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Abstract— The ability to learn new tasks and quickly adapt
to different variations or dimensions is an important attribute
in agile robotics. In our previous work, we have explored
Behavior Trees and Motion Generators (BTMGs) as a robot
arm policy representation to facilitate the learning and exe-
cution of assembly tasks. The current implementation of the
BTMGs for a specific task may not be robust to the changes
in the environment and may not generalize well to different
variations of tasks. We propose to extend the BTMG policy
representation with a module that predicts BTMG parameters
for a new task variation. To achieve this, we propose a model
that combines a Gaussian process and a weighted support
vector machine classifier. This model predicts the performance
measure and the feasibility of the predicted policy with BTMG
parameters and task variations as inputs. Using the outputs of
the model, we then construct a surrogate reward function that
is utilized within an optimizer to maximize the performance
of a task over BTMG parameters for a fixed task variation.
To demonstrate the effectiveness of our proposed approach,
we conducted experimental evaluations on push and obstacle
avoidance tasks in simulation and with a real KUKA iiwa robot.
Furthermore, we compared the performance of our approach
with four baseline methods.

I. INTRODUCTION

Robots have been utilized effectively for many years
in repetitive and automated industrial processes. However,
despite the shift towards smaller batch sizes and increased
demand for customization, many robot systems still require
a lengthy and expensive reconfiguration process. To keep
up with the demands of society and modern industrial
production, robots should have the ability to adapt quickly to
different situations. In these situations, the task formulations
should be robust to failures, interpretable, and possibly re-
active to failures. Additionally, the task formulations should
also be adaptable to different variations or dimensions of the
same task, such as pushing an object to different locations,
picking an object from any location in the space, and
avoiding an obstacle with different shapes and positions.

To overcome the challenges, Rovida F. et al. [1] have
suggested a representation that combines behavior trees
(BT) [2], [3] and motion generators (MG), (BTMG). In our
previous work, we used BTMGs to model skills for contact-
rich tasks such as inserting a peg into the hole to mimic
engine assembly [1], [4] and pushing an object to a target
location [5], [6].
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berg Foundation.
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(LTH), Lund University, SE 221 00 Lund, Sweden. E-mail:
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Fig. 1. The experimental setup. It shows the object with the skewed weight
distribution that is pushed with a 45mm wide peg. On the table the different
start and goal positions for the object can be seen in different colours. On
the sides, some example sizes for obstacles are shown.

A BTMG is a parameterized policy representation that
combines the strengths of both behavior trees and motion
generators. Behavior trees provide a clear and intuitive way
to describe the high-level logic of the robot’s behavior, while
motion generators generate the low-level motion commands
by controlling the end-effector in Cartesian space. For a more
concrete definition of motion generators, refer to [1]. The
parameters of a BTMG can be used to specify the structure of
the behavior tree as well as values such as controller stiffness.

BTMGs are easy to interpret and can be designed to
be robust to faults and failures that can occur during
execution [1]. Furthermore, they have the ability to be
reactive [2], allowing the robot to adapt and respond to
current circumstances. Simple BTs can also be systematically
combined with more complex ones to solve complex tasks
[1], [4], [7].

BTMGs are a promising technique for motion modeling
because of their explicitness, robustness, and reactiveness.
There are mainly three ways to set the parameters of BTMGs.
One way is to specify them manually or fine-tune them by
experts [1]. Another way is to determine those parameters
through reasoning. However this requires the existence of
such a reasoner for the task at hand, which can not always be
assumed. Finally, BTMG parameters can be learned through
reinforcement learning (RL) [5], [6], [8]. However, learned
BTMG parameters are in many cases scenario-specific and
changes in the setup may require relearning them.

Setting BTMG parameters using these methods can limit
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the usage of BTMGs in scenarios that require quick adapt-
ability. For example, tasks such as pushing an object to
different locations, picking an object from various locations,
or even picking objects with various shapes would require
updating the parameters of the respective BTMGs. This
problem is also present in the original formalization of
dynamic motion primitives (DMPs) [9], [10] and was later
addressed in [11].

In this paper, we propose an extension to the BTMG
formulation that enables quick adaptation to different task
variations by incorporating a model that combines a Gaussian
process (GP) and a weighted support vector machine (SVM)
classifier. Our model uses a GP to learn a function that
predicts the performance measure of a policy using task
variations and BTMG parameters as inputs. Furthermore, the
model also trains a weighted SVM classifier that predicts
the feasibility of a policy. For example, in a push task, the
performance measure of a policy can be given by its overall
reward, which depends on the error between the actual and
target position of the pushed object. In this task, a policy
can be feasible when this error is below a user-defined
threshold. Once the model is trained, we optimize the BTMG
parameters over the resulting surrogate reward function for
a given new task variation.

The following are our main contributions:

• We extend BTMG policy representation that enables it
to quickly adapt to task variations.

• We propose a model that combines a GP and a weighted
SVM classifier to predict the performance measure and
feasibility of a BTMG policy for a new task variation,
and subsequently optimize the output of the model to
obtain resulting BTMG parameters.

• We evaluate the performance of the proposed method
in simulation and on a real KUKA iiwa robot for two
tasks and compare its performance with four baselines.

II. RELATED WORK

Movement primitives, based on motor primitives the-
ory [12], [13], are mathematical formulations of dynamic
systems that generate motions. Two well-known movement
primitives used in robotics are Dynamic Movement Prim-
itives (DMPs) [9], [10] and Probabilistic Movement Primi-
tives (ProMPs)[14]. Movement primitives can be generalized
and have proven successful in various robotics applications,
such as dynamic motion primitives [9], [10]. Similar to our
BTMGs, DMPs intially lacked the capacity to generalize
to different task parameters. This was resolved later by
introducing a small change in the transformation system [11].

While both DMPs and BTMGs are capable of generating
motions through attractor landscapes, the parameters for
DMPs are learned implicitly from a set of demonstrations,
whereas parameters for BTMGs can be explicitly specified
manually, inferred through a reasoner, or learned using
RL. Nevertheless, a comprehensive comparison of the two
approaches would require further investigation and is outside
the scope of this paper.

DMPs have been extended with intermediate via
points [15], [16], [17], [18], and can generalize to new
goals by interpolating weights of neighboring DMPs [19]
or by using Gaussian Process Regression (GPR) to generate
new parameters [20]. Furthermore, GPs [21] have been used
to generalize DMPs to external task variations, arbitrary
movements, and adapting trajectories to new situations online
in [22], [23], [20], respectively. In [24], Gaussian mixture
models are used to learn the mapping of task parameters
and the forcing term of DMPs.

The mixture of movement primitives (MoMP) algorithm
introduced in [25], [26], can also be used to generalize the
basis movements stored in the library. The MoMP algorithm
captures the robot’s position and velocity as parameters for
the expected hitting position and velocity. A new motion
is generated by a weighted sum of DMPs, assigning a
probability to a DMP based on the sensed state. MoMPs and
ProMPs have been applied successfully in various applica-
tions, including learning striking movements for table tennis
robots [27], [28] and solving Human-Robot collaborative
tasks [29] using ProMPs.

We draw inspiration from prior work on DMPs to extend
BTMG’s formulation by incorporating generalization to dif-
ferent task variations using GP, as seen in [20], [22], [23].
These studies employed GPs to directly map task variations
to DMP parameters, which we refer to as the direct model in
this paper. However, our approach differs significantly in how
we use GPs. Instead of using the direct model, we propose
a model that combines GP with a weighted SVM classifier
to predict the performance of tasks and the feasibility of
a policy, using task variations and BTMG parameters as
inputs. Since our model predicts both performance measure
and feasibility, we refer to it as the PerF model, short for
performance and feasibility.

III. BTMG AND TASK VARIATIONS

We define BTMG as a parametric policy representation,
BTMG(θ) where θ ∈ RN . The parameters θ can range
from determining the structure of the behavior tree (BT)
to specifying the controller stiffness values of the motion
generator (MG). These parameters are further subdivided into
intrinsic parameters θi and extrinsic parameters θe [30].

Intrinsic parameters θi determine the structure of the
behavior tree, the number of control nodes, the type of
motion generator, etc. For example, consider a policy Tp

for a push task, which has intrinsic parameters θi. These
parameters are fixed and independent of the task instance,
meaning that Tp uses the same θi values regardless of the
starting position, or the target position of the object. In other
words, θi is situation-invariant. Within the scope of this
paper, these parameters are assumed to be known a priori.

Extrinsic parameters θe are situation dependent e.g. to
determine the applied force, offsets, and the velocity of the
end effector. Again, θe can be specified manually [1], [31],
inferred through a reasoning framework, or learned using
RL. We have already demonstrated how RL can be used to



Fig. 2. An illustration of two simplified task variations v1 and v2 in the
pushing task that only vary the goal location. The orange and blue vectors
are set by the respective learned extrinsic parameters θe1 and θe2, so that
they define the resulting green and red push vectors that should successfully
push the object.

obtain BTMG parameters [4] and used it in simulation and
on a real robot to solve multi-objective tasks [6], [8].

In addition to θ, we also consider task variations v ∈ RM .
Task variations refer to different possible alterations of a
given task, such as different start and goal positions of an
object. For example, a task variation v in the case of a push
task would be a 4D vector consisting of the values of the
start and goal positions of the object along the horizontal
and vertical axes.

Note that the task variation parameters are different
from the extrinsic BTMG parameters (Figure 2). We take
two task variations v1 = (vsx , vsy , vg1x , vg1y) and v2 =
(vsx , vsy , vg2x , vg2y) that define the start and goal posi-
tions of the object. For variations v1 and v2, we have
corresponding θe1 = (θe1sx , θe1sy , θe1gx , θe1gy ) and θe2 =
(θe2sx , θe2sy , θe2gx , θe2gy ) that collectively define the start
and the goal locations for the pushing action.

As θi has no impact on adapting BTMGs to different
variations, our objective in this paper is to establish a rela-
tionship between θe and v that would enable the adaptation
of BTMGs to new variations.

IV. APPROACH

In this section, we explain how we adapt BTMG param-
eters for a new task variation by using the PerF model.
Figure 3 shows how the PerF model works in comparison
with a direct model. The overall approach is divided into
the training (Sec. IV-A) and query phase (Sec. IV-B). In the
training phase, we pass each task variation vk ∈ Vtrain, into
an extended RL pipeline similar to [6]. For each learning
process for different task variations, we utilize three sets of
outputs from the RL pipeline to train the direct and the PerF

models:
1) Best policies: For every task variation we get the best

performing policy:
T = {(vk,θ

∗
e,vk

)|k = 1, . . . , n}
2) All evaluated configurations and their rewards:

K = {(vk,θei,vk
, rθei,vk

)|k = 1, . . . , n and i =
1, . . . , t ≤ tmax}

3) All evaluated configurations and their feasibility:
E = {(vk,θei,vk

, fθei,vk
)|k = 1, . . . , n and i =

1, . . . , t ≤ tmax}
The direct model M is trained with the set T and, as

a result, learns to predict θ̂e given v. On the other hand,
the PerF model is trained with the sets K and E and as a
result it learns to predict the reward r̂ and feasibility f̂ of
a policy with parameters θe. The model further uses r̂ and
f̂ to generate a surrogate reward function that obtains θ̂e

given v. For more details on how we obtain set T, we direct
the reader to [6]. To obtain sets K and E, we follow the
same procedure as in [6], retaining all configurations along
with their respective rewards and feasibilities for a given task
variation.

The intuition behind using the PerF model together with
an optimizer is to guide the combination of GP and weighted
SVM towards predicting policy parameters θe that prioritize
performance measure and feasibility. In contrast, the direct
model does not take into account the performance measure
and feasibility. In the following subsections, we explain our
approach in more depth.

A. Training Phase

We frame the mapping of the task variations v to the
extrinsic BTMG parameters θe as a supervised learning
problem. The training phase aims to learn two functions:
Ĵ that predicts the reward achieved by a policy and F̂ that
predicts if a policy is feasible, see Figure 3. We propose to
use GP and weighted SVM to learn Ĵ : (θe,v) 7→ r̂ ∈ R
and F̂ : (θe,v) 7→ f̂ ∈ {0, 1}. Ĵ and F̂ are trained by
data points in sets K and E, provided by the RL pipeline
introduced in [4].

For each task variation, vk ∈ Vtrain, similar to [4],
[6], we define Jvk

(θe) as the expected sum of individual
rewards over time, given a sequence of extrinsic parameters
θe1,θe2, . . . ,θet ∈ θe.

In [4], [6], we use Bayesian optimization (BO) as a
black-box optimization method to obtain the optimal pol-
icy parameters θ∗

e and the best reward Jvk
(θ∗

e). In this
paper, however, we use BO to obtain Jvk

(θe) by com-
puting Jvk

(θe1), Jvk
(θe2), . . . , Jvk

(θet) over the sequence
θe1,θe2, . . . ,θet. This allows us to not only have the optimal
policy parameters θ∗

e and the corresponding best reward
Jvk

(θ∗
e) but it also provides us with intermediate θet and

Jvk
(θet). Overall, this provides us with large amount of data

to train the Ĵ function and allows us to capture the overall
reward landscape better.

In addition to learning the reward function Ĵ , we also
learn the feasibility function F̂ . The motivation behind
learning F̂ is twofolds: First, it provides a user-defined



metric to evaluate the feasibility of a policy and second, it
complements the reward formulation of a task by addressing
the potential shortcomings of inaccurate reward formulations.
In principle, we do not need to optimize feasibility if the
reward formulation covers all aspects of the task. However,
in practice, reward formulation is challenging, so feasibility
addresses these shortcomings effectively. It ensures learned
policies align with the task’s requirements, despite imperfect
reward formulations.

For a given task variation vk, we define the feasibility
function Fvk

(θe) as a binary function that maps to 1 or
0 depending on whether the policy achieves a user-defined
metric of feasibility or not. Similar to Jvk

(θe), we obtain
Fvk

(θe) by computing Fvk
(θe1), Fvk

(θe2), . . . , Fvk
(θet)

for the sequence of evaluations θe1,θe2, . . . ,θet. For more
details about the pipeline, we refer the reader to the policy
optimization section in [4], [6].

To model Ĵ and F̂ , we obtain a sequence of BTMG
parameter vectors, θe1,θe2, . . . ,θet, along with their cor-
responding reward values Jvk

(θe1), Jvk
(θe2), . . . , Jvk

(θet)
and feasibility values Fvk

(θe1), Fvk
(θe2), . . . , Fvk

(θet) for
task variations. We then use these data points to train a GP
and a weighted SVM classifier. This enables us to effectively
model the underlying J and F .

B. Query Phase

The goal of this phase is to query the trained model with
a new task variation vp ∈ Vtest and obtain a θ̂e by opti-
mizing Ĵ(θet|vp) under the feasibility constraint F̂ (θet|vp)
(Figure 3). For this purpose, we use the Ĵ and F̂ obtained in
the training phase. We solve this as an optimization problem
over a sequence of θe for a new vp.

We begin the optimization process by specifying the
optimizer type, the bounds for θe, and the maximum num-
ber of iterations tmax. In our experiments, we used the
Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-
BFGS) [32], [33] algorithm, which refines an initial estimate
of θe1 to iteratively obtain improved evaluation points θet,
where t ≤ tmax, using the derivative as the driving function.
For each new task variation vk, we run the optimizer to
obtain a sequence of evaluation points θet.

Using Ĵ and F̂ , we define a surrogate reward
rvp

= r̂θet,vp
− (1− f̂θet,vp

)) ∗ µ. Here, the first term cor-
responds to the output reward value computed by Ĵ , while
the second term penalizes the reward if f̂θet,vp

maps to 0.
We penalize the reward r̂θei,vp

by a small factor µ. We query
the surrogate reward rvp for defined number of iterations or
until the optimizer converges.

After the optimization phase, we select the θet that max-
imizes both Ĵ(θet|vp) and is feasible F̂ (θet|vp).

V. EXPERIMENTS

We evaluated the efficacy of our approach in simulation
and also by transferring of the simulation results to a real
KUKA iiwa manipulator for two tasks: an obstacle avoidance
task and a pushing task, each having its own challenges. For
simulation, we utilized the DART simulation toolkit [24] and

Fig. 3. The pipeline of our approach and the direct model baseline. For
every task variation v, an RL problem is solved and the respective results
are provided to the GP models. When querying for a new task variation vp

both models are queried for a set of extrinsic parameters θ̂e.

in both simulation and reality, the robot arm was controlled
using a Cartesian impedance controller [34], which helps
reduce the disparities between simulation and reality. Addi-
tionally, for the push task, we further reduce the sim-to-real
gap by adjusting the friction coefficient appropriately. For
more detailed information on bridging the sim-to-real gap,
please refer to [4].

To train our model, we considered 20 task variations that
are learned for the same amount of iterations each. Using
the method detailed in Sec. IV-A, we train the GP and the
weighted SVM classifier with the resulting BTMG parame-
ters, the feasibility, and the reward values. The weights of
the SVM classifier are adjusted automatically to adjust bias
induced by an unequal number of feasible and non-feasible
policies. We then tested our approach on 20 unknown task
variations. This experiment is repeated five times for both
tasks to show the robustness of the approach.

We compare the performance of our approach with four
baselines:

1) Learned: This baseline uses the RL pipeline described



Fig. 4. The obstacle task with some of the variations of the object location,
width, and height. For each object configuration, valid example trajectories
are shown in the same color. For the red trajectory, the intermediate goal
points (g1 and g2) and two motion switching thresholds (p1 and p2) are
shown.

in [6] to learn the BTMG parameters directly for the
test variations. It shows which performance could be
achieved if a new variation is learned from scratch
instead of querying the model. Notably, our training
data is generated in this way.

2) Direct: This model takes the best parameters for the
training variations (T) and learns a direct mapping
from task variations to BTMG parameters without
explicitly learning the reward.

3) Nearest Neighbor: For each test variation, we select
the closest task variation in the training set and choose
the corresponding BTMG parameters.

4) Single Policy: The learned BTMG parameters of a
single training variation are used for all test varia-
tions. This baseline shows how well and how often
the learned parameters for one task variation can be
utilized in a different one without any changes.

Although our baselines may seem simplistic, they are de-
liberately selected to provide insights into the functionality
and performance of our approach. Each of these baselines
serves a specific purpose in understanding the capabilities
and limitations of our approach.

We consider task-specific reward functions for both tasks.
The rewards and feasibility measures for the tasks are defined
separately in their respective sections.

A. Obstacle Avoidance Task

The objective of the obstacle avoidance task is to move
the robot’s end effector from the start to the goal location
while avoiding an obstacle in the workspace. As shown in
Fig. 4, the obstacle can vary in size and position. The goal
is to find policies that navigate the robot around the obstacle
while completing the task as quickly as possible, without
violating the safety constraints that require the end effector
to maintain a safe distance from the obstacle.

We consider three task variations: 1) obstacle height, 2)
obstacle width, and 3) obstacle position in a horizontal

direction (left-right in Fig. 4). The obstacle varies in height
from 0.049m to 0.331m and in width from 0.09m to
0.331m. The horizontal position ranges from 0.274m to
0.311m with respect to the origin. We use Latin hypercube
sampling to ensure a more even sample distribution and
obtain 20 task variations from the specified ranges. We learn
each variation for 120 iterations.

This learning problem formulation has three rewards: 1)
a fixed success reward, 2) a goal distance reward, and 3) an
obstacle avoidance reward. The fixed success reward assigns
a fixed reward if the BT finishes successfully. The positive
goal distance reward increases, the closer the end effector
gets to the goal. The obstacle avoidance reward is a negative
function that penalizes end-effector states that are close to the
obstacle. These reward functions are combined to encourage
fast execution while discouraging getting too close to the
obstacle. A policy is considered feasible if it satisfies two
conditions: First, the end effector does not come closer to the
obstacle than 40mm. Second, the policy must successfully
complete the BT by bringing the end effector to the goal
position.

The policy for this task has six learnable parameters
consisting of two coordinates of the intermediate goal points
and two thresholds to transition between goal points. A
more detailed description of the task is provided in [4], [6].
Notably, the structure of this policy with its thresholds allows
for different movement strategies. For example, for flat obsta-
cles, the goal can be reached with only a single intermediate
point, while larger obstacles require both intermediate points,
as shown in Fig. 4.

Results and Discussion: For the evaluation, we randomly
sample 20 new task variations (Vtest) that are not included
in the training set, and compare the performance of our
proposed model and the baseline methods. Specifically,
we assess the execution time and the reward achieved by
each parameter configuration in the new task variation.
The reward value is chosen as a performance metric as it
reflects how well a policy balances between the goal-reaching
and obstacle-avoidance objectives expressed in the reward
functions.

The simulation results are shown in Fig. 5a) and b) and
Table I. They show that the policies obtained by optimizing
the output of our PerF model performs similarly to the
policies that are explicitly learned. Our model achieves a
success percentage of 87% compared to the 89% of the
learned ones and a total reward in a similar range. In
contrast to that, the nearest neighbor baseline succeeds only
in 71% of the variations. The direct model also only achieves
a success percentage of 67% and has significantly more
outliers in the reward. Further investigation indicates that
the reason for the low performance is that an interpolation
between policies is often not valid. This is especially the
case between motion configurations that use a single or both
intermediate points.

Based on these results from simulation we also evaluated
the learned policies, our model outputs and the nearest neigh-
bor policies on the real robot system. Although this includes
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Fig. 5. The total reward (a, c) and the execution time (b, d) of the obstacle
task in simulation (a, b) and on the real system (c, d). The box plots show
the median (black line) and interquartile range (25th and 75th percentile);
the lines extend to the most extreme data points not considered outliers, and
outliers are plotted individually. The success percentages are shown below
the method names.

a transfer from simulation to the real system, the results
shown in Fig. 5c) and d) have only minor variations from
the simulation results. This also demonstrates the robustness
of this policy formulation as a whole.

B. Push task

The goal of this task is to push an object from a varying
start location to a varying goal location. The object is shown
in Fig. 1 and has a skewed weight distribution with respect
to its bounds.

We consider two types of task variations: 1) the starting
position of the object in both horizontal directions and 2)

the goal position of the object in both horizontal directions.
For the starting position, we consider samples from a circle
with a diameter of 0.16m around a center point. For the goal
position, a triangular-shaped region is used. Fig. 1 shows the
start and goal positions for a single repetition.

The learning formulation has two rewards: 1) the object
position reward, which is a function of the difference be-
tween the actual and desired goal position, and 2) the object
orientation reward, which is based on the difference between
the actual and desired goal orientation. For our experiment,
we prioritize the object position reward, which is weighted
10 times more heavily than the orientation reward.

Similarly to previous work [5], [6], the push task has four
BTMG parameters that are learned. They are depicted in
Fig. 2. These parameters control additional start and goal
offsets in the horizontal directions (x, y), determining the
shape of the push vector that is indicated in Fig. 2. The start
and goal orientation of the object for this task are fixed.

The object being pushed is an right-angled triangular
object with dimensions 0.3m x 0.15m x 0.07m, and a
weight of 2.5 kg. The tool on the end effector is a cubic
peg with side lengths of 45mm and therefore covers less
than 15% of the side length of the object. In this task, the
error between the desired goal position and orientation and
the achieved one serves as direct performance measures for
the policy.

Results and Discussion: The results for the simulation
are shown in Figure 6a) and b). We consider a policy
feasible if the position error between the goal location of
the object and the desired goal location is less than 11mm
and the orientation error is less than 30 deg. The high
success percentage of 97% for the learned policies shows
that it is generally possible to solve this task. Our proposed
model solves 86% of the configuration and outperforms all
baselines that do not require explicit learning. The gap to
the direct model, which achieved a success rate of 65%,
is significant. The nearest neighbor and the single policy
approach only achieved 52% and 38%, which shows not
only the difficulty of the task but also excludes them as
practical solutions.

Similar to the obstacle task, we also executed the learned
policies on the real robot system. To account for the dif-
ferences of such a contact-rich task to the simulation, we
increase the allowed final position error by 4mm but keep
the same angular maximum.

The results for the evaluation on the real system are in
Fig. 6c) and d) as well as in Table I. As intuitively expected,
the success percentages generally drop as not all policies
transfer to the real system. Similar to the evaluation in
simulation, the nearest neighbor baseline performs poorly.
However, it is notable that our model now outperforms the
explicitly learned policies in both the success rate and the
final error. A possible explanation for this is that our model
needed to generalize, whereas an explicitly learned policy
is able to exploit the simulation to the maximum extent
possible. During the experiments, we also observed that
policies from our model generally kept a larger distance from



TABLE I
THE MEDIAN PERFORMANCE VALUES AND THE 25th AND 75th PERCENTILES FOR BOTH TASKS. A "-" INDICATES THAT CONFIGURATION WAS NOT

EVALUATED.

Task Performance
Measure Environment Learned PerF Nearest

Neighbor Direct Single Policy

Median Percentiles Median Percentiles Median Percentiles Median Percentiles Median Percentiles

Obstacle
Total Reward Simulation 5050 (4467, 5531) 5013 (4290, 5462) 4834 (3607, 5357) 4594 (2635, 5143) 4496 (-200, 5184)

Reality 4963 (4357, 5414) 4966 (4238, 5426) 4782 (3625, 5327) – – – –
Finish Time

[sec]
Simulation 5.7 (5.3, 7.3) 5.9 (5.3, 7.5) 6.1 (5.4, 12) 7 (5.9, 12) 7.6 (5.7, 12)

Reality 5.8 (5.4, 7.4) 6.1 (5.4, 7.8) 6.1 (5.5, 12) – – – –

Push

Position Error
[m]

Simulation 0.002 (0.002, 0.003) 0.006 (0.004, 0.009) 0.011 (0.007, 0.083) 0.007 (0.005, 0.014) 0.016 (0.007, 0.123)
Reality 0.01 (0.007, 0.014) 0.009 (0.007, 0.012) 0.016 (0.01, 0.028) – – – –

Orientation Error
[deg]

Simulation 0.15 (0.07, 0.33) 0.16 (0.07, 0.34) 0.18 (0.08, 29.48) 0.11 (0.06, 0.26) 0.29 (0.1, 45.76)
Reality 1.51 (0.98, 2.76) 1.42 (0.94, 2.74) 2.58 (1.18, 6.23) – – – –
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Fig. 6. The final position error (a, c) and orientation error (b, d) of the push
task in simulation (a, b) and on the real system (c, d). The box plots show
the median (black line) and interquartile range (25th and 75th percentile);
the lines extend to the most extreme data points not considered outliers, and
outliers are plotted individually. The success percentages are shown below
the method names.

the object when approaching it and also had fewer collisions
with it.

To determine the time efficiency of our approach, we
compute time required to compute BTMG parameters for
60 new task variations. This analysis compares learning
BTMG parameters from scratch using the RL-pipeline and
obtaining BTMG parameters using our approach. Starting
from scratch with the RL-pipeline, median completion times
were 770.315 seconds for the obstacle task and 1232.625
seconds for the push task. In contrast, the optimization phase
of our approach achieved median completion times of 1.27
seconds for the obstacle task and 5.189 seconds for the push
task. Additionally, obtaining a trained PERF model took an
average of 66.628 seconds for the obstacle task and 317.025
seconds for the push task. During optimization, we observed
some outliers, likely stemming from the stochastic nature
of the process. The analysis was performed on a laptop
equipped with an Intel(R) Core(TM) i7-10870H CPU run-
ning at 2.20GHz with 8 physical cores and hyper-threading,
along with 64GB of RAM.

VI. CONCLUSION AND FUTURE WORK

Agile robotics requires that a system adapts quickly to
changing conditions. In this work, we introduced an exten-
sion to BTMGs, a motion representation based on behavior
trees and motion generators, which addresses this challenge.
Our approach enables the use of learned policies in previ-
ously unseen variations of a task, allowing for fast adaption
of robot behavior to changes in the task or environment.

The experimental evaluation demonstrates that our ap-
proach effectively learns a model capable of adapting to
new task variations. Our method exhibits comparable perfor-
mance to explicitly trained policies and consistently outper-
forms all other baseline models. Furthermore, experiments
conducted on the real robotic system demonstrate the suc-
cessful transferability of our approach from simulation to
reality, even in a contact-rich task. Notably, our proposed
method can even outperform explicitly learned policies in
the same contact-rich task, indicating superior generalization
capabilities.

In future work, it is worth exploring whether the uncer-
tainty modeled by the GP can be leveraged to make more
accurate predictions about successful execution. This un-
certainty measure could also be used for out-of-distribution
detection. Another promising direction is to use the learned



model to return policy parameters for task parameters, such
as friction, for which the values are not known a priori. In
this case, we could jointly optimize over both policy and task
parameters to identify a compatible set of learned parameters.
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