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Anytime, Anywhere: Human Arm Pose from Smartwatch Data for
Ubiquitous Robot Control and Teleoperation

Fabian C Weigend, Shubham Sonawani, Michael Drolet and Heni Ben Amor

Abstract— This work devises an optimized machine learning
approach for human arm pose estimation from a single smart-
watch. Our approach results in a distribution of possible wrist
and elbow positions, which allows for a measure of uncertainty
and the detection of multiple possible arm posture solutions,
i.e., multimodal pose distributions. Combining estimated arm
postures with speech recognition, we turn the smartwatch into
a ubiquitous, low-cost and versatile robot control interface.
We demonstrate in two use-cases that this intuitive control
interface enables users to swiftly intervene in robot behavior,
to temporarily adjust their goal, or to train completely new
control policies by imitation. Extensive experiments show that
the approach results in a 40% reduction in prediction error
over the current state-of-the-art and achieves a mean error of
2.56 cm for wrist and elbow positions. The code is available at
https://github.com/wearable-motion-capture.

I. INTRODUCTION

The relationship between humans and robots is a central
question of artificial intelligence and robotics. As robots
become increasingly capable, there is growing interest for
human-robot collaboration in various domains, such as
healthcare, manufacturing, and daily activities. Many sce-
narios in these fields envision humans to teleoperate, assist,
or teach a robot counterpart. For example, a human expert
may demonstrate to a robot how to perform a new task or
how to manipulate a new object. Such scenarios, however,
require intuitive and robust interfaces for capturing human
body motion.

To date, motion capture cameras are the gold standard in
capturing human motion [1]–[3]. A setup of multiple cam-
eras can provide a high-fidelity recording of body postures
and positions over time. However, motion capture requires
an expensive and stationary setup. Easier consumer-grade
hardware, e.g., Microsoft Kinect, provides only low-fidelity
approximations of the body posture and is heavily affected
by line-of-sight issues and a limited field-of-view [3]. Al-
ternative motion capture approaches are based on Inertial
Measurement Units (IMU) and allow tracking without line-
of-sight issues. However, they typically require wearing two
or more IMUs on different limbs, e.g., strapped around lower
arm and upper arm or as a special suit [4]–[6]. Even though
research has investigated human arm posture estimations
from a single IMU, the authors in [7], [8] reported prediction
accuracy is of low fidelity.
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Fig. 1. Top: The avatar shows predicted elbow and wrist positions from
smartwatch sensor data. Our approach results in a distribution of solutions.
The mean of a distribution is depicted as a green sphere All individual
predictions of a distribution are depicted as small cubes, colored according
to their proximity to the mean. Bottom: We also stream microphone data
to utilize speech recognition. This combination offers a versatile interface
to interact with and to control robots anytime and anywhere.

In this paper, we devise a machine learning approach to
increase the accuracy for predicting human arm poses from
the single IMU of a smartwatch. As observable in the top in
Figure 1, our approach results in a distribution of predicted
postures, which allows to estimate a measure of uncertainty
and provides a range of possible solutions to pick from.

By combining the increased accuracy of our approach
with speech recognition, we turn the smartwatch into an
ubiquitous robot control interface. Smartwatches are widely
recognized as common consumer-grade devices that users are
already familiar with [9]. Without the need for a complicated
setup, a human expert can engage with the robot at any
time and anywhere. As depicted in Figure 1, they may move
the robot to a new target and issue commands via speech
recognition. We summarize our contributions as follows:

• We present a machine learning approach for real-time
estimation of upper and lower arm postures from a
single smartwatch.

• Our approach results in a distribution of possible arm
postures, which opens up opportunities for selecting
optimal solutions.

• We identify solutions to calibration, data representation,
and network design that yield higher accuracy than
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previously reported results in the literature.
• We combine human arm posture estimations with

speech recognition and present two real-robot exam-
ples that highlight the advantages of our smartwatch
approach for robotics.

II. RELATED WORK

Tracking one or multiple parts of the human body is an
essential step in approaches to robot control. For example,
techniques for teleoperation build upon the accurate detection
of human body pose [10]. In a similar vein, imitation
learning [11] or programming-by-demonstration (PbD) [12]
requires a human expert to provide one or more demon-
strations of target motions. These are distilled into a policy
that generalizes the observed behavior to new situations.
Traditionally, a large number of works for PbD have relied
on costly motion capture setups for recording high-fidelity
data [13]–[15]. Other approaches try to strike a balance
between the cost of data collection and the fidelity by
leveraging Inertial Measurement Units (IMUs) or camera-
based setups. For example, the works in [6] use multiple
IMUs attached to different parts of the body to transfer
human motions onto a robot. However, approaches based
on multiple IMUs require a careful placement of sensors on
the human body along with a (potentially time-consuming)
calibration process.

More recently, consumer-grade hardware for virtual and
augmented reality (VR/AR) is becoming an alternative for
motion tracking in robotics [16]–[18]. For example, the work
in [16] uses a HTC Vive VR system for robot teleoperation
in a manipulation task. HTC Vive controller estimate their
positions from infrared signals from so-called base stations,
which have to be carefully placed and calibrated. In a similar
vein, the work in [19] uses an Oculus Quest device for upper
body tracking. However, Oculus controllers are tracked via
cameras within the VR headset [20]. Headsets can cause
ergonomic discomfort and reduce the situational awareness.

Wearable devices like a smartwatch can only provide
comparably low-fidelity position data. Instead, they offer a
combination of low-cost, ease-of-use and a broad range of
additional sensors, e.g., magnetometer, atmospheric pressure
sensor, microphone or Photoplethysmography (PPG) sen-
sor [9]. For example, these on-body sensors enable advances
in emotion sensing [9]. In robot control, smartwatches are
mostly used to control robots with roll, pitch, and yaw
estimates from IMU and magnetometer [21]. Research has
also investigated methods for human pose estimations from
smartwatch data [7], [8], however, these are of low precision
and have mostly been intended for recreational purposes or
physical therapy [8]. To open up more opportunities to utilize
the advantages of wearable devices in robot control, we
propose a solution to improve real-time arm pose estimations
in such settings.

III. METHODOLOGY

In this work, we address the problem of estimating human
arm poses from a single smartwatch. We cast the process as

a supervised learning task, in which postural information is
predicted from a set of multimodal sensors. A challenging
aspect is the inherent one-to-many mapping imposed by
redundant human kinematics. Readings obtained from smart-
watch sensors may not correspond to a single arm movement
or position, but rather, can indicate various possibilities.
Another challenge emerges from natural variability in the
sensor data. Sensor readings for pressure and orientation
need to be adjusted before usage. In the following section,
we discuss how to train deep learning models that are
particularly well-suited to the requirements of the task.

A. Data Collection

We collect motion capture data as ground truth prediction
targets and match these with recorded smartwatch sensor
measurements. To this end, we develop a Wear OS app to
record and stream sensor measurements. The app is tested on
a Samsung Galaxy Watch 5. It records data from a set of mul-
timodal sensors. These include gyroscope measurements (ϕ)
with ϕ ∈ R3, which represent the angular velocities.
Further, it records measurements of the gravity sensor (γ)
and linear acceleration sensor (α) with γ,α ∈ R3, which
represent the acceleration with respect to the X, Y and Z axis.
Linear acceleration is the raw acceleration (αraw) minus the
gravity measurements such that α = αraw − γ. In addition,
the app records the virtual rotation vector sensor (θ), which
is provided by Wear OS. The rotation vector sensor estimates
the global smartwatch rotation from the magnetometer, ac-
celerometer and gyroscope as a quaternion, thus, θ ∈ R4.
Together with the reading from the atmospheric pressure sen-
sor (ρ) with ρ ∈ R, one observation s from the smartwatch
consists of the following values s = [θ,α,γ,ϕ, ρ]⊤, with
s ∈ R14. In addition, the app also streams the microphone
data, which we use for speech recognition. However, because
we do not utilize microphone data for arm pose estimations,
it is not included in s.

As ground truth, we collect upper-body motion capture
data. We use the research-grade optical motion capture
system OptiTrack [2]. The motion capture environment
features 12 cameras. We recorded data from 6 partici-
pants, who wore a 25-marker-upper-body suit along with
the smartwatch on their left wrist (See Figure 2). We
collect the hip rotation (qh), lower arm rotation (ql) and
upper arm rotation (qu) as quaternions. We further store the
lower arm length (ll) and upper arm length (lu) of the par-
ticipant to estimate wrist and elbow positions from recorded
rotations. Therefore, a motion capture ground truth observa-
tion g contains g = [qh,ql,qu, ll, lu]

⊤, with g ∈ R14.
Once the motion capture system and our smartwatch

app started recording, participants were instructed to keep
their chest and hip stationary while moving their left arm
in any possible way. The smartwatch recorded at around
∼ 50Hz which resulted in a set of 381 535 observations.
The motion capture system recorded at ∼ 120Hz which
resulted in a set of 926 164 motion capture observations.
Data collection was conducted in accordance with Arizona
State University (ASU) guidelines. Written informed consent
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Fig. 2. Left: We collected ground truth data with an optical motion
capture system and a 25-marker upper body suit. Right: Our two-step
calibration process. First, the user holds the watch at chest height to estimate
relative atmospheric pressure. Then, the user stretches the arm forward for
an estimate of body orientation.

Fig. 3. This figure depicts two examples for data before and after
calibration. Each plot contains all of our 381 535 data points.

was obtained under and approved by the institutional review
board (IRB) of ASU under the ID STUDY00017558.

B. Data Processing

Recorded smartwatch and motion capture data requires
alignment and preprocessing since (a) motion capture data
was recorded at a higher frequency, and (b) the data was
collected in distinct coordinate systems. This subsection
defines steps to merge smartwatch observations with our
ground truth data. Additionally, we present a calibration
procedure to further enhance correlations within the data and
aid the training of predictive models for arm posture.

Merging data sets We retrospectively merged the set of
collected smartwatch observations and the set of ground truth
motion capture data by pairing observations according to
their timestamps. Every smartwatch observation s was paired
with the motion capture data observation g that was recorded
closest in time.

Calibrating atmospheric pressure A critical smartwatch
sensor provides measurements of the atmospheric pressure
ρ. As depicted in the top left plot in Figure 3, these mea-
surements suffer from day-by-day variations due to changing
weather conditions and temperature. Data that was collected
in the same experiment or on the same day are recognizable
as vertical lines when plotted against the corresponding
Y-position (elevation) of the wrist.

We propose a calibration procedure to remove the day-by-
day variations and create a relative pressure measurement.

It is depicted on the right in Figure 2. The user presses
“calibrate” and holds the smartwatch at chest height. The
watch records atmospheric pressure measurements for three
seconds and then vibrates to signal that the step is completed.
The average recorded pressure is saved as the atmospheric
pressure at chest height (ρc) used to estimate relative atmo-
spheric pressure (ρr) as ρr = ρ− ρc.

The Kendall’s Tau correlation coefficient between the ρ
and wrist Y-position in the top left plot of Figure 3 is
-0.009. In contrast, the Kendall’s Tau correlation coefficient
of ρr and the wrist Y-position is -0.308, confirming that
there is a higher correlation between the variables. We asked
our participants to perform this calibration step before data
collection and replaced the ρ measurement in s with ρr.

Calibrating rotation Due to the kinematic structure un-
derlying human anatomy, arm orientations are affected by the
body orientation. However, no information about the body
forward-facing direction is available from the smartwatch
sensors. Although a universal solution is preferable, we
introduce a constraint to overcome this hurdle: the forward-
facing direction of the user must be constant and known. We
explore future opportunities in this area in Section VI, but
for now, we will highlight the advantages of this imposed
constraint in our approach.

We incorporate the constraint of a constant body forward-
facing direction with the second step of our proposed two-
step calibration procedure. The step is depicted under number
two in Figure 2. After completing the first step for the relative
pressure measurement, the user stretches their arm forward.
The watch records its rotation measurements for three sec-
onds and saves their average as the calibration forward-
facing direction (θc). This allows us to estimate the relative
smartwatch rotation (θr) as the quaternion θr = θ−1

c θ.
To transform our ground truth motion capture data into

the same local coordinate system, we use the collected qh

as the ground-truth forward-facing direction and estimate
the relative lower arm rotation (qr

l ) and relative upper arm
rotation (qr

u) as qr
l = q−1

h ql and qr
u = q−1

h qu. Together
with the saved lower and upper arm lengths, this information
also allows us estimate wrist and elbow positions from these
orientations in the same local coordinate system and relative
to the shoulder.

The example in the bottom plots of Figure 3 shows
the benefit of using rotations relative to the forward-facing
direction of the user. The rotation is denoted in Euler angles
for easier interpretation. The body coordinate system in this
example has the Z-axis tangential to the ground pointing
forward and the X-axis along the right arm in T-pose. The
Y-axis is orthogonal to the ground pointing upwards. This is a
left-handed coordinate system. As observable in the bottom-
right plot of Figure 3, when the user extends their left arm
wearing the smartwatch to the left, the lower arm Z-rotation
from the T-pose is 0 and the distance from wrist X-position
to shoulder X-position is around -0.5 m. In contrast, in the
bottom-left plot, the global smartwatch rotation provides less
information because users were not always facing the same
direction during data collection. Thus, the relative rotation



after our calibration allows to narrow down possible wrist
positions from observed lower arm rotations.

C. Predictive Models

Building upon presented data merging and calibration
steps, we devise an optimized predictive model that benefits
from this data preprocessing. To this goal, we investigate
two distinct neural network architectures and four distinct
representations of prediction targets. This allows us to com-
pare and choose among a range of design choices which we
present in the following.

Architectures and Inputs We train two neural network
architectures on two similar sets of inputs. The first archi-
tecture is a feedforward network, which receives as inputs
[ρr,θr,α,ϕ,γ, ll, lu]

⊤. The second architecture is an Long
Short-Term Memory (LSTM) network which receives the
same input data with two additions: The data is stacked into
a sequence of length 6 and it receives the time delta from
each sequence step to the next.

Prediction Targets By human arm pose estimation from
smartwatch data, more specifically, we refer to predicting
the ground truth relative lower and upper arm rotations,
i.e., qr

l and qr
u, or predicting ground truth wrist and elbow

positions which were estimated from these rotations. The
naive way to predict wrist and elbow positions is to train a
network to generate positions in Cartesian XYZ coordinates.
However, since lower and upper arm lengths are constants,
i.e. ll and lu, we know that positions lie on a manifold,
which allows to narrow down the search space. The elbow
position has to lie on a sphere around the shoulder with
radius lu. The wrist position has to lie on the manifold
defined by spheres with a radius of ll around all possible
elbow positions [7]. Therefore, as an alternative, we train
our network architectures to predict upper and lower arm
rotations and estimate positions from using known ll and
lu. Intuitively, polar coordinates come to mind as a suitable
representation. When using lu as the radius, the position of
the elbow relative to the shoulder is well-described by two
angles. Further, rotations can be represented in quaternions.

However, these representation spaces do not have a con-
tinuous mapping to their rotation space, e.g., Euler angles
jump from 359 to 0 degrees, which can cause complications
during the training process due to discontinuity [22]. A 6-
dimensional rotation representation (6DRR) has been pro-
posed by [22], with which the authors achieved promising
results for training neural networks on a human pose inverse
kinematics test. In the case of the 3-dimensional (3D) ro-
tation group SO(3) in the 3D Euclidean space, their 6DRR
space consists of the first two columns (a1 and a2) of the 3D
rotation matrix. A mapping g from rotation matrix to 6DRR
is therefore:

g

(  | | |
a1 a2 a3

| | |


︸ ︷︷ ︸

Rotation Matrix

)
=

 | |
a1 a2
| |


︸ ︷︷ ︸

6DRR

. (1)

The neural network is then trained to predict these two

columns. For a mapping f to recover the full 3D rotation
matrix, [22] propose to normalize and orthogonalize the
predicted two columns and estimate the last one with the
cross product as:

f

 | |
a1 a2

| |

 =

 | | |
b1 b2 b3

| | |


=

 | | |
N(a1) O(a2,b1) b1 × b2

| | |

 (2)

where N(a) = a
||a|| and O(a,b) = N(a− (b · a)b). Note the

repeated use of N(a1) as b1 here.
We investigate prediction accuracy for all discussed posi-

tion and rotation representations: elbow and wrist positions
in polar coordinates (Polar) and Cartesian coordinates (XYZ)
a well as upper and lower arm rotations in 6DRR and
quaternions (Quat).

Activation Function Also the choice for the activation
function of a network has an effect on performance. Nor-
malization of our IMU, pressure or arm length inputs is
cumbersome because of likely outliers. For example, extreme
movements, like hitting an obstacle, can cause large spikes
in accelerometer data. Additionally, it is difficult to define
a minimum or maximum arm length since possible values
vary between body proportions, children and adults.

To mitigate the possible impact of out-of-distribution ob-
servations, we opted to employ the scaled exponential linear
units (SELU) activation function by [23], which is reported
to induce self-normalizing properties. It is estimated as

SELU(x) = λ

{
x ifx > 0

αex − α ifx ≤ 0
, (3)

where [23] derived α as 1.6733 and λ as 1.0507. As
summarized by [23], these values enable necessary properties
of the SELU activation to allow for self normalization by,
firstly, having positive and negative values for controlling
the mean. Secondly, by featuring regions where the slope
approaches zero and regions where the slope is larger than
one. These regions allow to dampen the variance if it is
too large or to increase the variance if it is too low. With
these properties, [23] showed that there are upper and lower
bounds on the variance, thereby making learning robust even
under the presence of noise and perturbations.

Other Hyperparameters For both architectures all layers
consist of 128 neurons. The feedforward network features
five layers and the LSTM architecture four LSTM layers.
Both networks are trained for 200 epochs with the Adam
[24] optimizer, a learning rate of 0.001 and a Mean Absolute
Error (MAE) loss function. Early stopping is applied when
the minimal loss does not improve for 10 epochs.

D. Multimodality and Prediction Uncertainty

Even after incorporating the constraint of known body
direction, still, the same smartwatch sensor recordings may
have multiple possible arm posture solutions. To address this
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Fig. 4. A comparison of prediction accuracy for combined wrist and elbow
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Fig. 5. Error histograms of wrist position predictions of three distinct
combinations of network architecture and prediction targets.

issue, we integrate dropout layers into our network archi-
tecture and utilize them for generating multiple stochastic
forward passes through the network [25], i.e., Monte Carlo
(MC) dropout predictions.

More specifically, MC dropout predictions involve keeping
the dropout activated for predictions outside of the training
process and repeating every prediction multiple times. Pro-
ducing repeated outputs with dropout results in a distribution
of predictions for the same input. The standard deviation of
the distribution serves a measure of the prediction uncer-
tainty [25]. Such a distribution allows us to identify cases
where smartwatch sensor readings lead to multiple possible
arm postures. In such instances, the distribution can become
multi-modal, and we can detect and choose the most likely
mode based on additional constraints, such as the safest
trajectory for the robot.

E. Speech recognition

To further expand the teleoperation capabilities of our
smartwatch approach, we incorporate the streaming of mi-
crophone data. The recorded audio signal is transcribed
into voice commands utilizing the Google Cloud speech-to-
text service1. This additional interface proves effective and
detects commands even when the arm of the user is hanging
down. We demonstrate the usability of the speech recognition
interface in Section V.

IV. RESULTS
This section discusses and compares overall prediction

accuracy of trained models. Further, we relate our findings
to reported results in previous related work.

A. Predictive Model Accuracy

The feedforward and LSTM network architectures are
scrutinized by their prediction error on the test datasets via

1https://cloud.google.com/speech-to-text
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Fig. 6. A comparison of mean prediction errors when focusing on either
wrist or elbow positions.

a 10-fold cross validation with each of our four introduced
prediction targets Polar, XYZ, 6DRR and Quat. We derive
the prediction error by calculating the combined distance
from the predicted to the ground truth wrist and elbow
positions divided by two. In Figure 4, we compare the mean,
the median error and root mean squared error (RMSE) of
those combined prediction errors.

Overall, the LSTM models achieved lower errors than the
feedforward models. This is an expected result given that
arm movements are inherently a time series data set. The
LSTM architecture has an advantage since it maintains an
internal state of previous rotations or accelerations thereby
providing additional information to the prediction step.

Both network architectures achieved the lowest errors
when trained on the 6DRR targets. This finding confirms that
continuous rotation representations are more suitable training
targets when compared to quaternions or Euler angles [22].
Further, this finding validates our approach of optimizing
the search space by utilizing the constraint that upper and
lower arm lengths are constant. Using the Polar, 6DRR and
Quat targets, predictions are limited to the value ranges of
the respective rotation spaces. The confirmed findings of [22]
together with fixed arm lengths are plausible reasons for why
6DRR prediction targets achieve better performance.

To investigate if reported average accuracy measurements
hide extreme errors, Figure 5 depicts histograms of wrist
position prediction errors. Each histogram summarizes the
prediction errors for wrist positions of one fold during
the conducted 10-fold cross validation. On the left in this
comparison, the error distribution for the LSTM with 6DRR
combination shows the highest peak at the lowest error. The
LSTM with XYZ combination produces on average a higher
prediction error, which is noticeable in a more right-shifted
and wider error distribution. The combination of feedforward
network with quaternion targets features a comparably flat
error distribution and more than 4 000 predictions with an
error above 20 cm. These observations coincide with our
above findings that the LSTM with 6DRR combination
makes the most accurate predictions while the feedforward
with quaternion combination is the least accurate.

Figure 6 summarizes prediction errors for wrist and elbow
positions independently. In general, it is observable that
elbow predictions are more accurate than wrist predictions.
This is plausible since the elbow has to lie on a sphere around
the shoulder, while the wrist lies on a manifold defined by
spheres around all possible elbow positions, allowing more
room for error. Further, in case of the Polar, 6DRR and Quat

https://cloud.google.com/speech-to-text


targets, wrist positions are estimated by adding a vector with
lower arm magnitude and with the predicted rotation onto the
predicted elbow position. Thus, the error of the predicted
elbow position potentially adds to the error of the predicted
wrist position.

Altogether, the combination of LSTM architecture and
6DRR targets outperforms other combinations with regards
to prediction accuracy for wrist and elbow positions.

B. Comparison to Related Work

The work of [7] follows the the same objective as our
paper, namely, the prediction of wrist and elbow positions
from smartwatch data. Similar to our approach, they assume
a fixed shoulder position and require the body facing direc-
tion to be known. In their evaluation they reported median
errors of 9.2 cm for predicted wrist positions and 7.9 cm for
elbow positions. Also [8] used a recurrent neural network
to predict wrist and elbow positions. They predict wrist and
elbow positions in Cartesian coordinates and report an error
of 7.2 cm and 7.1 cm for wrist elbow.

The LSTM with 6DRR and coupled with MC dropout
predictions presented in our work is also suitable for real-
time applications. Our Wear OS app allows to stream sensor
data from the smartwatch to any reasonably well equipped
system via UDP at 50Hz. For example, with an Intel® Xeon®

W-2125 CPU and a GeForce RTX 2080 Ti GPU we were
able to make 150 MC dropout predictions targets at a rate
of ∼ 40Hz. Regarding the prediction accuracy, as reported
in Figure 4, our best performing model achieves a more
than 4 cm reduction in median prediction errors compared to
results reported by [7], [8]. Specifically, our model resulted
in a median error of 2.33 cm for wrist position predictions
and 1.61 cm for elbow predictions.

Another related approach was proposed in [4]. However,
their approach used two IMUs; one IMU on the lower
arm and the second on the upper arm. In their real-world
experiment they reported a RMSE and standard deviation of
6.9±2.7 cm for wrist and 5.2±2.6 cm for elbow predictions.
Their real-world experiment also required a short calibration
procedure for their IMUs based on the work of [26].

As shown in Figure 4, our LSTM with 6DRR achieves
a ∼ 40% lower RMSE on our motion capture data while
relying only on a single IMU. Specifically, it predicts wrist
positions with an RMSE and standard deviation of 3.71 ±
2.49 cm and elbow positions with an error of 2.99±2.19 cm
on test data. In conclusion, our approach appears to result
in a reduction of prediction error by at least ∼ 40% when
compared to previous works by [4], [7], [8] while it remains
to be as real-time capable as the approach of [7].

V. USABILITY DEMONSTRATIONS

We combine the increased accuracy of our approach with
speech recognition through the microphone of the smart-
watch and present two tasks which highlight the advantages
of our approach.

Fig. 8. Step 1: The robot picks up cubes and puts them into the tray.
Step 2: The user says “stop”. The smartwatch recognizes the command and
stops the robot mid-task. Step 3: The user raises their arm and says “follow
me”. The robot moves its end effector to match the wrist position. Step 4:
The user guides the end effector to a marked position. Step 5: The user
says “open gripper” and the robot drops the cube. Step 6: The user says
“go back” and the robot returns to Step 1.

A. Intervention Task

This tasks demonstrates that the smartwatch allows for
swift and intuitive human-robot-interaction at any time. A
schematic of the intervention task is depicted in Figure 7.
The robot autonomously picks the blue cubes one-by-one
and places them in the red area. The user can intervene at
any time to place one of the cubes in the green area instead.
Triggering an intervention is done via a voice command.
Thereafter, the robot will mimic the human wrist motions.

Fig. 7. The intervention task: The
robot picks the blue cubes one after
the other and places them in the red
area. The user utilizes the smartwatch
to stop the robot mid-task and to move
one cube to the green area instead.

The entire procedure is
subdivided into six steps,
which are depicted and
summarized in Figure 8.
The tray in this real-
world example is the red
area from Figure 7, the
black square on the left
of the robot is the green
area and the white cubes
are arranged in front of
the tray as the blue cubes
in Figure 7.

Three users performed
the task 10 times each.
We measured the times from when the participant said
“stop” until the “open gripper” command was received.
The distances from the placed cube to the target marked
positions were measured with retroreflective markers and the



Fig. 9. Left: A virtual concept of our learning task. We record six
smartwatch trajectories for placing the blue cube onto the red locations.
Then, we train a policy to generate new trajectories for placing the cube
on the highlighted green positions. Right: The red training trajectories are
recorded smartwatch data. The green trajectories were generated using our
trained policy for the green target positions on the shelf.

OptiTrack system which we used for our motion capture
ground truth data. These distance and time measurements
provided us with an estimate of how precisely the users could
control the robot with the smartwatch and how quickly they
could complete the task.

TABLE I
INTERVENTION TASK RESULTS

Part. Time (s) Dist. (cm)

1 19.5± 2.6 1.87± 0.62
2 28.9± 8.7 2.21± 1.11
3 20.1± 4.7 2.19± 1.07

All 22.8± 7.3 2.09± 0.97

The results are
summarized in Table I.
The average measured
time from interrupting
the robot until sending it
back to its original task
was 22.8 ± 7.3 s. On
average, all participants
placed their cubes within
2.09± 0.97 cm from the
target position. Every

run was successful, which confirms that our smartwatch
approach is a suitable tool for the designed intervention
task. Further, considering the time and position error,
these findings confirm the reported accuracy and real-time
capability of our smartwatch approach.

B. Learning Task

The goal of the second task is to show an application
to the problem of learning from demonstration [12]. In
particular, we learn a policy for placing a cube on a shelf,
as depicted on the left in Figure 9. A human wearing a
smartwatch demonstrates six training trajectories. The human
holds the cube in heir hand at the start position and starts
recording. Then, the human moves the cube in an arch to
one of the six red marked positions on the shelf and repeats
the procedure for the remaining goal positions. Since the
human can demonstrate the trajectories without moving the
robot, data collection is swift and uncomplicated. All training
trajectories for this task were recorded within two minutes.

The smartwatch trajectories are depicted in red on the right
in Figure 9. We then leverage these trajectories to train a
movement policy using the Generative Adversarial Imitation
Learning (GAIL) [27] method. As a result, we obtain a
movement policy for letting a robot place cubes at any
target position on the shelf. To visualize the generalization
capabilities of the resulting policy, four generated example
trajectories are depicted in Figure 9 on the right. They place

Fig. 10. Left: The user wears the smartwatch on their left arm and holds
the left hand next to their head. The smartwatch predicts the correct position.
Middle: The user rotates their wrist back and forth while keeping the hand
in the same position. This causes the predicted positions to alternate between
positions left or right of the head. Right: The predicted wrist position is at
the wrong side of the head.

the cube in-between the target positions, which are marked
as green squares on the left in Figure 9.

This use-case demonstrates that the smartwatch can be
leveraged to train new movement policies to a robot at any
time by swiftly recording a set of demonstrations in the same
environment. The smartwatch trajectories in this example
were collected within two minutes and enable a robot to
place a cube anywhere on a shelf given a target placement
position.

VI. LIMITATIONS AND FUTURE WORK

Our approach requires the completion of a two-step cal-
ibration procedure whenever there is a change in body
orientation or location of the user. This is a limitation in
comparison to the work of [4]. Their approach utilizes a
second IMU which allows users to move and rotate their
hip and chest. This limitation can be addressed by adding a
second IMU to our smartwatch approach too. To maximize
familiarity and ease-of-use, this work presents approaches
to leverage the possibilities of the smartwatch to their full
extend without adding additional devices. However, promis-
ing opportunities for future work can utilize the fact that a
smartwatch is typically connected to a smartphone, which
the user also wears on their body. The smartphone can serve
as a second IMU and enable the tracking of arm movements
while the user changes their body orientation or location.

A further limitation is that fast wrist rotations or uner-
gonomic arm motions affect the accuracy of our approach.
Figure 10 illustrates an example where the user wears the
smartwatch on their left arm and estimated arm postures are
visualized with an avatar. The final predicted wrist and elbow
positions are the mean of 300 individual MC dropout forward
passes. Individual predicted positions are marked as small
cubes colored according to their distance to the mean.

The user raised their hand to their ear and, as shown on the
left in Figure 10, the position was predicted correctly. Then,
the user rotated their wrist back and forth while keeping their
wrist position constant. The resulting unusual wrist angles
and rapid movements caused predicted positions to alternate
between the left and right side of the head. In the middle
of Figure 10 it is observable that predictions manifested in
bimodal distributions with their modes on the left an right
side of the head. The mean, and therefore the predicted elbow



and wrist positions, moved into the middle causing the arm
of the avatar to go through its head.

The detection and handling of such scenarios shapes
promising opportunities for future work. The distributions
obtained through the MC dropout predictions allow to detect
such scenarios and to dynamically adjust estimated joint
positions. If a multimodal distribution occurs, we can consult
additional cost functions, i.e., distance to previous positions
or risk for the teleoperated robot. It will also be possible
to determine the most likely arm posture by consulting
additional predictive models, which were trained on different
inputs. Having a measure of uncertainty and a distribution of
possible solutions is a promising base to improve prediction
accuracy in the future.

VII. CONCLUSIONS

This work presents a solution to the problem of estimating
human arm poses from a single smartwatch. We propose
a simple yet effective two-step calibration procedure to
mitigate variability in sensor data and to leverage information
about the forward-facing direction of the user. This allows
us to devise an optimized model architecture, which achieves
a ∼ 40% reduction in prediction error compared to results
reported in previous works. Furthermore, our approach gen-
erates a distribution of posture predictions, which allows
to estimate a measure of uncertainty and to select the
best solution from several options in cases of multimodal
distributions. By combining arm posture estimations with
speech recognition we turn the smartwatch into a ubiquitous,
low-cost and versatile robot control interface.
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