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Abstract— Task and motion planning is one of the key
problems in robotics today. It is often formulated as a discrete
task allocation problem combined with continuous motion
planning. Many existing approaches to TAMP involve explicit
descriptions of task primitives that cause discrete changes in
the kinematic relationship between the actor and the objects.
In this work we propose an alternative, fully differentiable
approach which supports a large number of TAMP problem
instances. Rather than explicitly enumerating task primitives,
actions are instead represented implicitly as part of the solution
to a nonlinear optimization problem. We focus on decision
making for robotic manipulators, specifically for pick and place
tasks, and explore the efficacy of the model through a number
of simulated experiments including multiple robots, objects
and interactions with the environment. We also show several
possible extensions.

I. INTRODUCTION

To perform manipulation tasks, even simple ones such as
picking up an object, robots must solve two tightly coupled
problems. The first is decision making: what strategy should
be used to pick the object? The second is motion planning:
how to move and perform the picking motion in an optimal
way based on the selected strategy? These problems together
are a simplistic instance of the task and motion planning
problem, or TAMP. Another instance of the problem involves
several robotic manipulators that are tasked with sorting and
organizing a set of objects that are scattered around their
environment. One way to solve this problem is to assign
each robot to specific pick-and-place tasks, and then find
the optimal trajectories for all of them simultaneously. The
main question TAMP aims to address is, what would be
the optimal assignment? The challenge there stems from the
interplay between the two problems that make up TAMP:
task planning, and motion planning.

The cost of a motion plan given a specific task is hard
to predict and expensive to evaluate, and even the smallest
change to the task description can cause the motion plan
to become infeasible. Thus, TAMP approaches are often
concerned with finding efficient ways for searching in the
space of task assignments [1], [2], [3].

The combinatorial complexity of TAMP could be partly
mitigated if task planning could be formulated in a unified,
continuous way. Furthermore, and perhaps more importantly,
a continuous formulation would allow the problem to be
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Fig. 1: The number of available actions, such as handovers,
increases exponentially with the number of manipulators.

integrated in differentiable simulators and neural networks
and ultimately be a step toward high-level decision making in
complex situations. For these reasons, our goal in this paper
is to propose a fully continuous formulation applicable to a
considerable subset of the TAMP problem domain including
task assignment and motion planning. Our emphasis is on
decision-making for robotic manipulators, particularly for
pick-and-place tasks. We address this challenge by treating
task assignment in an implicit manner. The idea is, instead of
assigning a pick-and-place task, to associate robots with ob-
jects using time-dependent, real functions. These functions,
in some sense, express for each point in time a degree of
which a specific robot should hold a specific object. Hence,
in contrast to explicitly defined pick events and place events,
they only implicitly define them.

Based on this concept, we define a smooth optimization
problem that can be readily solved using gradient-based
methods, such as Newton’s method. We demonstrate the
potential of this approach in a variety of settings, including
multiple manipulators and objects. We also show that this
approach is easily extendable to handle different grasps,
handovers and more complex interactions.

II. RELATED WORK

Modern approaches for task and motion planning combine
discrete high level decision making with continuous param-
eter search in different ways. In [1] the configuration space
is discretized and combined with the action skeleton into a
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discrete constraint satisfaction problem that is then handed
to a generic CSP solver. Another popular method known
as Logic Geometric Programming (LGP) [2], [3] combines
symbolic action search with a non-linear program for finding
the trajectory. The exponential growth of the discrete action
space poses challenges for longer planning horizons, for
which several extensions have been developed [4], [5].

Other approaches, e.g. [6], [7] suggest to find the trajectory
by sampling. In [6] the symbolic actions and the continuous
parameter spaces are fused and solved simultaneously using
an off-the-shelf motion planner while in [7] the domain
specific constraints are utilized for factoring the problem,
enabling efficient sampling. As can be inferred by [8],
the main differences between different approaches are how
they solve for the continuous variables and how constraint
satisfaction interacts with the search for high level action
sequences. In general, TAMP is a very active research topic,
and the review in [8] is highly recommended.

TAMP covers a wide range of problems [9], and successful
completion of a task may hinge on effective manipulation,
which is an active research field on its own [10], [11],
[12]. However, while task planning for a single manipulator
already is challenging, increasing the number of agents puts
additional emphasis on the planning and decision making
algorithms. In some settings, e.g. in a factory or in a
warehouse, less general algorithms may be sufficient. Pick
and place problems involving multiple robots and handovers
may be solved using heuristics and sampling for exploring
the search space [13]. Another option might be to consider
the individual robots in a non-cooperative fashion [14].

Planning through kinematic modes using optimization has
previously been studied in [15] and [16] in the context
of motion synthesis for computer graphics and in [17] for
trajectory planning of rigid body systems. Similarly to our
work, these contributions also rely on optimization and
additional variables for describing switches between different
modes. Sampling based methods include e.g. [18] which
extends the popular probabilistic roadmaps method [19] with
multi-modal capabilities.

A similar concurrent work found in [20] builds upon
a concept known as signal temporal logic (STL) and a
smooth approximation thereof [21], which enables a fully
continuous approximation to task planning. The formulation
proposed in [20] also features auxiliary variables similar to
the ones used in this work. However, the formulation relies
on constraints that scale quadratically with the number of
objects. Additionally, it was not demonstrated on multiple
robots, and does not include a grasping parametrization and
uses floating end effectors during the planning with joint
angles computed in a separate step.

The idea of treating naturally discrete phenomena as
continuous has also been employed in other fields, such
as topology optimization. A popular method for optimiz-
ing structural integrity is known as Solid Isotropic Micro-
Structure with Penalization, or SIMP [22], [23]. In SIMP
the target domain is divided into finite elements whose
occupancy is modeled using a continuous range of values.
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Fig. 2: Example setup with two robotic manipulators and one
movable object.

For non-porous materials fractional values are difficult to
interpret, and therefore penalization techniques are needed
to drive the occupancy to either empty or solid. However, in
our method, fractional values do not constitute an issue.

III. OVERVIEW

The archetypal trajectory optimization problem we build
upon is

min
x(t)

J (x(t))

s.t. c(x(t)) = 0,
(1)

where x(t) denotes the trajectory of all state variables, J
is the objective, e.g. shortest path, and c(x) denotes user-
specified constraints such as initial and target positions on the
trajectory. To begin our discussion, consider a scenario where
a robotic manipulator is holding a box. The final desired
placement of the box is out of reach for the robot that is
currently holding it, but there is another robot close by that
can take the box from the first robot and bring it to its goal.
This handover maneuver is a decisive high-level task that
needs to be actively chosen. An illustration is shown in 2.

The pose of the object can be seen as a link in the
kinematic chain. The pose is thus governed by the kinematic
equations that are induced by the robot holding it. Put
differently, there is a set of constraints that the box and the
robot holding it must satisfy. During a handover, this set of
constraints change in what is known as a kinematic switch.

Much of the previous work mentioned above deals with
the explicit sequencing of actions. We instead enable the
kinematic switches to emerge as a result of solving a
nonlinear program. This is made possible by mollifying the
switches. This way we can simultaneously find the action
sequence and the motion trajectory using only gradient-based
methods without relying on integer-based techniques.

This example can be expressed as an extension of (1):

min
x(t)

J (x(t))

s.t. c(x(t)) = 0

c1(x(t)) = 0 ∨ c2(x(t)) = 0 ∨ c∅(x(t)) = 0 ∀ t

where x(t) also includes the trajectory of the object. The
constraints c1(x) and c2(x) define the grasping relationship
between the object and each manipulator, and c∅ is a function



whose value is zero when the object rests on the ground.
The distinguishing feature of this problem is that only one of
these constraints needs to be satisfied at a given time. In other
words, the box must be held by one or both manipulators
and/or be on the ground, but it cannot float.

While this could potentially be formulated as a mixed
integer problem, we instead opt for a fully continuous
formulation which we detail in the next section. Our main
idea is to relax the kinematic switches in the problem
by introducing time-dependent association weights wi(t) :
[0, T ] → [0, 1], i ∈ {1, 2}. These weights signify the
association between each robot and the box, or ”how much”
the constraints c1 and c2 need to be satisfied. With these
weights, the optimization problem is transformed into a
complementarity problem:

min
x,w1,w2

J (x(t))

s.t. c(x(t)) = 0

wi(t)ci(x(t)) = 0,∀ i ∈ {1, 2}
w∅(t)c∅(x(t)) = 0

(2)

where w∅(t) = 1 −
∑

i wi(t). Any of the constraints c1, c2
and c∅ can now become inactive by choosing the weights w1

and w2 appropriately.

IV. METHOD

The problem presented in (2) provides the foundation of
our approach. In this section we refine the formulation to
add support for task allocation, multiple objects and robotic
manipulators, and more.
Trajectories We denote the joint angles of a manipulator
i ∈ M at time t ∈ [0, T ] by mi(t) ∈ Rn. The joint
angles can be subjected to box constraints of the form
mmin

i ≤ mi(t) ≤ mmax
i that correspond to the physical joint

limits of the robot. The trajectory of an object j ∈ P is
written analogously as pj(t) ∈ R6. Objects consist of only
one rigid body and pj thus directly describes an object’s pose
in world coordinates. We use f : Rn → SE(3) for denoting
the forward kinematic function that maps the manipulator
state mi to an end effector position and orientation in the
world coordinate frame.
Task selection The allocation of a task j to a manipulator
i is modeled using a function wij(t) : [0, T ] → [0, 1] as
outlined in III. These variables form a key component of the
path constraints that will be developed in IV-A.
Resting Objects may need to be released before they have
reached the goal pose. To ensure physically plausible behav-
ior we restrict the resting pose of the object to be in a set
of stable configurations. E.g. a cube can be placed with any
face towards the ground, implying that the elevation of the
cube as well as one rotational axis is fixed. We introduce the
functions rdj(t) : [0, T ] → [0, 1] where d corresponds to a
specific resting pose. We use these functions to construct the
resting orientation constraints in IV-B.
Grasping During handovers from one robot to another,
different grasping poses may be necessary in order to prevent
robots from colliding. In this work we use cuboid objects of

size 0.06 m×0.06 m×0.2 m. We model the grasp pose with
two degrees of freedom; one along the longitudinal axis of
the object and one being the angle between the gripper and
the local y-axis of the object. A similar parametrization has
been used in [24] with an additional degree of freedom.

We denote the longitudinal offset and the angle with δij
and θij respectively. The longitudinal offset is subject to
a box constraint that depends on the physical dimensions
of the object, i.e. δmin

j ≤ δij ≤ δmax
j . We note that the

grasping parameters are defined per manipulator-object pair
and therefore are independent of t.

For conciseness we hereafter write yij(t) =[
wij(t) δij θij

]T
. Given the grasping parameters

and the object state pj we can define g : (pj ,yij) → SE(3)
that maps the object state and grasping parameters to a
grasping pose for the end effector in world coordinates.

A. Differentiable kinematic switches

We model the kinematic switches as path constraints that
depend on m, p as well as the auxiliary functions wij(t).
The constraint has the form

Cpos := wij (fi(mi)− g(pj ,yij)) = 0 (3)

for manipulator i and object j. In addition we constrain the
velocities of the non-actuated bodies such that they equal the
weighted sum of the velocities of the end effectors that are
currently moving it. The velocity constraint is of the form

Cvel := ġ(pj ,yij)−
∑
i∈M

wij ḟi(mi) = 0. (4)

This constraint also ensures that the velocity of an object is
zero when wij = 0 ∀ i ∈ M. Together with (3), (4) ensures
that an object will be moving only when a manipulator holds
it. These two constraints thus fully describe the dynamical
relationship between the manipulator and the objects to be
manipulated.

B. Resting constraints

For a cube or a block with six faces the resting constraint
can be expressed as a constraint on the elevation and on
one of the orientation axes of the object. The number of
constraints thus equals the number of available resting ori-
entations. For brevity we write ŵdj(t) = 1−

∑
i∈M wij(t).

The resting constraint can then be expressed as

Crest := ŵ(t)djrdj(t)ϕd(g(pj ,yij)) = 0

where ϕd is a function that captures the difference between
the relevant rotation axis for the resting pose d as well as the
resting elevation, e.g. corresponding to a floor or a table. By
setting

∑
d rdj(t) = 1 we ensure that at least one constraint

is active when ŵ(t)dj > 0.

C. Collisions

Collision free trajectories are ensured by imposing a
collision constraint of the form

Ccollision := ccollision(Ka(m,p),Kb(m,p)) ≥ 0 ∀ a, b ∈ C



where Ka,Kb denote a pair of forward kinematic functions
for collision primitives a, b ∈ C in the scene and the value of
ccollision is proportional to the squared distance between the
collision primitives and m,p denote the stacked trajectory
vectors. We refer the reader to [25] for details.

D. Trajectory optimization problem

By stacking the manipulator and object trajectories as well
as the grasping parameters into m, p and y respectively we
can now write the trajectory optimization problem as

min
m,p,y

J (m,p,y)

s.t. Cpos = 0 ∀ i ∈ M, j ∈ P
Cvel = 0 ∀ j ∈ P
Crest = 0 ∀ j ∈ P,

Ccollision ≥ 0 ∀ a, b ∈ C
mmin

i ≤ mi ≤ mmax
i ∀ i ∈ M

δmin
j ≤ δij ≤ δmax

j ∀ i ∈ M, j ∈ O

(5)

where J is an objective function. In the experiments we also
penalize joint velocities and accelerations of the manipula-
tors, i.e.

fv(mi) := ∥ṁi∥2

and
fa(mi) := ∥m̈i∥2

as well as the end effector velocities

fee(mi) := ∥ḟi(mi)∥2.

J then reads

J =
∑
i∈M

(β1fv(mi) + β2fa(mi) + β3fee(mi))

where βl ∈ R, l ∈ {1, 2, 3} are constant weights.
The constraints in (5) are sufficient for preventing a single

manipulator from holding multiple objects simultaneously.
However, in our numerical experiments we have found that
adding an additional constraint that limits the capacity of
the manipulators is beneficial for guiding the optimization.
To prevent manipulators from acting on multiple objects
simultaneously we introduce a capacity constraint of the form

Ccap :=
∑
j∈P

wij(t) ≤ 1 ∀ t ∈ [0, T ],

which prevents a single manipulator from being fully respon-
sible for multiple objects simultaneously.

E. Constraint manifold

At the core of our formulation are the position and velocity
constraints (3)(4). Their most important property becomes
apparent only when the constraints are considered over time.

In order to illuminate this property we study the constraints
in a one dimensional setting with one free manipulator
located at m : t → R and a point object located at

Fig. 3: Level sets of (7). Non-zero velocities of a object-
manipulator pair are feasible simultaneously only for w = 1.

p : t → R and a constant weight w. The position and velocity
constraints then reduce to

w (m(t)− p(t)) = 0

and

ṗ(t)− wṁ(t) = 0 (6)

respectively. The constraint violation over time t ∈ [t1, t2]
can be quantified using the L2 norm:

d =

∫ t2

t1

(w (m(t)− p(t)))
2
+ (ṗ(t)− wṁ(t))

2
dt. (7)

From (7) we can deduce that:
1) If w = 0, the terms corresponding to the position

constraint and the manipulator velocity vanish, and
thus it must hold that ṗ(t) = 0.

2) If w ̸= 0, the position of the manipulator and the object
must coincide over the whole time span for the first
term to vanish. Since the position of the manipulator
and the object must coincide over time, the velocity
of the manipulator and the object must be the same.
Thus, in order for the velocity terms to cancel out, it
must either hold that w = 1 or ṗ(t) = ṁ(t) = 0.

This property can be visualized using the level sets of (7)
when m(t1) = p(t1) (Fig. 3).

Every additional manipulator will add a position constraint
as well as a velocity term of the form −wiṁi(t) to (6).
Thus, when multiple manipulators are moving the object, all
of their velocities must be equal to the velocity of the object,
and for the (non-zero) velocity terms to cancel out it must
hold that

∑
i wi = 1. Due to the shape of the constraint

manifold, the sum of the weights associated with one object
will tend towards either 0 or 1. Individual weights between 0
and 1 appear when multiple robots are transporting the same
object simultaneously. Our formulation should therefore not
be interpreted as a relaxation of the corresponding mixed
integer problem where the weights are binary.
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Fig. 4: The association weights for a manipulator moving two
objects. The solutions are obtained before and after adding
fa(p1) and fa(p2) to the objective function.

F. Nonlinear program

We transform (5) into a nonlinear program in order to
solve it numerically. We model the trajectories using cubic
Hermite splines on the N − 1 segments that are defined by
N time points. For wij and rdj we use piece wise constant
functions defined on N−1 segments. Finally we convert the
constrained nonlinear program to an unconstrained problem
by applying quadratic and cubic penalty functions to the
equality and inequality constraints respectively and solve
it using the Gauss-Newton method. We use CHOLMOD
[26] for solving the emerging linear system and [25] for
collision avoidance. The position and velocity constraints
(3)(4) are evaluated at the end points as well as the midpoint
of every segment, and the collision constraints at 11 equally
spaced points on each segment in order to provide sufficient
coverage.

The benefit of the continuous association weights detailed
in IV can be demonstrated experimentally. Consider a setup
containing two objects that need to be picked up and placed
in a different position on the floor, and one manipulator
capable of moving the objects. Solving the optimization
problem results in a schedule for moving the blocks.

Next we add two additional terms to the objec-
tive that captures the acceleration of the objects. We
continue the optimization with the updated objective
Ĵ := J + fa(p1) + fa(p2). The resulting schedule is
shown in Fig. 4 with a trajectory length of 9 segments.
As can be seen, the new terms influence the length of the
time windows during which the objects are moving. This
shows that the emerging schedule is directly affected by the
objective function.

V. RESULTS

We evaluate the formulation (5) by applying it to a number
of scenarios in a simulated environment. The experiments
were implemented in C++ and executed on a desktop com-
puter equipped with an 16-core AMD Ryzen 5950X 3.4 GHz
CPU and 32 GB of RAM. All tasks are designed such that
they can be solved by the robots in the scene. The association
weights wij are initialized to 0.5 unless stated otherwise.

1.4 s 2 s 7 s

1.4 s 5 s 7 s

Fig. 5: When the manipulators are separated by a wall the
robots must cooperate in order to move the block from the
start to the goal pose (outlined in green and red). When the
wall is removed the block can be moved from the start to
the goal pose by a single robot.

A. Environmental influence

This experiment demonstrates how the allocation of ob-
jects to manipulators is affected by obstacles in the environ-
ment. The scene consists of one fixed UR5 and a Kinova
mounted on an omnidirectional wheeled platform. We use
a trajectory consisting of 9 segments, i.e. 10 discrete time
points where the joint values of the manipulators and root
position of the Kinova platform are initialized to a resting
state. The trajectory of the block is initialized such that the
final state corresponds to the goal pose while all other states
are initialized to the starting pose.

Fig. 5 shows key points of the emerging trajectories.
The wall, when present, is placed such that it prevents the
Kinova platform from directly reaching for the package and
transporting it to the goal position. The robots may thus
cooperate, and in the resulting trajectory the block is first
lifted by the UR5 and handed over to the Kinova platform,
which brings the block to the goal position. When the wall
is absent (all other parameters being equal) the task is
completed by only the Kinova platform.

B. Multiple moving objects

This experiment consists of three blocks that need to
be moved, and four stationary manipulators arranged in a
rectangular pattern between the start and goal positions of
the blocks. In this experiment we use a trajectory consisting
of 13 segments.

The initialization is created by linearly interpolating the
trajectories of the blocks and distributing them over time. An
illustration of the heuristic schedule is shown in Fig. 6. We
then execute ten iterations of the Gauss-Newton solver while
keeping the trajectories of the blocks fixed. The resulting
manipulator trajectories are then used for initializing the
actual optimization where the trajectories of the blocks are
included. The solution is captured in Fig. 7. Noteworthy is
that the solution contains a segment where one of the blocks
is placed to rest on the ground before being picked up again
and transported to the goal position. The association weights
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Block 3 moving

Fig. 6: Tasks involving multiple objects benefit from initial-
ization. We construct the initialization by linearly interpolat-
ing the poses of the movable objects within non-overlapping
time windows.

3.5 s 7 s

Fig. 7: The second experiment requires multiple handovers
for successful completion.

for the blocks are visualized in Fig. 8, showing one block
being at rest at time 3-4 s.

C. Including interactive objects

In the previous experiments the starting pose of the blocks
are directly reachable by one or more manipulators. However,
oftentimes the object of interest can be reached only after
manipulating the environment, such as by opening a drawer.
Interactive objects can be directly included into (5) as agents
subject to appropriate constraints.

We include a drawer by treating it simultaneously as an
object that can be moved and as a manipulator equipped with
an end effector that can hold objects. The drawer is thus
subject to a velocity constraint which allows it to move only
when actuated by another manipulator, and a corresponding
pose constraint attached to the handle of the drawer (see (4)
and (3)). The start pose of the block is inside of the closed
drawer while the goal pose is on the table next to the robot as
shown in Fig. 9. We initialize the trajectory of the block by
linearly interpolating between the start and the goal poses.
The trajectory of the drawer is initialized to the resting pose,
i.e. closed, while the trajectory of the UR5 is initialized to
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Fig. 8: Association weights between the manipulators and
the blocks as a function of time. At time 3-4 s the middle
block is placed on the ground before being picked up again.

2 s 6.5 s

Fig. 9: The formulation also supports interactive objects.
Here the drawer needs to be opened before the block can
be retrieved.

the rest state. The association weight between the drawer and
the block is initialized to 1. The resulting trajectory features
the UR5 opening the drawer before reaching for the block
and placing it on the table.

D. Extension for multiple grasping orientations
The the formulation in IV provides some flexibility in

choosing the grasp pose through the longitudinal offset δij
and the angle θij , but the grasping orientation is still fixed
around the two remaining axes of the object. However, the
blocks used in the previous examples allow four distinct
grasping orientations around the longitudinal axis. In this
section we show how the formulation in IV can be extended
in order to enable all of these orientations.

We introduce the functions γijk : [0, T ] → [0, 1] that
denote the association of a particular grasping orientation
k between an object j and a manipulator i. The position
constraints (3) can now be replaced with

γijk(t)wij(t) (fi(mi)− ĝk(pj ,yij)) = 0,

where ĝk is the target grasp pose after applying
the offset corresponding to index k. By also setting∑

k γijk(t) = 1 ∀ i ∈ M we can ensure that at least one
alternative will be active.

The updated formulation can be used to solve e.g. reori-
entation problems. In Fig. 10, two manipulators are tasked
to reorient a block such that the face that is initially facing
upwards will be facing towards the ground at the end. The
values of γijk are shown in Fig. 11. The reorientation of
the block could in this case be completed with only one
handover, however, the obtained solution is a local minimum
featuring four handovers. In this experiment the trajectory
of the block has been initialized to a linearly interpolated
trajectory between the start and the goal pose while the
manipulator trajectories are initialized to the rest pose.

E. Weight derivative limit
As discussed in IV-E, the formulation enables multiple

robots to seamlessly transport a single package. We can
induce this behavior by introducing an additional constraint
that limits the rate of change of the association weights wij .
This constraint is of the form

C∆+
w
:= ẇij ≤ ∆+

w

C∆−
w
:= ẇij ≥ ∆−

w
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Fig. 10: Here two robots are reorienting a block such that the
face that is initially facing upwards will be facing towards
the ground.
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Fig. 11: The orientation weights γijk(t) as a function of
time. Manipulator 1 is grasping the block from two different
directions while manipulator 2 is using three different ones.
The constraint becomes active when both γijk(t) and wij(t)
are greater than zero.

where ∆+
w and ∆−

w denote the upper and lower limit of the
derivatives.

This constraint causes the pick-up and release phases to
be extended. The weights now need 1

∆+
w

time units to switch
from 0 to 1, which can be useful e.g. in order to provide
enough time for the grippers to open and close during a
pick-up or a handover. As discussed in IV-E, the velocity
can be non-zero only when the weights of one object sum
up to one, and therefore the velocity of both the end effector
and the object will be zero when the object is picked up and
dropped on the ground. During a handover the object may
still move as long as the weights sum up to 1. An experiment
with two UR5s where the upper and lower derivative limits
are set to 1

2 and − 1
2 respectively is shown in Fig. 12.

F. Optimization runtime

Finally we study how increasing the number of manip-
ulators impacts the optimization. In this experiment we
assemble UR5s on a line with the task of moving a block

2.5 s 3.5 s
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Fig. 12: Two UR5s performing a handover where the switch-
ing time is constrained. During time segments 1-2 s and 7-8
s, the sum of the association weights is less than 1, and as
discussed in IV-E, the velocity constraint (4) then ensures
that the object stays in place.
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Fig. 13: The objective value as a function of the iteration
number with different numbers of manipulators.

from the start of the line to the end. Adding manipulators
increases the number of iterations needed for convergence,
as shown in Fig. 13. The five manipulator setup is shown in
Fig. 1. The runtime and the number of variables for each
experiment is shown in I. The table must be interpreted
carefully as the exact task description has a significant impact
on the optimization landscape and thus also the number
of iterations needed for convergence. The measurements
reported in I also include rendering and are intended as rough
estimates only.

VI. DISCUSSION AND CONCLUSION

The results in V show that decisions regarding high
level actions such as pick, place and open can be obtained
implicitly by solving a nonlinear optimization problem. The
actions emerge automatically as part of the solution without
the need to manually specify which manipulator should be
working, or even when.



TABLE I: Number of variables and average runtime for
different number of manipulators. The reported runtime is
the average of four measurements.

Manipulators 1 2 3 4 5
Wall time (s) 9.2 20.3 28.5 36.5 46.3

Number of variables 305 436 567 698 829

Trajectory optimization involving collision avoidance is in
general a non-convex problem. Gradient based methods use
only local information and may therefore struggle in finding
new trajectories that lie far away from the initial guess. This
can be demonstrated by constructing a variant of the drawer
experiment from V-C where the goal position of the block
is placed on top of the drawer which did not converge to
any reasonable solution in our experiments. This problem
has also been identified in [20]. Finding the global optimum
of the problem requires more sophisticated optimization
algorithms that are capable of exploring the optimization
space efficiently. Existing TAMP algorithms may in some
cases be able to work around this problem by including the
actions themselves into the problem formulation, turning the
actions into conditions for solving the optimization problem.

Additionally it is not entirely clear how the formulation
could be extended to support objects with inherently discrete
states, e.g. light switches, while still being continuous. Our
formulation also does not have any notion of temporal
precedence, i.e. objects may arrive at the goal position in
an arbitrary order. This can, however, be mitigated to some
extent by careful initialization.

We believe that the formulation presented here can be
useful, especially as part of a larger TAMP algorithm. Even
when combined with existing TAMP algorithms, by finding
some actions implicitly it would be possible to reduce
the number of actions that must be considered during the
sequencing. As the optimization method used in this work
might have difficulties in highly non-convex problems we
would additionally like to investigate the use of sampling
based methods for handling the end effector constraints.
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