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Abstract— In this paper, we present a fast, lightweight
odometry method that uses the Doppler velocity measurements
from a Frequency-Modulated Continuous-Wave (FMCW) lidar
without data association. FMCW lidar is a recently emerging
technology that enables per-return relative radial velocity mea-
surements via the Doppler effect. Since the Doppler measure-
ment model is linear with respect to the 6-degrees-of-freedom
(DOF) vehicle velocity, we can formulate a linear continuous-
time estimation problem for the velocity and numerically inte-
grate for the 6-DOF pose estimate afterward. The caveat is that
angular velocity is not observable with a single FMCW lidar.
We address this limitation by also incorporating the angular
velocity measurements from a gyroscope. This results in an
extremely efficient odometry method that processes lidar frames
at an average wall-clock time of 5.64ms on a single thread,
well below the 10Hz operating rate of the lidar we tested.
We show experimental results on real-world driving sequences
and compare against state-of-the-art Iterative Closest Point
(ICP)-based odometry methods, presenting a compelling trade-
off between accuracy and computation. We also present an
algebraic observability study, where we demonstrate in theory
that the Doppler measurements from multiple FMCW lidars
are capable of observing all 6 degrees of freedom (translational
and angular velocity).

I. INTRODUCTION

Lidar sensors have proven to be a reliable modality for
vehicle state estimation in a variety of applications such
as self-driving, mining, and search & rescue. Modern lidars
are long range, high resolution, and relatively unaffected by
lighting conditions. State-of-the-art estimation is achieved by
algorithms that geometrically align lidar pointclouds through
an iterative process of nearest-neighbour data association
(i.e., Iterative Closest Point (ICP)-based methods [1], [2]).

However, alignment relying on scene geometry can fail in
degenerate environments such as tunnels, bridges, or long
highways with a barren landscape. Frequency-Modulated
Continuous Wave (FMCW) lidar is a recent type of lidar
sensor that additionally measures per-return relative radial
velocities via the Doppler effect (see Figure 1). Incorporating
these Doppler measurements into ICP-based methods has re-
cently been demonstrated to substantially improve estimation
robustness in these difficult scenarios [3], [4].

ICP-based methods perform accurately, but are relatively
expensive in computation due to the iterative data asso-
ciation. More computationally efficient odometry may be
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Fig. 1: A 2D illustration of our method. We use the Doppler
measurements from a FMCW lidar and the angular velocity
measurements from a gyroscope to efficiently estimate 6-
DOF vehicle motion without data association.

desirable to leave compute available for other processes in an
autonomous navigation pipeline (e.g., localization, planning,
control). We present an efficient lidar odometry method that
leverages the Doppler measurements and does not perform
data association as it is a major computational bottleneck.

In this work, we propose a lightweight odometry method
that estimates for the 6-degrees-of-freedom (DOF) vehicle
velocity, which can afterward be numerically integrated
into a SE(3) pose estimate. Velocity, rather than pose, is
estimated because the Doppler measurement model is linear
with respect to the vehicle velocity, permitting a linear
continuous-time estimation formulation. A caveat is that
the vehicle velocity is not fully observable with a single
FMCW lidar. We address this problem by also using the
gyroscope measurements from an Inertial Measurement Unit
(IMU), conveniently built into the Aeries I FMCW lidar that
we used for testing. The resulting method produces pose
estimates at an average wall-clock time of 5.64ms on a single
thread, which is substantially lower than the 100ms time
budget required for the 10Hz operating rate of the lidar. In
comparison to the state of the art, we believe we offer a
compelling trade-off between accuracy and performance.

The following are the main contributions of this paper:
• A lightweight, linear estimator for the vehicle velocity

using Doppler and gyroscope measurements.
• An observability study of the vehicle velocity estimated

using Doppler measurements, showing in theory that the
Doppler measurements from multiple FMCW lidars can
result in the observability of all 6 degrees of freedom
(encouraging future research on this topic).

• Experimental results on real-world driving sequences
for our proposed odometry method and comparisons to
state-of-the-art ICP-based methods.

The remainder of the paper is as follows: Section II
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presents relevant literature; Section III presents the odometry
methodology; Section IV presents the observability study;
Section V presents the results and analysis; and finally,
Section VI presents the conclusion and future work.

II. RELATED WORK

A. ICP-based Lidar Odometry

ICP estimates the relative transformation between two
pointclouds by iteratively re-associating point measurements
via nearest-neighbour search [1], [2]. Lidar odometry meth-
ods that achieve state-of-the-art performance apply this
simple-but-powerful concept of nearest-neighbour data asso-
ciation in a low-dimensional space (e.g., Cartesian). In this
paper, we refer to these algorithms as ICP-based. LOAM
[5], a top contender in the publicly available KITTI odom-
etry benchmark [6], extracts edge and plane features, and
iteratively matches them via nearest-neighbour association.
SuMa [7] matches measurements using projective data as-
sociation (i.e., azimuth-elevation space) and leverages GPU
computation to perform this operation quickly.

Modern lidars output high-resolution, three-dimensional
(3D) pointclouds by mechanical actuation. Consequently,
pointclouds acquired from a moving vehicle will be motion
distorted, similar to a rolling-shutter effect. One can motion-
compensate (de-skew, or undistort) the data as a preprocess-
ing step [8], [9]. Alternatively, data can be incorporated at
their exact measurement times by estimating a continuous-
time trajectory [10], [11], [12]. Continuous-time ICP-based
methods have been successfully demonstrated in several
works [13], [14]. State-of-the-art lidar odometry methods
address the motion compensation problem and are capable
of achieving highly accurate, real-time performance [15],
[14], [9]. Pan et al. [15] extract low-level geometric features
to apply multiple error metrics in their ICP optimization.
Dellenbach et al. [14] use a sparse voxel data structure
for downsampling and nearest-neighbour search in a single-
threaded implementation. Vizzo et al. [9] demonstrate faster
performance with comparable accuracy by proposing a sim-
plified registration pipeline that requires few tuning param-
eters in a multi-threaded implementation.

Recently, FMCW lidars have been demonstrated to be ben-
eficial in improving odometry. Hexsel et al. [3] incorporate
Doppler measurements into ICP to improve estimation in
difficult, geometrically degenerate locations. Wu et al. [4]
improve upon this by using a continuous-time estimator, not
requiring motion compensation as a preprocessing step.

A major bottleneck in lidar odometry is data association
due to (i) the vast amount of data, and (ii) the need for
iterative data association. With the introduction of Doppler
measurements from FMCW lidars, we propose a more effi-
cient odometry method that avoids data association entirely.

B. Inertial Measurements and Lidar

Lidar odometry algorithms have proven to be highly
accurate in nominal conditions, but will struggle to perform
in geometrically degenerate environments (e.g., long tunnels,
barren landscapes). Using IMU data is a way of handling

these difficult scenarios, with the added benefit of being
able to use the IMU to motion-compensate pointclouds as a
preprocessing step. Loosely coupled methods may only use
the IMU data for motion compensation [16], but can also fuse
the pose estimates from pointcloud alignment with IMU data
downstream [17]. Zhao et al. [18] implement an odometry es-
timator for each sensor modality, where each estimator uses
the outputs of the other estimators as additional observations.
Chen et al. [19] combine their pose estimates from ICP with
IMU data using a hierarchical geometric observer. Tightly
coupled methods incorporate IMU data into the pointcloud
alignment optimization directly, which has been shown using
an iterated extended Kalman filter [20], [21] and factor graph
optimization over a sliding window [8], [22].

Our work differs from existing lidar-inertial methods in
both motivation and implementation. We propose an ap-
proach that does not require data association by using the
Doppler measurements of a FMCW lidar. Our motivation for
using IMU data is to compensate for the degrees of freedom
not observable from the Doppler measurements of a single
FMCW lidar. We only require gyroscope data (i.e., angular
velocities) and exclude the accelerometer1, permitting a
linear continuous-time formulation. We do not require pre-
integration of the gyroscope data [23], and instead efficiently
incorporate data at their exact measurement times.

C. Radar Odometry

FMCW is a relatively new technology for lidar, but not
for radar. Radar, in contrast to FMCW lidar, returns two-
dimensional (2D) detections (azimuth and range). Similar
to our proposed method, Kellner et al. [24] estimate vehicle
motion using radar Doppler measurements without data asso-
ciation. Using a single radar, they estimate a 2-DOF vehicle
velocity (forward velocity and yaw rotation) by applying a
kinematic constraint on the lateral velocity to be zero. Using
multiple radars allowed them to estimate a 3-DOF vehicle
velocity [25]. As radars produce 2D data in lesser quantities
compared to lidar, Kellner et al. [24], [25] limited their
experiments to driven sequences that were a few hundred
meters in length. Our FMCW lidar produces thousands of
3D measurements at a rate of 10Hz. We take advantage of
the richer data by efficiently applying them in a continuous-
time linear estimator, and demonstrate reasonably accurate
odometry over several kilometers.

Kramer et al. [26] estimate the motion of a handheld
sensor rig by combining radar Doppler measurements and
IMU data. Park et al. [27] estimate for 6-DOF motion by
first estimating the 3D translational velocities, then loosely
coupling them with IMU data in a factor graph optimization.
We similarly use IMU data to help estimate 6-DOF motion.
However, we only use the gyroscope data to keep the esti-
mator linear and efficient. We also present an observability
study, demonstrating in theory how multiple FMCW sensors
constrain all degrees of freedom of the velocity.

1The gravity vector would require a nonlinear estimator for orientation.



III. METHODOLOGY

A. Problem Formulation

We formulate our odometry as linear continuous-time
batch estimation for the 6-DOF vehicle body velocities using
a Maximum A Posteriori (MAP) [28] objective. This is
possible due to how the Doppler velocity and gyroscope
measurement models are both linear with respect to the
vehicle velocity. A continuous-time formulation allows each
measurement to be applied at their exact measurement times
efficiently. The relative pose estimate can be computed via
numerical integration as a final step.

The proposed method is extremely lightweight as the
estimation problem is linear and we do not require data
association for the lidar data. We can apply our method
online by incrementally marginalizing out all past velocity
state variables (e.g., a linear Kalman filter that handles
measurements asynchronously (continuous-time)).

B. Motion Prior

We apply the continuous-time estimation framework of
Barfoot et al. [12] to estimate the trajectory as a Gaussian
process (GP). We model our vehicle velocity prior as White-
Noise-on-Acceleration (WNOA) [28],

ϖ̇(t) = w(t), w(t) ∼ GP(0,Qcδ(t− t′)), (1)

where w(t) is a (stationary) zero-mean GP with a power
spectral density matrix, Qc.

In addition, we found it beneficial to incorporate vehicle
kinematics by penalizing velocities in specific dimensions.
We center our vehicle frame at the rear-axle of the vehicle
and orient it such that the x-axis points forward, y-axis points
left, and z-axis points up. We can penalize velocities in the
lateral, vertical, roll, and pitch dimensions:

ekin
k = Hϖk, (2)

where a constant H extracts the dimensions of interest.

C. Measurement Models

We use the same Doppler measurement model as presented
by Wu et al. [4]. The (scalar) linear error model is

eidop = yidop −
1

(qi
s
T
qi
s)

1
2

[
qi
s
T

0
]
T svϖ(ti)− h(ψi), (3)

where yidop is the ith Doppler measurement, qi
s ∈ R3 are the

corresponding point coordinates in the sensor frame, T sv ∈
Ad (SE(3)) is the (known) extrinsic adjoint transformation
between the sensor and vehicle frames, and ϖ(ti) ∈ R6 is
our continuous-time vehicle velocity queried at the corre-
sponding measurement time. We are simply projecting the
vehicle velocity into the radial direction of the measurement
in the sensor frame (see Figure 1).

We identified a non-zero bias in the Doppler measurements
through experimentation. Wu et al. [4] calibrated this bias
using stationary lidar data collected from a flat wall at
a fixed distance. Measurements were partitioned into (ap-
proximately) uniform bins of azimuth and elevation, and a
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Fig. 2: A plot of the root-mean-square Doppler error ver-
sus measurement range aggregated over a driven test data
sequence. Discretizing the azimuth-elevation domain and
learning a linear regression model in each bin with range
as the input feature noticeably improves the error. Note that
the linear dependance on range is not visible in this plot as
we aggregate over all azimuth-elevation bins.

constant bias was calibrated for each bin. In our recent work,
we further identified that the bias has an approximately linear
dependance on the range measurement. Therefore we instead
model the Doppler velocity bias using a linear regression
model, h(ψ), with input feature vector, ψ = [1 (qTq)

1
2 ]T ,

for each azimuth-elevation bin. We will investigate other
input features (e.g., incidence angle, intensity) and nonlinear
regression models (if the need arises) in future work to
improve performance. Figure 2 demonstrates a before-and-
after comparison of applying our learned regression models
on a real-world test sequence2.

Partitioning the lidar data by azimuth and elevation also
has the effect of downsampling since we keep one mea-
surement per azimuth-elevation bin. We uniformly partition
along the azimuth by 0.2◦. The data are already partitioned in
elevation by the scan pattern of the sensor, which produces 80
horizontal sweeps. This downsampling effectively projects
each lidar frame into a 80 × 500 image. In practice, a raw
lidar frame has approximately 100,000 measurements, which
is then downsampled to 10,000 to 20,000 depending on the
scene geometry3.

In addition to the Doppler measurements, we use gyro-
scope data to compensate for the degrees of freedom not
observed by the Doppler velocities of a single lidar (see
Section IV for an algebraic study). The error model is

ejgyro = yj
gyro −RsvDϖ(tj), (4)

where yj
gyro ∈ R3 is the jth angular velocity measurement in

the sensor frame, Rsv ∈ SO(3) is the known extrinsic rota-
tion between the sensor frame and vehicle frame, and ϖ(tj)
is our continuous-time velocity of the vehicle frame queried
at the corresponding measurement time. The constant 3× 6
projection matrix D removes the translational elements of the
body velocity, leaving only the angular elements. Similar to
the Doppler model, this function is linear with respect to the
vehicle velocity. We verified empirically that the gyroscope

2Evaluated using the velocity estimates from an Applanix POS-LV as
groundtruth.

3This is typically an order of magnitude more data than what is used in
state-of-the-art ICP-based methods [14], [4].



bias is reasonably constant. We apply an offline calibration
for a constant bias on training data. In future work, we plan
on improving this aspect of the implementation by including
the bias as part of the state.

D. Estimation

The measurement factors of our estimation problem are

ϕi
dop =

1

2
(eidop)

2 R−1
dop (5)

for the Doppler measurements and

ϕj
gyro =

1

2
ejgyro

T
R−1

gyroe
j
gyro (6)

for the gyroscope measurements, where Rdop is the Doppler
measurement variance and Rgyro is the gyroscope covariance.

The motion prior factor of our WNOA prior is

ϕk
wnoa =

1

2
(ϖk −ϖk−1)

TQ−1
k (ϖk −ϖk−1) (7)

for the set of discrete states, ϖk, that we estimate in our
continuous-time trajectory. We space these discrete states
uniformly in time, corresponding to the start and end times
of each lidar frame, making Qk = (tk − tk−1)Qc constant.
This prior conveniently results in linear interpolation in time
for our velocity-only state [28]:

ϖ(τ) = (1− α)ϖk + αϖk+1, α =
τ − tk

tk+1 − tk
∈ [0, 1],

(8)
with τ ∈ [tk, tk+1]. The vehicle kinematics factor is

ϕk
kin =

1

2
(Hϖk)

TQ−1
z (Hϖk), (9)

where Qz is the corresponding covariance matrix4.
Our MAP objective function is

J =
∑
k

(ϕk
wnoa + ϕk

kin) +
∑
i

ϕi
dop +

∑
j

ϕj
gyro. (10)

Differentiating this objective with respect to the state and
setting it to zero for an optimum will result in a linear
system Σ−1ϖ∗ = b, whereϖ = [ϖT

1 ϖT
2 . . . ϖT

K ]T

is a stacked vector of all the vehicle velocities, Σ−1 is the
corresponding block-tridiagonal inverse covariance, and ϖ∗

can be computed using a sparse solver.
Figure 3 illustrates the states and factors in our online

problem. For the latest lidar frame, k, the Doppler mea-
surements are incorporated at their measurement times using
our continuous-time interpolation scheme. The gyroscope
measurements are similarly handled at their respective mea-
surement times. We incrementally marginalize5 out older
state variables, ϖi, where i < k, and estimate the latest
velocity, ϖk (i.e., a filter implementation).

After the vehicle velocity is estimated, we approximate the
relative pose estimate by numerically sampling ϖ(t) with a

4Rgyro, Qc, and Qz were empirically tuned as diagonal matrices. All
noise parameter values will be accessible from our implementation.

5In the interest of space, see Barfoot [28] for the details.

$k−1 $k

kth lidar frame

motion prior gyroscope lidar measurement
estimated state interpolated state

Fig. 3: An illustration of the factors involved in the online
velocity estimation problem. The Doppler and gyroscope
measurements are applied at their exact measurement times
using our continuous-time interpolation scheme. There is no
data association for the lidar measurements. We marginalize
out past state variables (i.e., ϖk−1), resulting in a filter for
the latest velocity, ϖk.

small timestep, △t, and creating a chain of SE(3) matrices
spanning the time interval [11]:

Tk,k−1 ≈ exp(△tϖ(tk)
∧) . . . (11)

× exp(△tϖ(tk−1 + 2△t)∧) exp(△tϖ(tk−1 +△t)∧),

where exp(·) is the exponential map6, ϖ(t) is the vehicle
velocity interpolated between boundary velocities ϖk−1 and
ϖk, and we have divided the time interval by S steps,
making △t = (tk − tk−1)/S. In practice, our vehicle
pose estimate drifts while the vehicle is stationary (e.g., no
movement due to traffic). This is easily detected by checking
a tolerance (we use 0.03m/s) on the forward translational
speed estimate. If the speed of a boundary estimate is less
than the tolerance, we set that boundary estimate ϖi = 0
before interpolation to mitigate pose drift.

E. RANSAC for Outlier Rejection

Outliers in the Doppler measurements are often caused by
erroneous reflections and moving objects in the environment.
Fortunately, each lidar frame is dense and, in practice, the
majority of the measurements are of the stationary envi-
ronment (inliers). Similar to Kellner et al. [24], we found
RANSAC [29] to be a suitable method for outlier filtering.

We classify between inliers and outliers using a constant
threshold (0.2m/s) on the Doppler error model (3). We run
RANSAC on each lidar frame independently. We assume
the vehicle velocity is constant throughout each frame and
solve for it using two randomly sampled Doppler measure-
ments. The solve is made observable by enforcing vehicle
kinematic constraints, i.e., we solve for a 2-DOF velocity7

ϖ = [v 0 0 0 0 ω]. We could include the gyroscope
measurements and solve for more dimensions, but found the
benefits in performance to be minor. In practice, 20 iterations
of RANSAC was sufficient for each lidar frame.

6The (·)∧ here is for R6 and is an overloading of the (·)∧ for R3. See
Barfoot [28] for the details.

7Our vehicle frame is oriented such that the x-axis points forward, y-axis
points left, and z-axis points up.



IV. OBSERVABILITY STUDY

A. Observability Study - Multiple FMCW Lidars

We present an observability study for the 6-DOF vehicle
velocity using Doppler measurements from multiple FMCW
lidars. In order to simplify the proof, we focus on estimating
the vehicle velocity over the interval of one lidar frame,
assuming that the data from multiple lidars are synchro-
nized and each have m measurements. We also remove
the continuous-time aspect of the problem by assuming the
vehicle velocity is constant throughout the frame duration.

For the ith measurement seen by the jth sensor,

eijdop = yijdop −
1

(qij
j

T
qij
j )

1
2

[
qij
j

T
0
]
Tjvϖ

= yijdop −
1

(qij
j

T
qij
j )

1
2

[
qij
j

T
Rjv qij

j

T
tvjj

∧
Rjv

]
ϖ

= yijdop − cTijϖ,
(12)

where the additional superscript j indicates the sensor8,
T sv ∈ Ad (SE(3)) is the extrinsic adjoint transformation
between the jth sensor and vehicle frames, and

cTij =
[
q̂ij
v

T
q̂ij
v

T
tvjv

∧
]
, q̂ij

v =
RT

jvq
ij
j

∥qij
j ∥

. (13)

Note how the measurement model does not depend on the
magnitude (range) of q since q̂ are unit vectors. We define
the stacked quantity Cj = [c1j · · · cmj ]

T for sensor j. In the
case of N sensors, we have

CTC =

N∑
j=1

CT
j Cj =

∑
j

[
Qj Qjt

vj
v

∧

tvjv
∧T
Qj tvjv

∧T
Qjt

vj
v

∧

]
,

(14)
where Qj =

∑
i q̂

ij
v q̂

ij
v

T is the sum of the outer product
of the points seen by the jth sensor. The velocity is fully
observable from a single lidar frame if and only if CTC
is full rank, or equivalently that the nullspace of CTC has
dimension zero [28]. In the following, we assume Qj to be
full rank (best case scenario), meaning that the unit velocities
seen by the jth sensor are not all contained in a line or a
plane. In the case of a 3D lidar sensor, Qj will always be
full rank regardless of the environment geometry.

Lemma 1: Let A and B be two symmetric positive
semidefinite matrices. Then, we have

null (A+B) = null (A) ∩ null (B) .
A proof of this lemma is given in Appendix A.

First, note that each member can be factorized as

CT
j Cj =

[
1 0

tvjv
∧T

1

]
︸ ︷︷ ︸

full rank

[
Qj 0

0 0

]
︸ ︷︷ ︸
PSD, rank=3

[
1 tvjv

∧

0 1

]
︸ ︷︷ ︸

full rank

, (15)

thus being positive semidefinite. Using Lemma 1, we find
the nullspace of CTC using the nullspace of each member

8qij
f are the coordinates of the ith point from sensor jth, in frame f .

of the sum. The nullspace of CT
j Cj is

null
(
CT

j Cj

)
= null

([
Qj 0

0 0

][
1 tvjv

∧

0 1

])

=


[
1 tvjv

∧

0 1

]−1 [
0

k

]
,k ∈ R3


=

{[
−tvjv

∧
k

k

]
,k ∈ R3

}
.

(16)

Thus for one sensor, CTC is rank deficient by 3. For two
sensors, the nullspace of CT

1 C1 +C
T
2 C2 is{[

−tv1v
∧
k

k

]
,k ∈ R3

}
∩
{[

−tv2v
∧
l

l

]
, l ∈ R3

}

=



{[
αtv2v

∧
tv1v

α(tv2v − tv1v )

]
, α ∈ R

}
if tv1v ̸= tv2v{[

−tv1v
∧
k

k

]
,k ∈ R3

}
if tv1v = tv2v ,

(17)

therefore being of dimension 1 if the two sensors are not
at the same position, and dimension 3 otherwise. Adding a
third sensor, we obtain{[

αtv2v
∧
tv1v

α(tv2v − tv1v )

]
, α ∈ R

}
∩
{[

−tv3v
∧
k

k

]
,k ∈ R3

}
={[

αtv2v
∧
tv1v

α(tv2v − tv1v )

]∣∣∣∣∣tv2v ∧
tv1v =−tv3v

∧(
tv2v − tv1v

)
, α ∈ R

}
.

(18)
Looking at the condition, we remark that
tv2v

∧
tv1v ,−tv3v

∧ (
tv2v − tv1v

)
∈ tv2v

⊥ ∩ tv3v
⊥ is necessary,

where (·)⊥ denotes the orthogonal complement. As such,
we can re-write the condition as{

tv2v
∧
tv1v = βtv2v

∧
tv3v , β ∈ R

−tv3v
∧ (
tv2v − tv1v

)
= βtv2v

∧
tv3v

⇔
{
tv1v = γtv2v + βtv3v , γ ∈ R
β = 1− γ

⇔ tv1v = γtv2v + (1− γ)tv3v .

(19)

The nullspace of CTC for three sensors has dimension 1 if
all three tvjv are on the same line, and dimension 0 otherwise.
As such, the full state is observable as long as the three
lidar sensors form the vertices of a triangle. Note that using
induction with Lemma 1, we can intuitively add more sensors
and the system remains fully observable.

B. Observability Study - Single FMCW Lidar + Gyroscope

Considering now the case of one lidar with one gyroscope
measurement, we show that adding the gyroscope measure-
ment leads to a fully observable system. With one gyroscope
measurement, the measurement matrix becomes

C ′T =

[
q̂1
v · · · q̂N

v 0

tvjv
∧T

q̂1
v · · · tvjv

∧T
q̂N
v Rsv

]
, (20)
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Fig. 4: Our data collection platform, Boreas, was established
for the Boreas dataset [30]. It was recently equipped with an
Aeva Aeries I FMCW lidar by Wu et al. [4].

leading to

C ′TC ′ =

[
1 0

tvjv
∧T

1

]
︸ ︷︷ ︸

full rank

[
Q 0

0 1

]
︸ ︷︷ ︸

full rank

[
1 tvjv

∧

0 1

]
︸ ︷︷ ︸

full rank

. (21)

As such, the system becomes fully observable with only one
lidar sensor and one gyroscope.

V. EXPERIMENTS

A. Experiment Setup

An image of our data collection vehicle, Boreas, is shown
in Figure 4. The vehicle was previously used for the Boreas
dataset [30] and demonstrating STEAM-ICP with Doppler
velocity measurements [4]. Boreas is equipped with an Aeva
Aeries I FMCW lidar sensor, which has a horizontal field-
of-view of 120◦, a vertical field-of-view of 30◦, a 300m
maximum operating range, and a sampling rate of 10Hz.
The lidar includes a Bosch BM160 IMU, which we use for
our experiments. We use the post-processed estimates from
an Applanix POS LV as our groundtruth.

We collected 5 data sequences near the University of
Toronto Institute for Aerospace Studies. Sequences 1 to 4
follow the Glen Shields route of the Boreas dataset [30].
Sequence 5 is a different route collected in the same area.

Following existing work, we evaluate odometry using the
KITTI error metric, which averages errors over path lengths
that vary from 100m to 800m in 100m increments. We
present results for two variants of our method: an offline
batch implementation and an online filter implementation.

B. Implementation

We ran all experiments using the same compute hardware9.
Our C++ filter implementation10 is single-threaded. Average
wall-clock times of the main modules in our pipeline are:

9Lenovo Thinkpad P53, Intel Core i7-9750H CPU.
10Code for the C++ implementation: https://github.com/

utiasASRL/doppler_odom.
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Fig. 5: A qualitative plot of the estimated odometry paths
on sequence 1 of our collected dataset. Our proposed filter
runs at 5.64ms on average for each lidar frame on a single
thread. See Figure 6 for an example of sequence 5.

1) Preprocessing (4.19ms): Downsampling by azimuth
and elevation (most expensive computation) and evaluation
of the linear regression model (negligible computation).

2) RANSAC (0.95ms): RANSAC for the latest lidar frame
to filter out outliers.

3) Solve (0.49ms): Solving for the latest velocity estimate
corresponding to the last timestamp of the latest lidar frame.

4) Numerical integration (0.01ms): Approximate the lat-
est pose estimate using numerical integration (100 steps).

The total average wall-clock time for processing the latest
lidar frame is 5.64ms. This is well under 100ms, which is the
requirement for processing Aeva Aeries I lidar data in real
time. We note that the Aeries I firmware does not support
outputting the raw azimuths, elevations, and range of the
lidar points, requiring re-calculation of these values from the
coordinates. These calculations result in an additional 1.5ms
on average in the preprocessing step, which we have included
in the above timing results. Outputting the raw azimuths and
elevations is supported in later sensor models (i.e., Aeries
II), which will further reduce our compute time.

C. Results

We compare our proposed methods (filter and batch) to
the current state of the art for ICP-based lidar odometry
and demonstrate the trade-offs between computation and
accuracy. We present results using STEAM-ICP [4] as a
representative of an accurate method that is not optimized
for real-time application, while CT-ICP [14] is a real-time
capable method that is still very accurate.

As our methods require training for the linear regression
models and constant gyroscope bias, we train on one se-
quence and show test results on the remaining four. Table
I shows the results for all five possible folds and compares
them to STEAM-ICP and CT-ICP. STEAM-ICP performs
better than our filter by a factor of ∼5 in translation, but
runs slower by a factor of ∼120 on a single thread. A
multi-threaded implementation of STEAM-ICP runs slower
than our filter (single-threaded) by a factor of ∼36. CT-ICP
performs better than our filter by a factor of ∼4 in translation,

https://www.boreas.utias.utoronto.ca
https://www.boreas.utias.utoronto.ca
https://www.boreas.utias.utoronto.ca
https://github.com/utiasASRL/doppler_odom
https://github.com/utiasASRL/doppler_odom


TABLE I: Quantitative results using the KITTI odometry error metrics on our data sequences. For our methods, we train on
one sequence and test on the others. All folds are presented with the training sequence in grey (not counted in the average).
The average wall-clock time (single-threaded) per lidar frame is shown in brackets for each online method. Multi-threading
reduces the runtimes to 201.69ms and 33.91ms for STEAM-ICP and CT-ICP, respectively. Best results are in bold font.

Compute [ms] Translation Error [%] Rotation Error [◦/(100m)]

ICP-based 01 02 03 04 05 AVG 01 02 03 04 05 AVG

STEAM-ICP [4] 678.74 0.24 0.24 0.23 0.21 0.25 0.23 0.087 0.083 0.083 0.080 0.084 0.083
CT-ICP [14] 93.78 0.28 0.39 0.26 0.25 0.30 0.29 0.099 0.104 0.098 0.094 0.100 0.099

Train on 01 (Ours) 01 02 03 04 05 AVG 01 02 03 04 05 AVG

Batch – 0.94 1.20 1.22 1.03 1.03 1.12 0.317 0.403 0.392 0.356 0.376 0.382
Filter 5.64 1.10 1.26 1.22 1.16 1.06 1.17 0.386 0.463 0.440 0.415 0.397 0.429

Train on 02 (Ours) 01 02 03 04 05 AVG 01 02 03 04 05 AVG

Batch – 1.20 1.00 1.02 0.96 0.94 1.03 0.387 0.344 0.357 0.340 0.344 0.357
Filter 5.64 1.34 1.10 1.18 1.12 1.08 1.18 0.448 0.410 0.439 0.407 0.391 0.421

Train on 03 (Ours) 01 02 03 04 05 AVG 01 02 03 04 05 AVG

Batch – 1.11 1.09 0.97 0.91 0.85 0.99 0.368 0.380 0.335 0.324 0.325 0.349
Filter 5.64 1.22 1.21 1.12 1.12 1.06 1.15 0.414 0.450 0.415 0.403 0.383 0.412

Train on 04 (Ours) 01 02 03 04 05 AVG 01 02 03 04 05 AVG

Batch – 1.07 1.06 0.98 0.89 0.85 0.99 0.354 0.369 0.340 0.323 0.328 0.348
Filter 5.64 1.19 1.18 1.12 1.10 1.03 1.13 0.408 0.442 0.419 0.401 0.383 0.413

Train on 05 (Ours) 01 02 03 04 05 AVG 01 02 03 04 05 AVG

Batch – 1.03 1.03 1.04 0.92 0.89 1.01 0.346 0.354 0.347 0.326 0.332 0.343
Filter 5.64 1.17 1.14 1.15 1.09 1.00 1.14 0.408 0.425 0.424 0.398 0.378 0.414

but runs slower by a factor of ∼17 on a single thread. A
multi-threaded implementation of CT-ICP runs slower than
our filter (single-threaded) by a factor of ∼6. Figure 5 and 6
show a qualitative plot of the estimated paths on sequences
1 and 5, respectively. Our method operates on approximately
10,000 to 20,000 measurements for each lidar frame, while
STEAM-ICP and CT-ICP operate on approximately 2,000 to
4,000 measurements.

We believe our method presents a compelling trade-off
between accuracy and computational cost. As seen in Figure
6, our filter performs reasonably over several kilometers
such that a loop-closure algorithm could detect points of
intersection. This poses a potential application where our
lightweight odometry operates at a fast rate, while a slower
ICP-based optimization can execute in parallel at a slower
rate for localization and/or loop closure. As an additional
benefit, our odometry can motion-compensate the lidar data
such that rigid ICP can be applied instead of a motion-
compensated implementation. Our method is fast on a single
thread, leaving threads available for other important tasks in
an autonomy pipeline (e.g., localization, planning, control).

VI. CONCLUSION

We presented a continuous-time linear estimator for the
6-DOF vehicle velocity using FMCW lidar and gyroscope
measurements. As our method is linear and does not require
data association, it is efficient and capable of operating at

an average wall-clock time of 5.64ms for each lidar frame.
We demonstrate our method on real-world driving sequences
over several kilometers, presenting a compelling trade-off in
computation versus accuracy compared to existing state-of-
the-art lidar odometry.

As demonstrated in our observability study, and experi-
mentally by Kellner et al. [25] for 3-DOF motion, multiple
FMCW sensors are required for the Doppler measurements
to fully constrain the vehicle motion. We plan on using
multiple FMCW lidars to estimate vehicle motion without the
built-in gyroscope. We will further investigate the Doppler
measurement bias and work on improving the regression
model by introducing more input features (e.g., angle of
incidence). We will also incorporate these features into
learning a feature-dependant Doppler noise variance.

APPENDIX

A. Proof of Lemma 1

Assume x ∈ null (A) ∩ null (B). It is straightforward
to see that x ∈ null (A+B), hence null (A+B) ⊇
null (A) ∩ null (B). Then, assume x ∈ null (A+B), we
have

xT (A+B)x = xTAx︸ ︷︷ ︸
≥0

+xTBx︸ ︷︷ ︸
≥0

= 0

Recall that for any symmetric PSD matrix M , we have
M = STS. As such, xTMx = 0 ⇔ (Sx)

T
Sx =

0 ⇒ x ∈ null (S) ⇒ x ∈ null (M). Therefore, x ∈
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Fig. 6: A qualitative plot of the estimated odometry paths on sequence 5. The ICP-based methods (STEAM-ICP and CT-ICP)
perform extremely well with little drift over several kilometers, but require more compute. Our proposed filter presents a
trade-off in accuracy for less computation, executing at 5.64ms on average per lidar frame on a single thread.

null (A)∩null (B) and null (A+B) ⊆ null (A)∩null (B),
which concludes the proof.
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