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Abstract

We consider joint trajectory generation and tracking control for under-actuated robotic sys-
tems. A common solution is to use a layered control architecture, where the top layer uses a
simplified model of system dynamics for trajectory generation, and the low layer ensures approx-
imate tracking of this trajectory via feedback control. While such layered control architectures
are standard and work well in practice, selecting the simplified model used for trajectory gen-
eration typically relies on engineering intuition and experience. In this paper, we propose an
alternative data-driven approach to dynamics-aware trajectory generation. We show that a suit-
able augmented Lagrangian reformulation of a global nonlinear optimal control problem results
in a layered decomposition of the overall problem into trajectory planning and feedback control
layers. Crucially, the resulting trajectory optimization is dynamics-aware, in that, it is modified
with a tracking penalty regularizer encoding the dynamic feasibility of the generated trajec-
tory. We show that this tracking penalty regularizer can be learned from system rollouts for
independently-designed low layer feedback control policies, and instantiate our framework in the
context of a unicycle and a quadrotor control problem in simulation. Further, we show that our
approach handles the sim-to-real gap through experiments on the quadrotor hardware platform
without any additional training. For both the synthetic unicycle example and the quadrotor
system, our framework shows significant improvements in both computation time and dynamic
feasibility in simulation and hardware experiments.

1 Introduction

Modularity is a guiding principle behind the design of numerous autonomous platforms. For exam-
ple, the autonomy stack of a typical robot consists of separate modules for perception, planning,
and control [24]. In spite of the requirement of safely executing tasks in real time with limited on
board computational resources, such modules usually operate at different frequencies and levels of
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abstraction. Roughly speaking, higher levels of abstraction allow for faster decision making. How-
ever, if the degree of abstraction varies among the different modules beyond a suitable threshold,
the system as a whole can behave in unexpected, unsafe ways. By and large, choosing the right
level of abstraction in robotics applications has remained somewhat of an art. We focus on devel-
oping a quantitative method of bridging the potential mismatch between the trajectory planning
and control modules in a data-driven manner.

Although trajectory planning and control have been among the most extensively studied areas of
robotics, numerous problems remain to be solved. In particular, graph-search-based path planning
algorithms can find it challenging to account for complex nonlinear system dynamics. Similarly,
real-time optimization-based methods for generating trajectories typically use a simplified or a
reduced order dynamics model of the agent. In contrast, low-level feedback control policies often
rely on more accurate, detailed dynamics of the system being controlled in order to track a reference
trajectory planned by some of the aforementioned approaches. While intuitive and conceptually
appealing, this layered approach only works well if the outputs of higher layers are compatible with
the abilities of lower layers.

In this paper, we focus on the interplay between trajectory generation and feedback control. Rather
than imposing such a layered architecture on the control stack, we show that it can be derived via
a suitable relaxation of a global nonlinear optimal control problem that jointly encodes both the
trajectory generation and feedback control problems. Crucially, the resulting trajectory generation
optimization problem is dynamics-aware, in that it is modified with a tracking penalty regularizer
that encodes the dynamic feasibility of a generated trajectory. While this tracking penalty does not
in general admit a closed-form expression, we show that it can be interpreted as a cost-to-go. Hence,
it can be learned from system roll-outs for any feedback control policy by leveraging tools from the
learning literature. Finally we evaluate our framework using unicycle and quadrotor control, and
compare our approach in simulation to standard approaches to quadrotor trajectory generation.
Our extensive experiments demonstrate that our data-driven dynamics-aware framework allows for
faster computation of trajectories that can be tracked accurately in both simulation and hardware.
Our contributions are as follows:

• We derive a layered control architecture composed of a dynamics-aware trajectory generator
top layer, and a feedback control low layer. In contrast to existing work, our trajectory
generation problem is naturally dynamics-aware, and includes a tracking penalty regularizer
that encodes the ability of the low-layer feedback control policy to track a given reference
trajectory.

• We show how this tracking penalty can viewed as the cost-to-go for a particular system, and
hence be learned from system rollouts.

• We apply our data-driven dynamics-aware trajectory generation framework to both a unicycle
and a quadrotor control problem. We demonstrate that our approach generates aggressive and
easy to track trajectories compared to standard methods for the two systems in consideration.

In what follows, we first formulate the dynamics-aware trajectory planning problem in Section 3
and introduce the unicycle and waypoint tracking problem as running examples. In Section 4,
we introduce a result that shows how a relaxation of the underlying nonlinear controls problem
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naturally leads to a trajectory optimization problem that includes a regularizer that captures the
tracking cost of the given controller. We also describe our supervised learning approach to learn the
cost-to-go function that characterizes the feedback control layer’s ability to track a given reference
trajectory. In Section 5.1, we apply our approach to dynamics-aware trajectory generation to both
the unicycle and quadrotor systems. We present two compelling simulation experiments in Section 5
to show that our method leverages previous trajectory data to approximate the cost-to-go function
and the learned function can be applied to generate easy-to-track trajectories before discussing the
results and future work in Section 6.

2 Related Work

Our work builds on the literature of multi-rate/hierarchical control, data-driven nonlinear model-
predictive-control (NMPC), and trajectory generation for quadrotors. Here we attempt to provide
an overview of most directly relevant related works from these different branches of the robotics
literature.

2.1 Multi-rate and hierarchical control

There is a rich literature on combining trajectory generation with low-level control, see for exam-
ple [6, 8, 26, 29, 30, 33, 35] and references therein. While these results offer differing degrees of
guarantees and generality, we note that none of them derive the layered control architecture that
they propose. Rather, modification to either the trajectory generation or tracking problems are
made to ensure that the chosen interplay between the two layers leads to desirable results. In
contrast, we derive this layered structure, and show how this naturally leads to the inclusion of
a tracking penalty regularizer in the trajectory generation problem. Our work is complementary
to the existing literature due to the fact that modifying any of the proposed trajectory generation
optimization problems in [6, 8, 26, 29, 30, 33, 35] with our proposed regularizer will only lead to
more dynamically feasible trajectories.

Another closely-related line of work in this spirit is the “Layering as Optimization Decomposition”
framework proposed in [2], which shows that network utility maximization problems can be suitably
relaxed to recover the layered architecture of network control protocol stacks. This approach was
extended to linear optimal control problems in [18], but was limited to LQR control for which
the tracking penalty admits a closed-form expression. In contrast, we significantly generalize these
results to nonlinear dynamical systems and present a data-driven approach to approximating the
tracking penalty.

2.2 Data-driven NMPC

Due to the underlying difficulty of solving a NMPC problem that jointly encodes trajectory gener-
ation and low-level control, data-driven approaches to improve controller performance on track-
ing tasks have emerged. Broadly, learning can be applied to: (i) directly obtain the control
policy [13, 14], (ii) learn uncertainties in the dynamics and the cost function used for NMPC
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[9, 23, 27, 34], and (iii) learn a low dimensional state representation for NMPC from high dimen-
sional data [3, 10, 31]. Our work broadly fits into this overall line of work in that we propose a
data-driven method to learn a tracking penalty regularizer that directly encodes the closed-loop
dynamics’ ability to track a generated trajectory using offline trajectories. To the best of our
knowledge, ours is the first approach to suggest this compact encoding of the low layer closed-loop
dynamics into a cost-to-go function.

2.3 Trajectory generation for quadrotors

In general, trajectory generation for quadrotors is a computationally challenging problem. The
landmark paper [19] established differential flatness [4] of quadrotor dynamics. It showed that
trajectories of position and yaw angle of the quadrotor, i.e., the flat outputs, may be specified
independently of one another, and that their time derivatives yield the underlying trajectory of
states and inputs required to induce them. Additionally, [19] initiated a line of work [7, 16, 22, 25]
using piecewise polynomials to represent trajectories of flat outputs. Nevertheless, these approaches
decouple trajectory generation and tracking control. As a consequence, there is no model of the
specific hardware used for control introduced in the planning layer. Our current work, on the other
hand, provides a principled way of generating trajectories cognizant of the dynamic capabilities of
the closed-loop robotic system.

3 Problem Formulation

We consider a finite-horizon, discrete-time nonlinear dynamical system

xt+1 = f(xt, ut), t = 0, . . . , N, (1)

with state xt ∈ X ⊆ Rn and control input ut ∈ U ⊆ Rk at time t. Our task is to solve the following
constrained optimal control problem (OCP):

minimize
x0:N ,u0:N−1

C(x0:N ) +
∑N−1

t=0 ∥Dtut∥22
s.t. xt+1 = f(xt, ut), t = 0, . . . , N,

x0:N ∈ R,
(2)

where C : XN+1 → R is a trajectory cost function, D0, D1, ...., DN−1 ∈ Rl×k are matrices that
penalize control effort, and R defines the feaible region of x0:N .

OCPs of the form (2) are an essential component of MPC schemes for robotic applications. In such
settings, the trajectory cost function C is typically chosen to e.g., capture high-level task objectives
or reward smooth trajectories, whereas the state constraint R is often used to encode e.g., obstacle
avoidance, waypoint constraints, or other mission-specific requirements. In the generality stated
above, the OCP (2) is difficult to solve exactly except in the simplest of cases. Under suitable
regularity assumptions, good heuristics exist for finding an approximate solution. However, due to
their computational complexity, these heuristics typically lead to the solve time being unacceptably
large for applications with fast dynamics such as quadrotor control.
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A number of works in the robotics literature approach the computational complexity by using a
layered control architecture to decompose OCP (2) into tractable subproblems. For example, a
two-layer approach would solve a reference trajectory generation problem at the top planning layer
using simplified dynamics (typically at a slower frequency). This reference trajectory would then
be sent to the low tracking layer where a feedback control policy, operating in real time, attempts
to follow the reference trajectory.

While conceptually appealing, the above approach has several shortcomings. The critical one is
the lack of guarantees that the generated reference trajectories can be adequately tracked by the
feedback control policy. This could be due to unmodelled dynamics, saturation limits, etc., of
the hardware in use for control. In this paper, we address this shortcoming by deriving a layered
architecture via a relaxation of the original OCP (2), that naturally leads to a closed-loop dynamics-
aware trajectory generation problem.

4 Layering as Optimal Control Decomposition

We show how a suitable relaxation of the OCP (2) naturally results in a layered control architecture.
Such an optimization decomposition approach to layered control was first introduced in [18] for
linear-quadratic control. In this section, we extend it to general nonlinear systems.

4.1 An augmented Lagrangian relaxation

We first introduce a redundant reference trajectory variable r0:N constrained to equal the state
trajectory, i.e., satisfying x0:N = r0:N , to the OCP (2):

minimize
r0:N ,x0:N ,u0:N−1

C(r0:N ) +
N−1∑
t=0

∥Dtut∥22

s.t. xt+1 = f(xt, ut),

r0:N ∈ R,
x0:N = r0:N .

(3)

We then relax this redundant equality constraint to a soft-constraint in the objective function,
resulting in the augmented Lagrangian reformulation:

min.
r0:N

C(r0:N ) + min.
x0:N ,u0:N−1

∑N−1
t=0

(
∥Dtut∥22 + ρ∥rt − xt∥22

)
+ ρ∥rN − xN∥22

s.t. r0:N ∈ R, s.t. xt+1 = f(xt, ut)
(4)

where the weight ρ > 0 specifies the soft-penalty associated with the constraint r0:N = x0:N .
Furthermore, we have strategically grouped terms to highlight the nested structure of the result-
ing optimization problem. Immediately, problem (4) admits a layered interpretation: the inner
minimization over state and input trajectories x0:N and u0:N−1 is a traditional feedback control
problem, seeking to optimally track the reference trajectory r0:N . The outer optimization over the
trajectory r0:N seeks to optimally “plan” a reference trajectory for the inner minimization to follow.
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To further highlight the layered nature of the resulting relaxation, we define the tracking penalty

gtrackρ (x0, r0:N ) := min
x0:N ,u0:N−1

N−1∑
t=0

(
∥Dtut∥22 + ρ∥rt − xt∥22

)
+ ρ∥rN − xN∥22

s.t. dynamics (1).

(5)

The tracking penalty gtrackρ (x0, r0:N ) captures how well a given trajectory r0:N can be tracked by
a low layer control sequence u0:N−1 given the initial condition x0, and is naturally interpreted
as the cost-to-go associated with an augmented system (see §4.2). We observe that the optimal
control problem defining the tracking cost (5) is a standard nonlinear reference tracking prob-
lem with quadratic cost, and can be approximately solved using tools from nonlinear feedback
control [28]. We therefore let π(xt, r0:N ) denote the feedback control policy which (approximately)
solves problem (5), and use gtrackρ,π (x0, r0:N ) to denote the resulting cost-to-go that it induces. While

a closed-form expression for the tracking penalty gtrackρ,π (x0, r0:N ) is only available in special cases,
e.g., see [18] for the linear quadratic control case, we show in §4.2 that it can be learned from data.

Assuming that an accurate estimate of the tracking penalty can be obtained, the OCP (4) can
now be reduced to the static optimization problem (i.e., without any constraints enforcing the
dynamics (1)):

minimize
r0:N

C(r0:N ) + gtrackρ,π (x0, r0:N )

s.t. r0:N ∈ R.
(6)

We may view (6) as a family of trajectory optimization problems parametrized by ρ. In the limit
as ρ ↗ ∞, optimal trajectories prioritize the reference tracking performance. On the other hand,
in the limit as ρ ↘ 0, the optimal trajectories minimize the C cost oblivious to the dynamics
constraints.

4.2 Learning the tracking penalty through policy evaluation

Computing the tracking penalty gtrackρ for general nonlinear dynamics and experimental hardware
platforms with black-box feedback control policies is intractable. We therefore propose a supervised
learning approach to learning the tracking penalty (5) from data as shown in Figure 1.

We define the following augmented dynamical system with states µt ∈ R(N+1)n and control inputs
ut ∈ Rk. The state µt is constructed by concatenating the nominal state xt and the reference
trajectory rt:t+N of length N starting at time t, i.e., µt = (xt, rt:t+N ) ∈ R(N+1)n. Letting µxt := xt
and µrt := rt:t+N , the augmented system dynamics can be written as µt+1 = h(µt, ut), where

h(µt, ut) :=

[
f(µxt , ut)
Zµrt

]
. (7)

Here Z ∈ {0, 1}Nn×Nn is the block-upshift operator, i.e., a block matrix with In along the first
block super-diagonal, and zero elsewhere. The state µxt = xt evolves in exactly the same way as in
the true dynamics (1), whereas the reference trajectory µrt := rt:t+N is shifted forward in time via
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Reference
trajectory

Tracking
cost

Learning tracking cost for𝝅(x, r)

Dynamics-aware 
reference planner

Tracking controller
𝝅(x, r)

Figure 1: The figure shows our two-step framework. On top, we show the first step of learning the
tracking cost function for any arbitrary policy π(x, r). On the bottom, we show our dynamics-aware
planner that accounts for controller-based tracking cost planning reference trajectories.

Zµrt = rt+1:t+1+N . Fixing policy π(µt), we define the policy dependent tracking cost

gtrackρ,π (x0, r0:N ) =
N−1∑
t=0

ρ ∥µxt − [µrt ]1∥
2
2 + ∥Dtut∥22 + ρ ∥µxN − [µrN ]1∥

2
2 . (8)

We note that this corresponds exactly to the objective function defining the tracking penalty (5)
evaluated under the control sequence ut = π(µt). As such, the policy dependent tracking cost
gtrackρ,π (x0, r0:N ) is naturally viewed as an upper-bound to the true optimal tracking cost, where the
sub-optimality is dependent on the quality of the chosen policy π. In particular, we have that
gtrackρ,π⋆ = gtrackρ for any optimal policy π⋆ that solves the optimal control problem (5).

Noting that the policy dependent tracking penalty (8) is defined in terms of stage-wise costs, we
can interpret gtrackρ,π (x0, r0:N ) as a cost-to-go function associated with the Markov Decision Process
defined by the cost (8), dynamics (7), and policy π. We therefore use Monte Carlo sampling [32]

to generate a set of T trajectories of horizon length N given by (x
(i)
0:N , u

(i)
0:N−1, r

(i)
0:N )

T
i=1, where

x
(i)
0:N and u

(i)
0:N−1 are the i-th state and input trajectories collected from applying feedback control

policy π to track reference trajectories r(i). We also compute the associated tracking cost labels

y(i) := gtrackρ,π (x
(i)
0 , r

(i)
0:N ). We then used supervised learning to approximate the policy dependent

tracking penalty (8) by solving the following supervised learning problem

minimizeg∈G
∑T

i=1(g(x
(i)
0 , r

(i)
0:N )− y(i))2,
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over a suitable function class G, e.g., feedforward neural networks, see §5 for more details.

5 Dynamics-Aware Trajectory Generation for Under-Actuated
Robotic Systems

We showed the flexibility of our framework by applying it to both a unicycle and a quadrotor
control problem. For each platform, we formulated a global planning and control problem, which
is then subsequently relaxed according to the methods proposed in §4 to yield a dynamics-aware
planning problem and a feedback control layer. We now evaluate our methods experimentally and
demonstrate their effectiveness in simulation and in real-world experiments.

5.1 Unicycle Control

We consider the continuous time unicycle dynamicsẋ1ẋ2
θ̇

 =

 cos θ 0
sin θ 0
0 1

[
v
ω

]

where (x1, x2) ∈ R2 are the system’s Cartesian coordinates, θ is the heading angle, and v, ω are
the instantaneous linear and angular velocities, respectively. Letting x = (x1, x2, θ) and u = (v, ω),
we can compactly write the dynamics as ẋ = gcts(x)u, for suitably defined g(x) ∈ R3×2. Letting
xt+1 = funi(xt, ut) be the rk4 discretization of these continuous dynamics, we can then pose the
global problem

minimize
x0:N ,u0:N−1

∑
τ∈Tw

∥xτ − wτ∥22 +
N−1∑
t=0

uTt Rut

subject to xt+1 = funi(xt, ut),

(9)

where wτ such that τ ∈ Tw ⊆ {0, . . . , N} are waypoints that the unicycle should traverse at time
τ , and R > 0 is a positive definite control cost matrix.

To instantiate the layering framework proposed in §4, we fix a low layer continuous time feedback
control policy as

πuni(x, r) = g(x)†(ṙ +Kp(x− r)),

We then define a new control input, ∆r = ṙ, to obtain the continuous time closed-loop dynamics

ẋ = g(x)g(x)†(ṙ +Kp(x− r))
ṙ = ∆r

. (10)

Letting x̄ := (x, r), we compactly rewrite the continuous time closed-loop dynamics as

˙̄x = f ctsπ,uni(x̄,∆r) (11)

for an appropriately defined f ctsπ,uni. Finally, we obtain the discrete time dynamics fπ,uni(x̄t,∆rt)
used in the experiments below via a rk4 discretization of the continuous time dynamics (11).
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Given the fixed closed-loop dynamics using the policy πuni, the dynamics-aware trajectory genera-
tion problem (6) is then given by

minimize
r0:N

∑
τ∈Tw

∥rτ − wτ∥22 + gtrackρ,πuni
(x0, r0:N ) (12)

where gtrackρ,πuni
(x0, r0:N ) is the policy dependent tracking penalty (8) induced by the closed-loop

dynamics x̄t+1 = fπ,uni(x̄t,∆rt).

Data collection In order to estimate the policy dependent tracking penalty gtrackρ,πuni
(x0, r0:N ), we

sample reference trajectories and roll them out on the closed-loop system. In order to appropriately
shape the landscape of the learned penalty, we sample both easy and difficult to track reference
trajectories. Towards that end, we generate easy to track reference trajectories by using Iterative
LQR (ilqr) [15] to approximately solve the finite horizon constrained optimal control problem

minimize
v0:N ,x0:N

∑
τ∈Tw ∥xτ − wτ∥22 +

∑N−1
t=0 ∆rTt Rw∆rt

s.t. x̄t+1 = fπ,uni(x̄t,∆rt)
x0 = r0, xN = rN

(13)

where Rw is a positive definite matrix penalizing variations in the reference trajectory. Additionally,
we also generate state independent polynomial reference trajectories that are oblivious to the low
layer closed-loop dynamics of the system and only satisfy the initial and terminal state constraints.
This strikes a balance between having low cost but hard to compute ilqr trajectories and high cost
but easy to compute polynomial trajectories. At inference, we solve a constrained optimization by
applying gradient descent on the dynamics-aware trajectory generation problem (12).

We generate 500 trajectories by sampling initial and goal locations from a uniform distribution over
[0, 2]2 and [1, 3]2, respectively. Between each initial location and goal, we sample one waypoint by
choosing a convex combination of the two points. The heading angles for the initial state is sampled
at random from a uniform distribution on the interval [0, π] and the goal heading angles are set to 0.
As described in Section 5.1, we run the constrained ilqr algorithm on the closed loop dynamics (13)
until convergence enforcing the initial and terminal state constraints. Additionally, we augment
the training dataset with 500 polynomial reference trajectories with randomly sampled initial,
waypoint and goal conditions from the fixed intervals mentioned above. In this way, we include
both easy to track trajectories (generated by ilqr) and difficult to track trajectories (polynomial)
in order to appropriately shape the optimization landscape of the learned tracking penalty. For
testing, we generate 50 trajectories with one or two waypoints each from the fixed intervals using
the polynomial reference generation method described above.

Training We train a multi-layer perceptron network with 3 hidden layers of {1000, 500, 200}
neurons, respectively, with Exponential Linear Unit (ELU) activation functions. —see Network
Parameterization and Training for more details. We train a separate network for each value of
ρ using a batch size of 64, learning rate 10−4 and run for 2500 epochs. The entire network is
setup using the optimized JAX [1], Optax and Flax libraries. The loss function is optimized using
stochastic gradient descent (SGD) with momentum set to 0.9. At test time, i.e., when we compute
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trajectories to be tracked by the low-level controller, we freeze the weights of the network and
run projected gradient descent (PGD) using jaxopt to locally solve the dynamics-aware trajectory
planning problem (12). We set the maximum number of iterations for projected gradient descent
to 50.

Results We provide two types of evaluations on the learned policy dependent tracking penalty.
First, we evaluate the network predictions for different values of relaxation weight ρ on a test dataset
consisting of 50 trajectories generated independently and in an identical way to the training dataset.
Next, we plot the relative tracking cost in Figure 2, where we compute the ratio of the tracking
errors incurred by the trajectories returned by the dynamics-aware problem (12) to those incurred
by polynomial interpolating (i.e., not dynamics-aware) trajectories—we emphasize these tracking
costs are computed via rollouts of the actual closed-loop system on the trajectories. The lower
the value of the relative cost, the more significant the tracking performance gain obtained from
using our approach. Our results indicate that for appropriately chosen tracking weight ρ > 0 the
trajectories generated using our method are on average easier to track than polynomial interpolating
trajectories. In Figure 3, we show the performance of our network (ρ = 0.1) in planning reference
trajectories that are of lower tracking cost (from the closed-loop dynamics simulation) with each
gradient step. We also evaluated the average run time of our approach on 200 trajectories and
found that our algorithm is almost twice as fast as compared to the run time of the ilqr algorithm.
Our network on average takes 6.9±0.7 seconds to converge compared to ilqr which takes 11.4±0.5
seconds. We conjecture that the results can be further improved by using convex parameterizations
for the tracking penalty, such as input-convex-neural-networks (ICNN): we leave exploring this
direction to future work. We also note that the approach is sensitive to the number of gradient
steps based on the choice of ρ.

5.2 Quadrotor Control

We consider the waypoint following problem where one is given a sequence of times (τi)
W
i=0 ∈

[0, T ]∩Z and waypoints W = {(pi, ψi)}Wi=0 ⊆ R3×S1, each specifying the desired position and yaw
angle of the quadrotor. The goal is to generate a trajectory that passes through the waypoints at
corresponding times. These conditions can be formulated in the OCP problem (2) by encoding the
state constraints

pτi = pi, ψτi = ψi, for i = 0, . . . ,W

within the constraint set R. We consider a discrete time dynamical system xt+1 = fq(xt, ut)
obtained by numerically integrating (using the Runge-Kutta scheme) a quadrotor with the following
equations of motion:

ẋ :=

 ṗv̇
Ṙ

 =

 v
Re3c+ g
R[ω×]

 . (14)

Here, the state x of the agent consists of its position (p ∈ R3), velocity (v ∈ R3), and orientation
(R ∈ SO(3)) with respect to the world frame, while the control input u = (c, ω) consist of total
thrust, c ∈ R, and angular velocity, ω ∈ R3.
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We can then pose the global problem that seeks to find a dynamically feasible minimium jerk
trajectory that passes through all of the waypoints:

minimize
x0:N ,u0:N−1

∑N−1
t=0 ∥ ...p t∥22 + ∥ψ̇t∥22 + ∥ut∥22

subject to xt+1 = fq(xt, ut),
pτi = pi, ψτi = ψi, for i = 0, . . . ,W

(15)

To instantiate the layering framework proposed in §4, we fix a tracking control policy πq(xt, rt:t+N )
for the given dynamics fq(xt, ut), and a way to collect data on this tracking policy. In the exper-
iments that follow, we use an SE(3) geometric controller [12], but any tracking controller, e.g., a
PID [21], or even an RL-based controller [11], can be equally accommodated by our framework.
Fixing the policy πq, we can define the resulting closed-loop dynamics xt+1 = fπ,q(xt, rt:t+N ) and
corresponding policy dependent tracking penalty gtrackρ,πq (x0, r0:N ) as in (8).

We now describe how to use the penalty gtrackρ,πq (x0, r0:N ) to generate dynamics-aware trajectories
that interpolate the waypoints (pi, ψi). First, we note that from differential flatness [4, 5], it
suffices for us to generate trajectories for x, y, z, and ψ. We take the widely-adopted approach of
parameterizing trajectories as piecewise polynomials of order kr that smoothly interpolates between
waypoints. Specifically, each segment is parametrized by a polynomial where cji,k denotes the k-th
coefficient of polynomial i for the dimension j ∈ {x, y, z, ψ}.

With this parameterization, we can now recast the dynamics-aware trajectory generation prob-
lem (6) as one in the coefficients of the polynomial:

minimize
{cji,k}

∑
τ∈Tw

∥rτ − wτ∥22 + gtrackρ,πq (x0, r0:N ) (16)

where r0:N is a linear map of the polynomial coefficients.

Data Collection We generate 125 trajectories by sampling the x, y, z, ψ amplitudes of the Lis-
sajous curves from a uniform distribution on the intervals [−0.65, 0.65], [−0.55, 0.55], [−0.55, 0.55], [−0.6π, 0.6π],
respectively. We select 5 equally spaced waypoints on the Lissajous curves, parametrized by the
following equations:

xn = Ax

(
1− cos

2πn

T

)
, yn = Ay

(
sin

2πn

T

)
zn = Az

(
sin

2πn

T

)
, ψn = Aψ

(
sin

2πn

T

) (17)

where the time period of each trajectory is 3s and each second is discretized into 100 time steps.
The discretization interval is selected based on the frequency of the feedback layer SE(3) tracking
controller [12], and N = 300 is our planning horizon. We generate piece-wise polynomial reference
trajectories rt ∈ R4 denoting x, y, z positions and ψ, for each segment between waypoints by
minimizing the sum of squares of jerk and yaw angular velocity. We forward simulate the tracking
controller using a state-of-the-art real-time quadrotor physics simulator on the ROS platform [20]
to record the system rollouts.
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Training We train a multi-layer perceptron composed of 3 hidden layers with {500, 400, 200}
neurons, respectively, and ELU activation functions. —see Network Parameterization and Train-
ing for more details. Similar to the unicycle setup, we train a separate neural network for each
value of ρ using a batch size of 64, learning rate 10−3, and run for 2000 epochs. The network
implementation uses Optax, Flax, and JAX libraries for optimization and the loss function used
is SGD with momentum set to be 0.9. At test time, we use the ‘L-BFGS-B’ solver from jaxopt

to locally solve the dynamics-aware trajectory planning problem (16) where the objective function
represents a trade-off between satisfying waypoints and the tracking cost of the SE(3) geometric
controller. We do no additional training for the hardware experiments.

Results We evaluate the policy-dependent tracking penalty on trajectories generated indepen-
dently and in an identical way to the training dataset, however, we allow for replanning after every
300 time steps. We compare the tracking performance of our dynamics-aware framework with two
trajectory generation methods, the standard minimum-jerk based planner satisfying constraints
described in equations (15) and polynomial trajectories that satisfy waypoint constraints but no
smoothness constraints. Figure 5 shows the full path of the trajectory in blue, the replanned tra-
jectories for every 300 time steps in green and the red arrows correspond to the odometry states
from the simulator. On the top left are results from using the minimum jerk planner, the bottom
left shows the polynomial trajectories without smoothness constraints and on the right we show
our dynamics-aware planner that solves the trajectory generation in (16). Our planner is able to
recover trajectories of low tracking cost by replanning with the learned tracking penalty every 300
time steps. We also evaluate the tracking cost from the SE(3) dynamics for different values of
ρ, as shown in Figure 4. We observe that the learned tracking penalty faithfully approximates
the tracking cost function of the low layer SE(3) feedback controller and that the dynamics-aware
trajectories synthesized using the learned tracking penalty achieve a significant reduction in the
tracking cost for every tracking weight value ρ > 0 that we tested. Finally, as shown in Figure
6, we demonstrate our dynamics-aware trajectories on the Qualcomm-Snapdragon based hardware
platform [17] to show that our method handles the sim-to-real gap without any additional training.

Hardware We use the hummingbird quadrotor platform running a VOXL Flight - PX4 Auton-
omy controller with on-board visual inertial odometry and inertial measurement unit (IMU) sensors
for localization. We treat the quadrotor system as a remote work station and establish a communi-
cation interface using the ROS platform from a laptop to transmit the position commands for the
low layer SE(3) feedback controller. The position commands are 14-dimensional vectors composed
of position, velocity, acceleration, jerk, yaw angles and yaw angular speed computed using x, y, z, ψ
references. We generate trajectories online using our dynamics-aware planner and transmit the
commands over WiFi to the quadrotor for execution and record the reference trajectory and the
odometry states from each run. We plot the x, y, z co-ordinates of the reference trajectories and
odometry measurements across time as shown in Figure 6. We note that our dynamics-aware
framework is able to generate trajectories that are safe to be deployed and tracked by the SE(3)
controller even without enforcing smoothness constraints. In future work, we would like to elimi-
nate latencies arising from communicating the commands over a network and aim towards running
the dynamics-aware framework using the limited onboard compute of the quadrotor platform.
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6 Conclusion

We showed that the familiar two layer architecture composed of a trajectory planning layer and
a low-layer tracking controller can be derived via a suitable relaxation of a global optimization
problem. The result of this relaxation is a regularized trajectory planning problem, wherein the
original state objective function is augmented with a tracking penalty which captures the low layer
closed-loop system’s ability to track a given reference trajectory. We further observed that this
penalty can be interpreted as the cost-to-go of an augmented system, and showed how it could
be learned from data. We demonstrated our results on waypoint tracking problems for a unicycle
system and a quadrotor system in simulation and hardware. In both cases, our method yielded
significantly easier to track trajectories than simple polynomial interpolations between waypoints.
Future work will look to develop more systematic approaches to collecting trajectory data for
training the tracking penalty, and to derive statistical guarantees for the learned tracking penalty.
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A Network Parameterization and Training

We parameterize the tracking cost function as the exponential of a multi-layer perceptron ϕ(·; θ) :
R(N+1)n → R with parameter θ and minimize the loss between the labels and predictions by
solving the empirical risk minimization problem minimizeg∈G

∑T
i=1(ϕ(µ

(i); θ) − log(y(i)))2 where
T is the number of collected trajectories, and (µ(i), y(i))Ti=1 are labeled pairs of the augmented
state (containing the initial condition and reference trajectory) and the tracking cost it incurs (as
described in §4.2). At test time, we set the tracking penalty to be exp(ϕ(µ; θ), thus ensuring that
it is non-negative for all µ. We found that this log reparameterization leads to more stable training
of the network.
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Figure 2: We show simulation results of the relative tracking cost on 50 trajectories for different
values of ρ (lower is better). ∗ represents the mean ratio of the dynamics-aware tracking cost
to the polynomial reference tracking cost, the line dividing the boxes represent the median ratio
separating the lower quartile from the upper quartile. The whiskers are the extreme values. We
note that the tracking costs are obtained from the dynamics simulation (true cost) and not the
network predictions.
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Figure 3: On the left, we show the initial polynomial reference trajectory in blue that is easy to
compute but hard to track. On the right, we show the dynamics-aware trajectory in orange after
one gradient step and demonstrate the tracking cost reduction from using our dynamics-aware
planner.

Figure 4: We show simulation results of the tracking cost on long-horizon trajectories of our ap-
proach in green against polynomial reference trajectories without smoothness constraints in orange
for different values of ρ. The dots represent the mean of the costs. We demonstrate that our ap-
proach is able to achieve significantly lower tracking cost compared to the polynomial non-smooth
trajectories.
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Minimum jerk 
planner

Polynomial 
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Figure 5: We show a comparison of the reference trajectory and the system rollouts using a state-
of-the-art quadrotor physics simulator in the ROS platform. The blue lines and markers denote the
planned reference and waypoints, in green we show the replanned short-horizon trajectories and
the red arrows are the states from odometry.
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Figure 6: On running our dynamics-aware planner on the hardware platform, we plot the x, y, z
reference curves and the odometry states for a 20 second trajectory. This demonstrates that our
method handles the sim-to-real gap even without enforcing smoothness constraints at the planning
layer.
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