , . . . ,

∂JT
ℓc

∂cn
τ

ò
∈ IRn×n (26)

Cwh
=

[
∂J̃T

ξc

∂c1
wh, . . . ,

∂J̃T
ξc

∂cn
wh

]
∈ IRn×n (27)

The matrix Cτ is the contribution to the compliance matrix
of the forces on the tendons at the current configuration, and
Cwh

is the contribution due to the external wrench. Cτ can
be readily affected by using actuation redundancy (internal
preload) and Cwh

depends only on the external load. In
a robot without actuation redundancy, τ is determined by
wh through the statics equation. Therefore Cτ and Cwh

are not completely independent. In a robot with actuation
redundancy, these two matrices are independent.

By defining the joint-level stiffness Kℓ as a diagonal stiff-
ness matrix containing the stiffness of individual actuation

lines, i.e., Kℓ(i, i) =
δτi
δℓi

, we can use δτ = Kℓδℓ and
δℓ = Jℓcδc in (25), combine like terms, and solve for δc:

δc =

Å
∂2E

∂c2
−Cτ −Cwh

− JT
ℓcKℓJℓc

ã−1

J̃T
ξcδwh (28)

We then substitute this expression into δxh = J̃ξcδc to arrive
at the compliance matrix:

Cx =
δxh

δwh
= J̃ξc

Å
∂2E

∂c2
−Cτ −Cwh

− JT
ℓcKℓJℓc

ã−1

J̃T
ξc

(29)
As a result of our analytic kinematic expressions, (29)
bears resemblance to the results of prior works on stiffness
modulation of rigid-link parallel robots, where one defines an
active stiffness term dependent on the joint-level forces and
the derivative of the Jacobian. and a passive stiffness term de-
pendent on joint-level stiffness [35–37]. Compared to a rigid-
link parallel robot stiffness matrix model, additional terms for
tendon-actuated continuum robots include the Hessian of the
bending energy and a term with the joint forces multiplied
by the derivatives of the configuration-space Jacobian.

B. Configuration-space compliance

We now present the configuration space compliance ma-
trix for a tendon-actuated continuum segment with variable
curvature deflections. Our formulation can be seen as an ex-
tension of the compliance matrix in [6] to the case of variable
curvature continuum robots. The resulting expression does
not require computation of the task space Jacobian and its
derivatives, and is therefore less computationally expensive.
Furthermore, it does not require knowledge of the external
wrench as required by the task-space compliance, so we
believe it can be used for compliant motion control as done in
[6], but for cases where large external loads produce variable
curvature deflections.

Referring to (24), we first define the external wrench
projected into the configuration space, denoted as wc:

wc = J̃T
ξcwh =

∂E

∂c
− JT

ℓcτ (30)

Taking small perturbations of (30) results in

δwc =
∂2E

∂c2
δc−Cτδc− JT

ℓcδτ (31)

where Cτ was given in (25). We now substitute δτ =
KℓJℓcδc, combine like terms, and solve for δc:

δc =

Å
∂2E

∂c2
−Cτ − JT

ℓcKℓJℓc

ã−1

δwc (32)

Computing the change in the configuration for a small change
in the projected wrench, i.e. δc = Ccδwc, results in the
following configuration-space compliance matrix:

Cc =

Å
∂2E

∂c2
−Cτ − JT

ℓcKℓJℓc

ã−1

, Cc ∈ IRn×n (33)

Note that (33) does not require that the task-space Jacobian
and its derivatives be computed. It also does not require
knowledge of the external wrench. It does, however, in



the general case require knowledge of the actuation tendon
forces. These forces can come either directly from force
sensors placed in series with the actuation tendons [6],
[12] or from estimates obtained via the commanded motor
current. In special cases where Jℓc constant, e.g. segments
with constant pitch tendon routing and negligible torsional
deflections as in Section V, Cτ is zero and the actuation
tendon forces do not need to be measured.

C. Determining the configuration modal coefficients

Both the configuration-space and task-space compliance
matrices require the modal coefficients c to define the
segment’s configuration. There are two ways to obtain c.
The first is using the shape sensing approach presented in
[18]. This approach requires integration of shape-sensing
hardware, but the benefit is that it does not require a
potentially computationally expensive mechanics model.

The second way to obtain c is with a mechanics model like
the ones presented in [9], [30]. After solving the mechanics
model, c can be obtained by converting the collocation values
into modal coefficients, as shown in [38]. Using a mechanics
model to obtain c does not require shape-sensing, but does
require an estimate of the external wrench applied to the
segment, which may be known a-priori in some cases or can
be measured using a load cell attached to the end effector.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we present a simulation-based analysis
of the Kirchhoff rod compliance matrix model, as well as
an experimental validation and analysis of the compliance
matrix for a tendon-actuated continuum segment.

A. Kirchhoff rod model validation and analysis in simulation

We first compare the deflections predicted by our com-
pliance matrix in (21) to the deflections predicted by a
Kirchhoff rod model, solved following the method in [38]
which combined orthogonal collocation and Lie group inte-
gration. We considered a 2 mm diameter Nitinol rod with a
length of 200 mm and combinations of ±1 N tip forces and
±0.5 Nm tip wrenches, generating a set of 2187 rod shapes.
For each shape, we applied small steps of 0.1 N and 0.05 Nm
to increment the applied force/moment (6 deflections for each
shape) and recomputed the Kirchhoff rod model. We then
used (21) to predict the deflection for each wrench increment.
For (21), we used the same Chebyshev series for the x, y,
and z directions, but varied the order of the Chebyshev series
from n = 0 to n = 10, i.e. when n = 0, Φ had three
columns, and when n = 10, Φ had 33 columns. We used 10
integration steps when computing T(L) regardless of n. We
then computed the tip translational deflection error:

ep = ∥∆pgt −∆pm∥ ∈ IR (34)

where ∆pgt ∈ IR3 is the deflection predicted by the Kirch-
hoff rod model and ∆pm ∈ IR3 is the deflection from (21).
The solvers were run using MATLAB 2021a on an Intel i7-
11700 CPU.

Fig. 2: (a) The absolute deflection error in tip deflection,
with error bars showing the minimum and maximum error,
predicted by our compliance matrix expression and (b) the
computation time for different numbers of modal coeffi-
cients, showing a trade-off between speed and accuracy.

TABLE I: Tip Deflection Error versus Polynomial Order

Position error (mm) Rotation error (deg)
Avg. Max. Avg. Max. Speed (Hz)

n = 0 0.8 13.7 0.2 6.3 94.6
n = 2 1.3e-2 0.6 2.2e-3 0.10 19.3
n = 4 6.7e-5 6.3e-3 2.0e-5 1.2e-3 8.3
n = 6 1.5e-5 3.8e-4 1.3e-5 4.4e-4 4.5

The mean/max absolute deflection error results are shown
in Table I and Fig. 2. We see that as n is increased, the
analytic expression rapidly converges to the simulated Kirch-
hoff rod deflection. We also observe that computation time
increases with n, showing a tradeoff between the compliance
matrix accuracy and computation cost.

The primary source of computational cost is in computing
the derivatives of Jξc. For n = 10, estimating these deriva-
tives accounts for approximately 95% of the computation
time. We are currently using finite differences to estimate
these derivatives, but we believe it is possible to derive
these derivatives analytically and reduce computation cost.
Methods from [29] to reduce the number of Lie brackets
needed to calculate Jξc could also reduce computation cost.

A benefit of our formulation, in contrast to other ap-
proaches to computing the compliance matrix, is that it
allows a trade-off between computation cost and accuracy
to be made depending on the application need. A high-order
model (large n) to be used when computing the statics model
to accurately predict the spatial shape of the continuum
robot, but use a lower-order model (small n) to compute
the compliance matrix for online compliant motion control
or predicting local deflections.

To reduce computation cost, one may ask whether it is



TABLE II: Tip Deflection Error versus Polynomial Order
When Neglecting the Jacobian Derivative Term

Position error (mm) Rotation error (deg)
Avg. Max. Avg. Max. Speed (Hz)

n = 0 3.23 30.5 0.94 14.3 665.3
n = 2 2.82 37.1 1.05 10.1 335.0
n = 4 2.83 37.1 1.06 10.2 237.0
n = 6 2.83 37.1 1.06 10.2 184.8

possible to neglect the term that includes the derivatives
of the task-space Jacobian and external wrench. While this
term is typically negligible for stiff rigid-link robots [39], it
was shown in [40] that this term is not negligible for robots
with compliant actuators. Here we show a similar result for
continuum robots, by computing (21) while neglecting this
term using the same set of 2187 rod shapes and increments
in wrench described above, and comparing again to the
local deflections predicted by the Kirchhoff rod model. The
mean absolute position and orientation errors are given in
Table. II. We observe that while the speed of computing (21)
increases significantly, the maximum position and orientation
errors are high when neglecting this term. We also observe
that increasing the number of modal coefficients does not
significantly improve the modeling error when neglecting the
task space Jacobian derivatives.

B. Experimental validation

In this section, we describe the experimental validation
of our method on a tendon-actuated continuum segment,
shown in Fig. 3. The continuum segment central backbone
is 300.6 mm in length and the kinematic radius of the
actuation tendons is 65.2 mm. Two actuators are integrated
into the base, which drive the actuation tendons that bend
the segment. In the end-disk are four string encoders that
measure the deflections of the segment to estimate c. In
[18], it was shown that this shape sensing approach, which
is purely kinematic and does not require a mechanics model,
can estimate the end disk position to within 5% of total arc
length, or 14.4 mm of position error.

Metal bellows in the segment’s flexible backbone structure
make it approximately 1950 times stiffer in torsion that in
bending, so we neglect the torsional deflections and use the
following modal shape basis:

u(s) =

ϕT
x 0

0 ϕT
y

0 0

ñcx
cy

ô
= Φ(s)c, c ∈ IR6 (35)

where ϕT
x (s) = ϕT

y =
[
T0 T1 T2

]T
. With this choice of

Φ and since the strings and actuaton tendons are routed in
constant-pitch radius paths, Jℓc is constant, and Cτ = 0.

TABLE III: Joint-space configurations used in experiments

Configuration 1 2 3 4 5
θ1 0° 500° -500° 500° 0°
θ2 500° 0° 500° -500° 0°

The experimental setup used to validate the compliance
matrix model is shown in Fig. 3. In order to experimentally

Fig. 3: The setup used to experimentally validate the compli-
ance model: 1 force/torque sensor, 2 wire-rope, 3 pulleys,
4 three out of five configurations used in the experiments,
and 5 mass used to apply forces to the end disk. The end
disk of the robot has four string encoders 6 that measure
the segment’s configuration.

validate our approach, we attached a force/torque sensor
(Bota Systems Rokubi™) to the end effector of the segment.
The segment was actuated to five different joint space
configurations in the segment’s workspace. The angles of the
first and second actuators, denoted as θ1 and θ2, respectively,
are given in Table III. At each configuration, the unloaded
configuration of the segment was measured using the string
encoders. A mass was then attached to the force/torque
sensor via a wire-rope hung over a pulley. The segment’s
new deflected configuration and the applied wrench was
then measured. This was repeated for each configuration
using 10 different combinations of wire rope direction and
masses ranging from 2 lbs to 10 lbs, resulting in a total of
50 measured deflections.

Across the 50 deflections, the mean and maximum deflec-
tion was 14.3 mm and 66.7 mm, respectively. The first 10
deflections used for the first joint-space configuration were
used to calibrate the model parameters EIx = EIy and
k1 = k2. We did this by solving for the values of these
parameters that minimized the least-squared error between
the model predicted deflection and the experimentally mea-
sured deflection, solved with lsqnonlin() in MATLAB. The
resulting calibrated values were EIx = EIy = 3.20Nm2

and k1 = k2 = 1.23e5N/m.

The remaining 40 deflections were used to validate the
model. Comparing the measured and model-predicted de-
flections, the mean and max absolute error ep from 34 was
9.1 mm and 34.6 mm, respectively, or 3.0% and 11.5% of the
backbone length. Since the compliance matrix is only a local
estimate of the deflection behavior, it is expected that larger
deflections result in larger error in the predicted deflection.



Fig. 4: Boxplot comparing deflection error to the norm of
the force applied to the end disk. The central red line is the
median, and the box covers the 25th and 75th percentiles.
Small dots represent the experimental data.

Figure 4 shows predicted deflection error for different norms
of applied force. We observe that, as expected, predicted de-
flection error tends to increase as the applied force increases.

VI. CONCLUSIONS

In this paper, we presented a method for computing the
compliance matrix of continuum and soft robots utilizing
a modal shape basis Lie group formulation. Compared to
prior work, our approach does not rely on a constant-
curvature assumption and leads to analytic expressions for
both configuration space and task space compliance. We
presented the compliance of a single Kirchhoff rod, and
we highlighted through a simulation study the tradeoff be-
tween computational cost and modeling accuracy as well as
the importance of including the Jacobian derivatives when
computing compliance. We also presented the compliance
for a tendon-actuated continuum segment, and performed
an experimental validation of the task-space compliance,
showing predicted deflection errors below 11.5% of arc
length. Future work includes applying this formulation to
passive stiffness modulation and compliant motion control
of variable curvature continuum and soft robots.
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