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Fig. 1: Illustration of our tasks. The first column shows the initial robot and object poses and the desired object poses in the
dark. The third column shows a subset of objects we manipulate in each domain. The middle column shows the manipulation
motions. First row: the card is too flat to be grasped, so the robot must use dragging and re-orientation. Second row: the
box is too large to be grasped, so the robot must push it to the bump, tumble it over, and re-orient it. Third row: the wall
to the object’s right is blocking all feasible grasps. The robot must first lift it up against the wall, drag it to the top, and then
finally give a little push to move it to the target location. In the last two tasks, notice how the robot must both overcome
and exploit the environmental contact to manipulate the object.

Abstract— We present a system for non-prehensile manip-
ulation that require a significant number of contact mode
transitions and the use of environmental contacts to successfully
manipulate an object to a target location. Our method is based
on deep reinforcement learning which, unlike state-of-the-art
planning algorithms, does not require apriori knowledge of
the physical parameters of the object or environment such
as friction coefficients or centers of mass. The planning time
is reduced to the simple feed-forward prediction time on
a neural network. We propose a computational structure,
action space design, and curriculum learning scheme that
facilitates efficient exploration and sim-to-real transfer. In
challenging real-world non-prehensile manipulation tasks, we
show that our method can generalize over different objects,
and succeed even for novel objects not seen during train-
ing. Project website: https://sites.google.com/view/
nonprenehsile-decomposition

I. INTRODUCTION

Humans possess remarkable skills in non-prehensile ma-
nipulation techniques such as pulling, pushing, dragging, and
tumbling, which enables them to handle objects that are hard
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or impossible to grasp. In contrast, most robots are only
capable of performing pick-and-place and fail in situations
where grasping is not an option due to physical or geometric
limitations. Our objective is to equip robots with the ability to
manipulate objects even in such circumstances, using a basic
gripper and an RGB camera as shown in Figure 1. This is
a challenging problem that involves planning a sequence of
combined robot and object movements while accounting for
the contact interactions among an object, robot, and envi-
ronment. Since the robot is equipped with a simple gripper,
it must leverage the gravity and environment’s geometry to
perform the task effectively.

The state-of-the-art algorithms for such problems are plan-
ning algorithms that use tree search or trajectory optimization
based on an analytical physics model [1–6]. However, their
applicability in the real world is limited by several factors.
Firstly, their search space is extremely complex, involving
both discrete contact activations and continuous robot and
object motions, with different sub-manifolds defined by
different motion constraints. This makes planners too slow
to use in practice. Secondly, they require accurate analytical
contact models of the world, which is non-trivial to define
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as rigid-body dynamics are often insufficient [7]. Moreover,
even if we can define the governing equation of contacts,
extracting the physical parameters for instantiating the equa-
tion, such as the center of mass or friction coefficient, from
high-dimensional RGB images is a challenging problem.

Because of these limitations, they have only been applied
in a controlled setup where all necessary information about
the object, such as inertial parameters or pose, is known.
To achieve reasonable planning time, they often rely on
strong assumptions about contact interactions, robot motions,
and transition dynamics, such as quasi-static dynamics, pre-
defined contact modes (slipping, static, rolling, etc.), and
predefined contact locations in the environment, object, and
robot [1, 3, 5, 8].

We propose an alternative solution for non-prehensile ma-
nipulation that utilizes deep reinforcement learning (RL). By
directly learning the representation that implicitly encodes
the necessary information from sensory data, our approach
eliminates the need to extract difficult-to-observe object iner-
tial parameters. At the expense of offline training, the online
computation is reduced to feed-forward predictions from a
neural network rather than searching in a complex space.
Notably, our approach does not make assumptions about
contact interactions and robot or object motions, making it
more versatile than traditional planning algorithms.

Like the recent approaches for contact-rich tasks such as
in-hand manipulation [9–11] and locomotion [12, 13], we use
a simulator to train a policy and then transfer it to the real
world. In this scheme, there are two primary challenges that
we need to address for non-prehensile manipulation: explo-
ration and the sim-to-real gap. Exploration in non-prehensile
manipulation is challenging because unlike locomotion or in-
hand manipulation where the object or the ground is in close
proximity to make contact, the object is not in a position
where we can directly make contact, especially in the initial
state. So, if we randomly explore, there is zero chance of
sampling an action that contacts the object [14]. The sim-to-
real gap arises from the inaccuracies in the physics engine
and modeling. We found that the hardware of the widely-
used collaborative robots such as Franka Emika Panda is
based on industrial robots and has a large gear ratio with
intricate joint friction that is difficult to model accurately.

Our primary contribution is the design of a computational
structure, action space, and learning curriculum that solves
both of these challenges. For the exploration problem, one
naive approach would be to define a contact-inducing reward
that rewards the robot if its hand gets closer to the object.
However, for non-prehensile manipulation, not all contacts
are equal: some initial contacts are more crucial as it leads
to more promising state space in the post-contact phase, as
shown in Figure 2. Unfortunately, such a reward would make
the robot contact the closest point on the object, and we
empirically found this approach too sensitive to the initial
system state.

Instead, we make a key observation that in general, any
non-prehensile manipulation can be divided into two stages:
the pre-contact and post-contact stages. In the pre-contact

(a) EE-ABOVE (b) EE-AT-RIGHT

Fig. 2: (a) EE-ABOVE: The end-effector is placed above the
object. (b) EE-AT-RIGHT: The end-effector is placed on the
right side of the object. The black cube denotes the goal
pose. The robot should contact the object on the right to
manipulate it to the goal, and initially contacting it on top
of the object makes exploration extremely challenging as it
would have to break the contract entirely and re-make it on
the right.

stage, the robot primarily focuses on finding a promising
initial contact on the object that would lead to successful
manipulation. In the post-contact phase, the robot finds a
sequence of forces to apply to the object that successfully
moves it to the target location. In this latter stage, the robot
will mostly be in contact with the object — however, it
might purposefully break a contact to exploit gravity and
environmental contact or simply change its contact point to
exert a force from a different direction.

Based on this observation, we propose a computational
structure that facilitates effective exploration, where we use
two different policies for each stage: pre-contact and post-
contact policies, each having different action spaces. The pre-
contact policy’s action is defined by the point on the object
and the gripper that together defines the contact position,
along with the gripper’s orientation and gripper width at
the contact. This guarantees contact with every action and
enables the robot to explore the space of contacts more
efficiently than say, using a joint torque or SE(3) end-effector
pose. We train this policy first in a simulator where we have
accurate object shape information and then transfer it to the
real world by using a student-teacher training scheme [15].

Because the pre-contact policy involves just position con-
trol, there is a negligible sim-to-real gap. The design of
the post-contact policy’s action space, on the other hand,
requires more consideration as it involves contact interaction
with the object. In locomotion and in-hand manipulation,
the typical approach is to learn a policy to generate the
next target joint position, and use an analytical joint position
controller [9, 11, 12]. On the other hand, for our tasks with
natural motion constraints1 and continual contacts, learning a
policy that generates the target end-effector pose along with
control gain parameters for an operational space controller
(OSC) has shown to have the best sample efficiency among
different action spaces [16].

Unfortunately, OSC requires an accurate robot model [17],
but there are several factors hindering accurate modeling;

1In the context of hybrid position-force control



using a system identification helps, but we found it to be
insufficient. For instance, the wrist joint on Panda has large
friction in one direction but not so much in the opposite
direction, and such intricacy cannot be captured with the
parameters available in a typical physics simulator. Further-
more, since OSC uses a Cartesian space error to compute
joint torques unless the end-effector moves exactly the same
way for the given torque in simulation and the real world,
there would be a large joint position gap.

We instead propose a different action space. Just like
in [16], we predict the end-effector target pose. However,
instead of predicting the gains for an OSC, we predict the
gains for each joint and use inverse kinematics to solve
for the joint position target. Then, we use a joint position
controller to realize that joint position using the predicted
controller gains. We found that using the joint position
controller transfers much more effectively to the real world
than OSC because the controller errors are now in the joint
space rather than Cartesian space which you can correct by
moving the respective joint.

Another factor we need to consider when transferring a
policy to the real world is the violation of joint velocity and
torque limits. The real robot has safety measures that prevent
the robot to move above a certain speed and contact force.
To account for this, we can terminate the episode if the robot
violates them during learning, as in [10]. However, we found
this makes learning difficult as it explores too conservatively,
and fails to learn a policy in some of our domains. So, we
introduce an action scaling curriculum that allows the robot
to explore aggressively at the beginning of the learning but
slowly decrease the maximum magnitude of the action so
that the velocity and torque limits are met. This facilitates
both efficient exploration and sim-to-real transfer.

As in previous works [3, 9, 11, 12], we make significant
use of domain randomization to close the sim-to-real gap.
We found that, with an end-to-end system, it is difficult to
determine where the sim-to-real gap lies since the system is
not modularized. So we design a modular system where the
perception module takes a single RGB and outputs the 2D
object key points. The policy takes the 2D key points and
the proprioceptive sensor data to produce an action. We train
our key point detector, pre-contact, and post-contact policies
entirely in simulation and transfer them to the real world.

We apply our method to three challenging non-prehensile
manipulation problems where environment or object geom-
etry renders grasping impossible, as shown in Figure 1.
The robot needs to make use of both intrinsic and extrinsic
contacts to manipulate objects that are not directly graspable.
We show that not only can our method handle objects
seen in training, but also new objects with different friction
coefficients, centers of mass, and densities that are outside
of the domain randomization range.

II. RELATED WORK

A. Planning through contacts

There are several methods for planning through contacts
that can be applied to our tasks. The first class of algorithms

is optimization-based methods [4, 5, 18] which analytically
models the robot kinematic and dynamics constraints, such
as joint limits, and contact constraints, such as friction cone
constraints, as constraints in an optimization problem, and
uses gradient-based techniques to find a trajectory. To handle
the hybrid search space and discontinuous dynamics, some
methods smoothen the contact mode decisions [5] or use
complementarity constraints [4, 18]. While these algorithms
can compute impressive motions with many contact mode
changes, they also tend to output motions that are unreal-
istic because it is difficult to satisfy the constraints and to
accurately model contacts. To our knowledge, these methods
have scarcely been demonstrated on a real robot, if not never.

Another class of planning algorithms is based on graph
search [1, 3, 8, 19, 20]. To handle discontinuous dynamics
and hybrid search space, these methods typically construct
a graph where each node encodes the contact mode and
states of the object and robot, and each edge encodes the
motion between two states if the transition is feasible. To
compute the motion on each edge, either a pre-defined
motion primitive [19] or an additional planner is used that
accounts for dynamics constraints imposed by the contact
mode and state [1, 3, 8, 20]. In general, these methods output
more physically realistic motions than optimization-based
algorithms and have been demonstrated on real robots [3, 18,
20]. However, they make strong assumptions such as quasi-
static assumption or a pre-defined set of primitives or contact
modes, and are limited to tasks that can be solved using
simple motion with very few or no contact mode changes.

Because all these algorithms must compute a plan in a
hybrid search space with discontinuous dynamics, they are
too slow to use in practice. Furthermore, except [20], which
predicts whether a motion primitive and its parameters will
succeed from a segmented point cloud of the scene, all
methods depend on the assumption that physical parameters
such as mass and friction coefficient are known. In contrast,
our approach suffers from neither of these problems. We can
compute the next action by making a feed-forward prediction
using a neural network, which usually takes on the order of
milliseconds, and operate directly using a high dimensional
camera and proprioceptive sensor rather than relying on
accurate physical parameter knowledge.

B. Reinforcement learning for contact-rich tasks

RL algorithms have been successfully demonstrated for in-
hand manipulation [9–11, 21–23] tasks. One key difference
between these and our work is that in in-hand manipulation,
the object typically starts in close proximity to the robot,
whereas in our domain, we must solve the additional problem
of reaching and making contact with the object. With an
exception to [9], which has the object right beneath the hand,
all systems begin with the object in hand. Like in [9], we
encourage contact between the object and the finger using
a reward. However, we found this to be insufficient as the
initial contact is more crucial in our domain, and use a pre-
contact policy to facilitate efficient exploration. Following
[22], we use object key points to represent their pose.



TABLE I: The components of state space S of πpost.

Component Description
q[t] ∈ R9 joint and finger positions at time step t
q̇[t] ∈ R9 joint and finger velocities at time step t

uo[t] ∈ R2×8 2D object key points at time step t
ug ∈ R2×8 2D goal object key points

TE [t] ∈ SE(3) end-effector pose at time step t
apost[t− 1] post-contact policy’s action at time step t− 1

There are few works on RL-based non-prehensile ma-
nipulation [24–27]. Unlike planning-based algorithms, these
methods can handle high-dimensional input data such as
images, do not explicitly depend on physical parameters, and
have been demonstrated in the real world. However, these
methods are limited to planar pushing, whereas planning
algorithms could synthesize complex motions which incor-
porate multiple contact mode changes. Our method on the
other hand not only generates complex movements, but also
operates on high-dimensional sensory data without physical
parameters.

The work by Zhou and Held [28] is close to ours in that
it trains an agent to grasp an initially ungraspable object,
and shows generalization over a variety of objects. One key
difference from our work is that we focus on moving the
object to the goal pose, whereas their objective is to grasp
the object. Moreover, since they reward the agent to approach
the target grasp, the motion typically involves only a few
mode changes. Finally, they use an OSC and must operate
the policy at a very low frequency to close the sim-to-real
gap. However, our method controls joint position directly
and controls the robot at a much higher frequency, enabling
more dexterous motions.

III. METHOD

We are given a single RGB camera, a manipulator with
a simple gripper, and a proprioceptive sensor. The target
location of the object is defined using a relative transform
with respect to its initial pose. We use Franka Emika Panda
in this paper, but our method can be applied to other
manipulators. Figure 3 shows how different modules in our
system get trained and used in simulation and the real world.

A. Training πpre and πpost in a simulator

The state space of πpre consists of (To, Tg) ∈ SE(3) ×
SE(3) where To and Tg denote initial and goal object poses
respectively. Its action space consists of four components:
the orientation of the gripper, RE ∈ SO(3), its width,
l ∈ [0, 0.04], a point on the gripper, cf , and a point on
the object, co. The space of cf is defined as the pre-defined
points on the robot gripper, and the space of co is defined
as points uniformly sampled from the surface of the object.
The desired end-effector position, denoted pc, is defined
by matching cf and co. See Figure 4 for an illustration.
We compute the joint position at (pc, RE) using inverse
kinematics (IK) solver.

We define the 3D key points as the vertices of the 3D
bounding box for the target object. The state space of

the post-contact policy πpost consists of variables listed in
Table I. Its action space consists of the end-effector residual
denoted with ∆TE [t] ∈ SE(3), defined as the difference
between the target and the current end-effector pose, the
controller gain kp[t] and the damping ratio ρ[t] for the
joint controller. The controller gain kd[t] is calculated by
kd[t] = ρ[t] ·

√
kp[t]. To execute an action, we use IK to

solve for the joint position target in the next step, and then
run the joint position controller with the controller gains.

We train both πpre and πpost using Proximal Policy Opti-
mization (PPO) [29] using the reward function defined as

r(s[t], apost[t]) =

Nk∑
i=1

C1

∥xi
o[t]− xi

g∥2 + C1
− ∥kp[t]∥2

+C21
(
d[t] < d̄ and θ[t] < θ̄

)
+

C3

∥(plf [t] + prf [t])/2− pobj[t]∥2
, (1)

where C1, C2, and C3 are positive constants, xi
o[t] ∈ R3

and xi
g ∈ R3 are 3D current and goal object key points,

and Nk is the number of key points on the object. The first
term increases as the object get closer to the goal, where
the distance is computed based on the 3D key points. The
second term regularizes the magnitude of kp to induce a
compliant motion. The third term is an extra reward for
completing the task, in addition to matching the key points
for completing the job. Here, d[t] is the distance between
the goal and current object position, and θ[t] is the distance
between the goal and current object orientation, measured
using a quaternion difference α[t]α−1

g between the current
and goal object orientation, denoted α[t] and αg respectively.
Typically we set C2 ≫ C1. The last term induces the end-
effector to be close to the object. Here, pobj is the position
of the center of mass of the collision mesh of the object, and
plf and prf are at the left and right finger joints respectively.

We train πpre and πpost jointly. Given an environment, we
first create a problem by sampling a (To[0], Tg) pair. We then
use πpre to obtain its action, apre. If apre yields an end-effector
pose that is in a collision or is kinematically infeasible, we
terminate the episode, receive C4 < 0 as a reward, and
update πpre with this reward. Otherwise, we execute apre by
setting the robot at joint configuration qE given by the IK
solver for apre. Then, we execute πpost, updating it at every
H time steps until the episode terminates. In this phase,
an episode can terminate because (1) the maximum episode
length, L, has been reached, (2) the robot drops the object,
or (3) the robot succeeds in the task. Once the episode
terminates, we take the sum of the rewards that we have
obtained during the episode and update πpre. The process
repeats for a desired number of iterations.

B. Sim-to-real transfer

1) Transferring πpre: Since the state and action of πpre
depend on information unavailable in the real world, we
cannot use πpre directly. So, we train a student policy, πS

pre,
using πpre as the teacher policy [15]. The student policy’s
action consists of qE ∈ SE(3), the end-effector pose, and



Fig. 3: Modules in our system. (Top left) In the simulation, we use the ground-truth object and goal pose as inputs to πpre,
which defines the initial robot configuration for the post-contact policy. (Bottom left) In the real world, we use the output
of the key point detector and πS

pre, the student pre-contact policy. (Right) πpost in simulation uses the ground-truth 2D key
points along with other inputs, while in the real world, it uses the output of the key point detector.

Fig. 4: Illustration of how πpre makes the initial contact.

l. Its state consists of the 2D current and goal object key
points, uo[t] ∈ R2×8, and ug ∈ R2×8. We generate the
imitation learning data for πS

pre by running a trained πpre in
the simulator. We convert actions of πpre to qE and l pair and
use them as labels for πS

pre. We also convert To and Tg into
uo[t] and ug by projecting the vertices of the bounding box of
the object to the image plane. We train πS

pre by minimizing the
mean squared error (MSE). To ensure the MSE loss makes
sense on the orientation, we represent the orientation of qE
in the form of 6D representation used in [30], which is just
the first two columns of a rotation matrix.

2) Training and transferring a perception module: We
train a key point detector using synthetic images in simu-
lation and then use domain randomization to transfer it to
the real world. Our detector takes a single RGB image as an
input and outputs 2D object key points. We generate training
data for the key point detector by running trained πpre and
πpost in the simulator. At each time step, we take an RGB
image, a segmentation mask indicating whether each pixel
belongs to the robot, the object, the table, or the background,
and ground-truth 2D key points projected onto an image
plane.

We adopt the key point detector network architecture
from [31], which generates Nk heatmaps, one for each 2D
key point, with the same size as the input image. These
heatmaps represent the probability of each 2D key point’s

existence at each pixel. To train the network, we use ground-
truth Gaussian heatmaps centered at the projected location
on the image plane for each key point, as in [31]. We train
the key point detector by minimizing the KL divergence be-
tween the predicted heatmaps and the ground-truth heatmaps.
To make the key point detector robust to changes in the
background and the environment when we transfer to the
real world, we use momentum contrast learning [32] which
enables the key point detector to focus on the object rather
than its surroundings. We add InfoNCE term [33] to the
KL divergence loss. To augment the images, we replaced
the RGB values of the pixels belonging to the background
and the table by referring to the segmentation mask. With
probability 0.5, we replaced the pixel RGB values with
random RGB colors, and with probability 0.5, we replaced
them with textures used in [34].

3) Correcting the errors in a robot model: To close the
sim-to-real gap in the robot model, we perform system
identification on the joint dynamics parameters available
in the simulator, denoted α, which includes joint friction,
damping, and armature. To do this, we first collect Ntraj

trajectories with the length of T from the real robot by
setting one of the seven joints to follow a sinusoidal joint
position target of the form qreal[t] = A sin(βγt), while the
remaining joints maintain their position. The amplitude A
and frequency γ of the trajectory are selected randomly from
the hand-tuned range where its maximum is proportional
to the position and velocity limits of each joint. We then
optimize

min
α

Ntraj∑
i=0

(
∑
t∈T

(qreali [t]− qsimi [t;α])2)
1
2

for each joint using CMA-ES [35], where qsimi [t;α] is the
joint position that would result in the simulator when we



TABLE II: Domain randomization noise. U [min,max] de-
notes uniform distribution, and N [µ, σ] denotes Normal
distribution.

Parameter Range
Table friction ×U [0.7, 1.3]

Robot end-effector surface friction ×U [0.9, 1.1]
Object mass ×U [0.7, 1.3]
Torque noise +N [0.0, 0.03]

2D key point noise +N [0.0, 0.03]
Sensor noise +N [0.0, 0.01]

use a joint position controller to follow the same sinusoidal
trajectory with dynamics parameters set to α. Since only
one joint moves in each trajectory, we can treat all joints
separately, which simplifies the optimization problem.

4) Meeting the joint limits: The real robot has joint
velocity and torque limits. To satisfy them, we must limit
the magnitude of the end-effector residual at each time step,
but this hinders efficient exploration. We use a curriculum for
the maximum end-effector residual magnitude to handle this
problem. Denote the target end-effector residual magnitude
that satisfies the joint limits as ζ∗, which is obtained from
the real robot. We begin with a large initial limit ζo > ζ∗,
which gets reduced whenever the policy success rate reaches
80%. The scale is reduced in a geometric sequence with ratio
(ζ∗/ζo)

1
Ns where Ns is a hyperparameter that determines the

number of steps to reach the target residual magnitude from
the initial magnitude.

5) Domain randomization: To make the policy more ro-
bust to domain difference and the noise when it is transferred
to the real robot, we further train our policy with domain
randomization (DR) after we train our policy with an action
scaling curriculum. Below is the list of properties we applied
and the detailed ranges are noted in Table II.

• Physics properties: The friction of the table and robot
and the mass of the object are randomized. We also
add random noise to the commanded torque from the
controller, to reflect the effects of real-world noise.

• Robot model: We adaptively reduce the gap between
minimum and maximum values for the joint position
range whenever the policy reached a success rate over
a threshold.

• Perception: We add noise to the input of the policy
to mimic the sensor noise and error of the key point
detector.

IV. EXPERIMENTS

A. Domain description and experiment setup

We have designed three domains to evaluate the perfor-
mance of our method as shown in Figure 1. The first domain
is the card domain, where for each training episode, we
uniformly sample the initial and the goal object positions on
the table while its orientation along the z-axis is uniformly
sampled in the range of [0, 2π). The second domain is the
bump domain. The object is initially placed on the right
side of the bump, and the robot’s task is to push the object
over the bump and reorient it to match a goal position

and orientation, which is uniformly sampled on top of the
bump or the opposite side of the table. The initial and the
goal orientations along the roll and pitch axis are uniformly
sampled from the set [0, π/2, π, 3π/2], while that along
the yaw axis is uniformly sampled from [0, 2π). The third
domain is the wall domain. The initial pose of the object is
fixed to the up-right pose near the wall. The goal pose of
the object is uniformly sampled on the left side of the top
of the wall. We do not try to match the orientation in this
domain. During training, we fix the density of the object. The
default density of the object is 457.1kg/m3, 200kg/m3, and
150kg/m3 for the card, bump, and wall domain respectively.

We use IssacGym [36] to train the policies, and use
different policies for different domains. In the simulator, we
run 24, 576 environments simultaneously. We use C1 = 0.02,
C2 = 1000, C3 = 0.03, C4 = −100, d̄ = 0.01m and
θ̄ = 0.1rad for the reward function. We run πpost to output
actions at a frequency of 10Hz, while the controller runs at
a frequency of 100Hz. For the action scale schedule, we use
Ns = 10, ζo = (0.06, 0.1), and ζ∗ = (0.02, 0.03).

For the real-world experiment, we use a RealSense D435
camera to obtain RGB images. We use RRT* [37] to plan a
trajectory from the initial robot configuration given by πS

pre,
and use Polymetis [38] to control the robot. We run πpost

outputs its action at 10Hz, and the controller runs at 500Hz.
To address safety issues, we set the minimum damping ratio
for ρ[t] at 0.5. We wrapped the gripper of the robot with
a glove that has a higher friction coefficient to match the
setting of the simulation.

B. Results

In this paper, we make the following claims.
• Claim 1: Jointly training πpre with πpost facilitates more

efficient exploration than using a single policy with
contact-inducing reward.

• Claim 2: Residual curriculum enables efficient explo-
ration and learning of a policy that meets joint limits.

• Claim 3: Inverse differential kinematics and joint po-
sition controller is better suited for sim-to-real transfer
on robots with large gear ratios, such as Panda.

• Claim 4: Our system can transfer to the real world and
generalize to objects that were not seen during training.

To support claim 1, we compare our method against the
benchmark that does not use πpre in the bump domain where
we initialize the joint position of the robot in two different
ways, as shown in Figure 2a. In both setups, the robot needs
to learn that it needs to contact the object on the right side to
push it over the bump. Figure 5a shows the results. We can
see the effect of using πpre: our method reaches 95% success
rate at around 6 billion steps, while the one without πpre and
πpost decomposition fails to reach the same level of success
rate. The policy in EE-AT-RIGHT setup does a little better
than the one in EE-ABOVE, because the robot begins at a
configuration near the right side of the object. However, it
is much less data-efficient than our method.

To support claim 2, We compare methods with and without
end-effector residual scaling during training. For the one



(a) Bump domain (b) Card domain (c) Bump domain (d) Wall domain

Fig. 5: Learning curves for (a) comparing our method with the one that does not use pre-contact policy in the bump domain,
(b, c, d) comparing our method to the one without scheduling in card, bump, and wall domains, respectively. The sudden
dips or temporary plateaus in the graphs are due to domain randomization and residual scaling curriculum.

Domain Controller Object Mass (g) Surface scenario 1 scenario 2 scenario 3 Success rate

Card

Ours
3D printed (default) 8 plastic

5/5 3/5 5/5 0.87
OSC 1/5 1/5 0/5 0.13
ζ∗ 5/5 2/5 4/5 0.73

Ours

3D printed (wrapped) 8 vinyl 4/5 1/5 2/5 0.47
Acrylic 16* acrylic 3/5 3/5 5/5 0.73
Wood 8 wood 5/5 4/5 5/5 0.93

Credit card 5 plastic 5/5 5/5 4/5 0.93
Tissue† 1* tissue 4/5 5/5 5/5 0.93

Chocolate chip† 9 vinyl 3/5 4/5 5/5 0.87

Bump

Ours 3D printed (default) 146 paper 5/5 3/5 5/5 0.87
OSC 0/5 0/5 1/5 0.07

Ours

3D printed (wrapped) 146 vinyl 4/5 2/5 5/5 0.73
3D printed (high density) 223* paper 5/5 5/5 5/5 1.00

Wood 381* paper 5/5 3/5 4/5 0.80
Painted wood 381* wood 2/5 5/5 3/5 0.67

Sponge† 30* paper 2/5 5/5 3/5 0.67
Diaper box† 102 paper 2/5 4/5 2/5 0.53

Wall

Ours 3D printed (default) 38 paper 5/5 3/5 5/5 0.87
OSC 0/5 0/5 0/5 0.00

Ours

3D printed (wrapped) 38 vinyl 5/5 3/5 5/5 0.87
3D printed (high density) 62* paper 5/5 4/5 4/5 0.87

Wood 97* paper 5/5 0/5 4/5 0.60
Painted wood 97* wood 5/5 1/5 3/5 0.60

Sponge† 5* paper 5/5 5/5 5/5 1.00
Water tissue box† 138* paper 0/5 1/5 2/5 0.20

TABLE III: The real-world results in diverse objects for three domains. † means the object is non-rigid, and * means the
mass of the object is out of DR range. ζ∗ means the policy is trained with the same controller and architecture as our system
except that it uses fixed residual magnitude limit ζ∗. Each scenario refers to different initial and target object poses.

without the end-effector residual, we fix the residual magni-
tude limit to ζ∗ and train the policy. Figures 5b, 5c, and 5d
show the result in three domains. As the plot shows, except
for the card domain, the one without scheduling fails to learn
the task, demonstrating the importance of our scheduling
scheme. For the card domain, We further compare our policy
with the policy without scheduling in the real world. The
policy without scheduling achieved 73% success rate, and
ours achieved 87% as shown in Table III. This shows that
action scaling not only helps with exploration, but also in
closing the sim-to-real gap.

To support claim 3, we compare our method against the
method in [16] where the policy outputs the next end-effector
pose and the gains for an OSC in the real world. We use
the same action scheduling and policy architecture as our
system but use a different action space and controller. In
the simulation, the OSC-based method achieves over 90%
success rates in the card and bump domains and over 80%
in the wall domain in simulation. We then compare them
in the real world with the object that has the same physical
parameters as the one used in training. Table III shows the
result. It shows that the OSC-based approach does much

worse in the real world and achieves 13%, 7%, and 0%
success rates in card, bump, and wall domains respectively,
while ours achieve 87% success rates in all three. This
indicates that OSC-based action space has a larger sim-to-
real gap than our action space.

To support claim 4, we test our policy on 7 different
objects in each domain. The objects vary in their mass,
surface friction, scale, and deformation. We paint the objects
so that it has the same visual appearance as the training
data. The list of the objects and the results are shown in
Table III. For the default object that has the same physical
properties as the one we used in training, we achieve 87%
success rate, indicating that our system can transfer to the
real world. Furthermore, our method succeeds even for some
objects whose physical properties (ex. non-rigid, heavy, etc.)
are outside of our domain randomization range. The object
with the lowest success rate is the water tissue box, which
is highly non-rigid.

V. LIMITATION

Our current work is limited to fixed environments and
objects, and must train new policies if they change. The fu-



ture work would involve generalizing across different object
shapes by incorporating shape information.
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