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Abstract— Segmenting and recognizing surgical operation
trajectories into distinct, meaningful gestures is a critical
preliminary step in surgical workflow analysis for robot-assisted
surgery. This step is necessary for facilitating learning from
demonstrations for autonomous robotic surgery, evaluating
surgical skills, and so on. In this work, we develop a hi-
erarchical semi-supervised learning framework for surgical
gesture segmentation using multi-modality data (i.e. kinematics
and vision data). More specifically, surgical tasks are initially
segmented based on distance characteristics-based profiles and
variance characteristics-based profiles constructed using kine-
matics data. Subsequently, a Transformer-based network with
a pre-trained ‘ResNet-18’ backbone is used to extract visual
features from the surgical operation videos. By combining the
potential segmentation points obtained from both modalities,
we can determine the final segmentation points. Furthermore,
gesture recognition can be implemented based on supervised
learning.

The proposed approach has been evaluated using data from
the publicly available JIGSAWS database, including Suturing,
Needle Passing, and Knot Tying tasks. The results reveal an
average F1 score of 0.623 for segmentation and an accuracy
of 0.856 for recognition. For more details about this paper,
please visit our website: https://sites.google.com/
view/surseg/home.

I. INTRODUCTION

The rapid development of machine learning leads to
substantial growth in the field of surgical data science and
robot-assisted surgery [1]–[4]. Surgical tasks mainly rely
on the repetition and execution of specific gestures, while
they can be further decomposed into basic surgical gestures.
The segmentation and recognition of surgical gestures is
an important task for surgical workflow analysis, which
can benefit the training and assessment of surgeons [5],
enable semi-autonomous robotic surgery via learning from
demonstration, and provide real-time feedback and guidance
for surgeons to enhance the efficiency of robotic surgery [6].

Supervised learning has been widely used for surgical ges-
ture segmentation and recognition [7]. Traditional machine
learning algorithms, such as Hidden Markov Models (HMM)
[8], Linear Dynamical Systems (LSD), Conditional Ran-
dom Fields (CRF), and Markov/semi-Markov CRF (MsM-
CRF), have been used for surgical gesture segmentation
and recognition [9]. Recurrent Neural Networks (RNNs)
and their variations [10], such as Long-Short Term Memory
(LSTM), and Gated Recurrent Units (GRU), have also been
widely used for gesture segmentation, since they have been
proven to be effective for processing sequential data [11].
However, the machine learning-based gesture segmentation
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Fig. 1. Flowchart of the proposed hierarchical semi-supervised learning
framework for surgical gesture segmentation and recognition.

quality significantly depends on the availability of large-scale
labeled datasets.

Unsupervised learning has been explored for surgical ges-
ture segmentation. For example, Transition State Clustering
(TSC) has been applied to the surgical gesture segmenta-
tion task [12]. Gaussian Mixture Model has been used to
segment surgical gestures based on kinematic data and the
visual features extracted by pre-trained Convolutional Neural
Networks (CNN) [13]. A Dense Convolutional Encoder-
Decoder Network (DCED-Net) has been combined with
Temporal Convolutional Networks (TCN) to further enhance
the segmentation accuracy [14]. However, the performance of
unsupervised learning methods is not desirable compared to
supervised learning methods. As a compromise between data
labeling workload and model performance, we investigate
semi-supervised learning in this paper.

Semi-supervised learning has been applied to the seg-
mentation of surgical gestures using kinematic data. For
instance, within a semi-supervised learning framework, the
Stacked Denoising Autoencoder (SDAE) has been utilized
for feature extraction in an unsupervised manner [15], while
Dynamic Time Warping (DTW) was employed to align the
kinematic data from different trials of the surgical task.
Subsequently, a voting mechanism based on kernel density
estimation was applied to transfer labels from template trials
to the test trial, resulting in gesture recognition through semi-
supervised learning. An RNN-based generative model has
been developed for surgical gesture recognition, using only
one annotated sequence [16]. Its performance outperforms
other approaches, including the RNN-Based Autoencoder
and RNN-Based Future Prediction. However, most of the
methods mentioned above only use kinematic data to imple-
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ment gesture segmentation or recognition. Recent literature
has demonstrated that the performance of surgical gesture
recognition can be improved using multi-modality data com-
pared with their single-modality counterparts [13].

To this end, we propose a hierarchical semi-supervised
learning framework for surgical gesture segmentation and
recognition using multi-modality data, which aims to elim-
inate the need of collecting a large amount of labeled data
for supervised learning while ensuring high segmentation and
recognition performance. The main contributions are listed
as follows.

• We propose a hierarchical semi-supervised learning
framework for surgical gesture segmentation, utilizing
both kinematics and video data. Our proposed method
was compared to state-of-the-art approaches, with re-
sults indicating higher accuracy of segmentation.

• We employ a transfer learning approach to extract useful
features from a limited amount of labeled surgical video
data, thus ensuring high data efficiency in our proposed
method. This method utilizes a Transformer-based ar-
chitecture, with ResNet-18 serving as the backbone.

II. METHODOLOGY

A. Overview

The core target of surgical gesture segmentation is to
locate the starting point and ending point of a specific
surgical gesture [17]. Surgical gestures involve dynamic
movements that feature transitions encompassing both local
and global motions. As such, kinematic data play a crucial
role in detecting transitional states and is thus considered
valuable for surgical gesture segmentation. Simultaneously,
vision data, with contextual information, contributes to im-
proving the accuracy of surgical activity segmentation and
recognition. Therefore, multi-modality data will be used
to enhance surgical gesture segmentation and recognition
accuracy in this paper.

We define features initially identified from specific fea-
ture extraction methods as ‘critical points’ (also known as
‘change points’ or ‘transition points’ in other papers). It
is worth noting that the occurrence of critical points may
not be simultaneous for different characteristics profiles. For
instance, in a Knot Tying task, orienting a needle may
only lead to changes in the rotation, while the translation
may remain unchanged. As a result, we introduce a hier-
archical structure to address this issue. In the first layer,
multiple meaningful features extracted from kinematic data
are clustered using ‘Density-Based Spatial Clustering of Ap-
plications with Noise (DBSCAN)’, while all visual features
extracted by the Transformer-based model are clustered with
Dirichlet Process Gaussian Mixture Model (DP-GMM). The
resulting data will be referred to as ‘potential segmentation
points’ (also known as ‘pre-segmentation points’ in other
papers) throughout this paper. In the final step, the second
layer of DBSCAN is applied to all potential segmentation
points to generate ‘final segmentation points’. Algorithm
1 describes the whole segmentation method.

Algorithm 1: Overview of the Proposed Framework
1: for All kinematics data do
2: Obtain Filtered Kinematics Data:

Raw Data ← Kalman and Savitzky-Golay filters
3: Obtain critical points cpori: Distance

Characteristics-Based Profiles ← CWT
4: Obtain critical points cpvar: Variance

Characteristics-Based Profiles ← CWT
(see Section II-B)

5: end for
6: for All vision data do
7: Extract visual features fvis:

Preprocessed video data ← Transformer
(see Section II-C.1)

8: Obtain all potential segmentation points for vision
data CPvis:
fvis ← DP-GMM (see Section II-C.2)

9: end for
10: Obtain all potential segmentation points for kinematics

data CPkine:
[cpori, cpvar] ← DBSCAN 1st Layer

11: Obtain final segmentation points esp:
[CPkine, CPvis] ← DBSCAN 2nd Layer
(See Section II-D)

One of the well-known surgical activity datasets is the
JHU-ISI Gesture and Skill Assessment Working Set (JIG-
SAWS) [18], where a large number of surgical operation
data was collected from surgeons using the da Vinci Surgical
Robot. This dataset contains kinematics and video data along
with manual annotation with gestures’ name and operators’
skill levels. There are three surgical tasks in the dataset,
including 39 suturing, 36 knot tying and 20 needle passing
demonstrations. The definitions of the surgical gesture for all
three tasks can be found in [18]. The JIGSAWS dataset is
used for model training and evaluation in this paper.

B. Pre-Segmentation Based on Kinematics Data

1) Characteristics Profile Construction:
The kinematic characteristics of the surgical gesture tran-
sition points can differ from other points within the same
gesture [19]. That is to say, kinematic data points are clus-
tered when they are transitioning to another gesture, while
smooth intervals represent an in-motion state. By calculating
the translation and rotation distance between two consecutive
points along the trajectory, we can find out critical points
(transition points) in the density of trajectories. In addition,
a variance characteristics-based method is adopted to enable
the segmentation to be more robust to noise [20]. The
raw kinematics data recorded include noises. Therefore, the
Kalman filter is applied to the raw trajectories for noise
removal. Following that, new profiles can be constructed
from distance and variance characteristics-based profiles. The
Savitzky–Golay filter can then be applied to further smooth
the newly constructed profiles after normalization.



Denote the original frame for the kinematics data as B,
Translation Matrix as T(t), and 3×3 Rotation Matrix as
R(t). Suppose that Q(t) is the quaternion converted from
R(t), which also represents the end-effector’s orientation
in the original dataset. The corresponding Euler angles
converted by R(t) is e(t) = [ex(t), ey(t), ez(t)]. Let p(t) =
[px(t), py(t), pz(t)] denote the end-effector position at time
step t, ṗ(t) = [ṗx(t), ṗy(t), ṗz(t)] denote the end-effector
velocity at time step t.

Distance Characteristics-Based Profiles: Translation and
rotation distance between consequent time steps can be
calculated for both left and right surgical tools, respectively.
For the translation component, the Euclidean distance of
the end-effector between time step t and t − 1 can be
calculated by Dtrans = ||p(t)− p(t− 1)||. As for the
rotational component, the distance is determined by Drot =
arccos(2(Q(t) ·Q(t− 1))2 − 1).

Four distance characteristics-based profiles can be con-
structed, including the i) left-hand translation distance pro-
file, ii) left-hand rotation distance profile, iii) right-hand
translation distance profile, and iv) right-hand rotation dis-
tance profile. These newly constructed profiles are normal-
ized before being used to identify critical points.

Variance Characteristics-Based Profiles:
Relying solely on translation and rotation distances may

lead to over-segmentation. To address this issue, the vari-
ance characteristics-based approach can be used to capture
the essential features of kinematic data [20]. Segmentation
points tend to cluster, while points within continuous motion
are typically sparse [20]. These characteristics are frame
invariant, indicating that they remain consistent when the
data is transformed into a new frame of reference. Hence,
calculating variances across all new frames can help identify
significant changes. High variance points suggest significant
changes in terms of angle or angular speed values. Under-
standing these variance characteristics can help differentiate
between continuous motion and transition periods, thus en-
hancing the segmentation accuracy.

Assume there are N new frames generated from random
translation matrix nT(t) and rotation matrix nR(t) sepa-
rately for n = 1, 2, . . . , N . The trajectory points in the new
frames could be written as np(t) = nR(t)p(t) + nT(t).
Given the rotation matrix nR(t), the Euler angles e(t) in the
new rotation frame for each n can be derived. The variance
characteristics-based profile can be calculated based on all
new frames at each time step, as illustrated in (1):

V arntrans(t) = V ar[npx(t)] + V ar[npy(t)] + V ar[npz(t)]

V arnrot(t) = V ar[nex(t)] + V ar[ney(t)] + V ar[nez(t)]
(1)

Four variance characteristics-based profiles can be con-
structed, including the i) left-hand translation variance pro-
file, ii) left-hand rotation variance profile, iii) right-hand
translation variance profile, iv) right-hand rotation variance
profile.

2) Critical Points Determination: Since segmentation
points separate two gestures, they typically occur when there

is a significant distance between two consecutive points along
a trajectory. That is to say, the critical points normally appear
at the corners of the peaks among the newly constructed
characteristics profiles. They can thus be identified when
two points have a large distance among all the profiles. All
the critical points obtained from different profiles can be
combined as a point set, which can be later used for potential
segmentation points identification.

Two methods can be used to identify these peaks and
corners for determining the critical points. The first method
involves specifying a threshold height and prominence, while
the second method involves using continuous wavelet trans-
formation (CWT) to identify relative peaks and corners.
Both methods have been widely used in the literature for
identifying critical points in various types of data. The
comparisons of these two methods can be found in the
supplementary materials on our website.

C. Pre-Segmentation Based on Vision Data

1) Transformer-Based Feature Extraction: Deep neural
networks have demonstrated their immense capabilities in the
field of computer vision. More recently, Transformers have
been proven to outperform CNNs and RNNs when they are
applied to sequential data processing, since they can deal
with long-range context dependencies [21]. Transformers
have the capacity to establish temporal links between the
present and past frames based on self-attention mechanism
[22]. Therefore, a modified Transformer-based architecture
(see Fig. 2) is integrated with one of the Deep Residual
Neural Network model-based backbones to implement visual
feature extraction in this paper. Specifically, the ResNet-18
architecture with pre-trained weights from ImageNet is used
as the backbone for the model, which accelerates the model
training process. The remaining weights in the architecture
are fine-tuned using the limited labeled data in JIGSAWS
[21].

To prepare for model training, the video data is initially
transformed into a sequence of images. For training the
Transformer-based model, every input consists of a series
of l images that share the same gesture label. The value of
l can be referred to as the sliding window size, representing
the length of a sequence of images used as model input. All
inputs have (l − s) overlapping frames, where s represents
the step size for sequential data generation. In this paper,
l = 30 and s = 5 are used to construct a new dataset
with a reorganized data structure for model fine-tuning. After
extracting the features from the vision data, we obtain a new
dataset that includes sequences of labeled data represented
by feature vectors.

2) Feature Clustering Based on Unsupervised Learning:
The feature clustering method used in this work is inspired
by [12], where an unsupervised Transition State Clustering
(TSC) algorithm was used to identify potential segmen-
tation points between two Gaussian clusters. It has been
demonstrated that DP-GMM, learning through Expectation-
Maximization, exhibits excellent performance in clustering



Fig. 2. Network Architecture of the Transformer-based network with a pre-trained ‘ResNet-18’ backbone for visual features extraction.

high-dimensional data without prior knowledge of the ground
truth cluster number.

If there is a significant difference between two adjacent
features, it is likely that the gestures change at that point,
and thus the potential segmentation points could be found.
The visual critical points extraction is performed using two
layers of DP-GMM. The first layer clusters across all the
frames to find as many critical points as possible, while the
second layer further clusters those critical points to determine
the potential segmentation points.

For the DP-GMM method, Dirichlet Process is a proba-
bility distribution that resolves the issue of requiring a pre-
determined number of classes when implementing a pure
GMM. Suppose there are N data points [x1, x2, ..., xN ],
where each is generated from a different distribution gi =
g1, g2, ..., gN , and each distribution has corresponding pa-
rameters θi = θ1, θ2, ..., θN . Assuming each gi follows
a distinct Gaussian distribution, θi follows a certain con-
tinuous distribution H(θ). The Dirichlet Process involves
constructing a discrete distribution G to make θi ∼ G, where
G ∼ DP (α,H). Here, α is known as the concentration
parameter, which controls the shape of the distribution.

D. Final Segmentation Point Identification

Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) is a clustering algorithm that can be
used to cluster points with sufficient density. Unlike other
clustering algorithms, it does not require the number of
clusters to be specified in advance and only requires two hy-
perparameters. DBSCAN is also capable of identifying and
handling abnormal values, which is effective in eliminating
misidentified critical points or potential segmentation points.

In this paper, two layers of DBSCAN were utilized to lo-
cate segmentation points. The first layer is used to cluster all
the kinematic critical points and therefore obtain kinematic
potential segmentation points. The second layer combines the
output of both kinematic and vision potential segmentation
points to identify the final segmentation points. To imple-
ment this algorithm, two parameters must be defined: the
minimum number of points (minp) required to determine a
dense region, and the maximum distance (eps) between two
points. Potential and final segmentation points should have
a sufficient number of other data points (defined by minp)
within a specified distance (defined by eps). Boundary points

refer to data points that are not core points but lie within the
neighborhood of a core point. If a point does not belong to
either of these categories, it is classified as a noise point.

III. EXPERIMENTS AND RESULTS ANALYSIS

Fig. 3. Critical points determined based on the left-hand translation distance
profile and left-hand rotation distance profile. (Data Source: Suturing File
F004 in JIGSAWS)

A. Experiment Design

The dataset used in this study consists of a total of 103
demonstration files, which are divided into a training set, a
validation set, and a test set in a 69:21:13 ratio. During the
model training process for the Transformer network, images
are cropped to 80x80 pixels to accelerate the network train-
ing process and accommodate CUDA memory. To prevent
overfitting, we adopted data augmentation techniques such
as random rescaling, random cropping, and random rotation
within a range of -15 to 15 degrees [21]. The batch size
is set to 30, and the total number of training epochs is 80.
We use the Adam optimizer with weight decay, and the loss
function is constructed using categorical cross-entropy. The
initial learning rate is set to 0.001



Bayesian optimization is used to automatically find the
optimized values of hyperparameters [23]. Specifically, the
concentration parameters for the two DP-GMM layers (de-
noted as α1 and α2), the component numbers (n1 and n2)
in the two Dirichlet Processes, and the maximum distance
eps for DBSCAN can be fine-tuned through Bayesian opti-
mization. The F1-score is chosen as the target function for
optimization. The results of the optimized hyperparameters
found through Bayesian Optimization are summarized in
Table I.

TABLE I: Optimized Hyperparameters Determined Based on
Bayesian Optimization

Task n1 n2 α1 α2 eps
Suturing 768 145 9.437 3.729 28

Needle Passing 545 708 183.5 4.489 15.49
Knot Tying 658 445 157.8 162.2 31.76

Three standard frame-wise metrics (precision, recall, and
F1-score) are used to evaluate the segmentation results [7].
As for multi-class classification, the micro and the macro
average are calculated based on the confusion matrix as
shown in the following equations.

Microprecision =

∑n
i=1 TPi∑n

i=1 TPi +
∑n

i=1 FPi
(2)

Microrecall =

∑n
i=1 TPi∑n

i=1 TPi +
∑n

i=1 FNi
(3)

Macroprecision =
1

n

n∑
i=1

Pi (4)

Macrorecall =
1

n

n∑
i=1

Ri (5)

where TPi, FPi,FNi denotes True Positive, False Positive,
and False Negative for each class i, Pi, Ri denotes the
precision and recall for each class i.

B. Kinematics-Based Segmentation

Smooth trajectory profiles can be obtained after applying
the Kalman filter, as oscillation points are eliminated, and
critical points can be identified with higher accuracy. We
conducted follow-up experiments and discovered that critical
points were more accurately identified after applying the
Savitzky-Golay filter.

Fig. 3 provides an example of critical points extracted
from the left-hand translation and rotation distance profiles
using CWT. A comparison of the critical segmentation points
obtained from the two profiles suggests that the rotation
distance profile provides more accurate results than the
translation distance profile. This may be due to the fact that
the Suturing Task involves more rotational motion than trans-
lational motion, resulting in more prominent critical points
in the rotation distance profile. Critical points identified from
the rotation variance profile are shown in Fig. 4 as examples.

By combining all the critical points obtained from both
distance characteristics-based and variance characteristics-
based profiles, we can further obtain a set of potential seg-

Fig. 4. An example of right-hand rotation variance profile (Data Source:
Suturing File B005, JIGSAWS)

mentation points after applying the first layer of DBSCAN.
Using these potential segmentation points, we assessed the
kinematics-based segmentation with the following metrics:
i) mean recall, ii) precision, and iii) F1 score. For the
Knot Tying task, these metrics are 0.482, 0.251, and 0.330,
respectively. Similarly, for the Suturing Task, the mean
recall, precision, and F1 score are 0.488, 0.242, and 0.324,
respectively. For the Needle Passing task, the corresponding
values are 0.372, 0.145, and 0.210, respectively.

The aforementioned results reveal that though the pro-
posed method can correctly identify many segmentation
points, there is still a noticeable deviation between the ground
truth segmentation points and the potential segmentation
points when relying solely on kinematics data. One possible
explanation is that the dataset is captured by surgeons with
varying robotic surgical experience. Some surgeons’ opera-
tion data may has a significant smoothness discrepancy in the
trajectory. The smoother the trajectory is, the shorter pause
it might contain between different gestures, and there might
not be noteworthy critical points. Thus, the use of visual
data is necessary to help improve segmentation accuracy,
which contains some important context information to help
differentiate different gestures.

C. Vision-Based Segmentation Results

The testing accuracy of the Transformer-based model on
the test dataset is 0.93. The mean of recall, precision, and
F1-score for all Suturing segmentation metrics are 0.516,
0.634, and 0.550, respectively. As for Needle Passing and
Knot Tying task, the scores for all the evaluation metrics
are summarized in Table II. Take the Knot Tying task as an
example, the segmentation results based on vision data are
shown in Fig. 5.

The accuracy of the segmentation points for the Needle
Passing task was found to be the lowest among the three
tasks. This could be attributed to the fact that most gestures
for the Needle Passing task were conducted based on local
operation, resulting in less significant differences in the
distance characteristics-based profile compared to the other
tasks. Additionally, critical features such as the needle pose
and thread in the video data may be obscured, making the
accurate identification of segmentation points challenging.



Fig. 5. An example of the segmentation result using vision data (Data Source: Knot Tying File I002, JIGSAWS)

Fig. 6. An example of the segmentation result using vision and kinematics data. (Data Source: Knot Tying File I002, JIGSAWS)

TABLE II: Summary of Segmentation Results

Modality Task Recall Precision F1 score

Kinematics
Suturing 0.488 0.242 0.324

Needle Passing 0.372 0.145 0.210
Knot Tying 0.482 0.251 0.330

Vision
Suturing 0.516 0.634 0.559

Needle Passing 0.415 0.620 0.488
Knot Tying 0.567 0.673 0.615

kinematics
+ Vision

Suturing 0.533 0.770 0.630
Needle Passing 0.510 0.647 0.570

Knot Tying 0.569 0.780 0.657
mean 0.537 0.745 0.623

D. Vision and Kinematics Fusion-Based Results

1) Final Segmentation Results: For the Needle Passing
task, the average segmentation results in terms of recall, pre-
cision, and F1-score are 0.510, 0.647, and 0.570, respectively.
For the Knot Tying task, the corresponding results are 0.569,
0.780, and 0.657, respectively. A comprehensive summary
of all segmentation scores is presented in Table II. These
findings illustrate the superior performance of our proposed
method in surgical gesture segmentation, as our framework
achieves improvements in both recall and precision.

2) Final Classification Results: The segmentation results
are utilized to partition the entire video into segments,
generating a new dataset that enables the classification of
each segment for the surgical gesture recognition task. The
results of this task are summarized in Table III. Fig. 7
provides examples of classification results with estimated
segmentation points. This indicates that the Transformer-
based model can be used to refine the results generated
by the unsupervised methods and improve the classification

accuracy.
Based on the analysis of the confusion matrix (see supple-

mentary materials provided by our website), we observed that
Gesture 10 (Loosening more suture) can be easily identified.
Conversely, Gesture 5 (Moving to center with needle in
grip) has the lowest classification accuracy, with 25% of
Gesture 5 instances being misidentified as either Gesture 1
(Reaching for the needle with the right hand) or Gesture 2
(Positioning the needle). A potential reason for this could be
that the Transformer-based model can only accept 30 frames
as synchronous input, and different gestures might involve
similar motion within these 30 frames. Since Gestures 1 and
2 involve the state of ‘having the needle in grip’ at the center
of the image, they might be misclassified as Gesture 5.

TABLE III: Summary of Classification Results

Metrics Result Metrics Result
Recall micro 0.868 Precision micro 0.868
Recall macro 0.829 Precision macro 0.830

Recall weighted 0.867 Precision weighted 0.879
Accuracy 0.856

E. Comparisons with State-of-the-Art Methods

LSTM [24] and TCN [25] are considered state-of-the-art
supervised learning methods for classification. In addition,
Bimanual space and variance [20], Soft-UGS [26], and Zero-
shot [27] represent state-of-the-art unsupervised learning
techniques.

In this paper, these methods serve as baselines for compar-
ative studies and are all evaluated using the Suturing Task.
The results presented in Table IV, reveal that our proposed



Fig. 7. Examples of surgical gesture classification results.

TABLE IV: Comparisons with other State-of-the-Art Ap-
proaches

Method Metrics Scores
Space and variance Recall/Precision/F1 0.652/ 0.92/0.754

Soft-UGS Recall/Precision/F1 0.74/0.71/0.72
LSTM Acc 0.805
TCN Acc 0.796

Zero-shot Acc 0.56
CNN+LC-Sc-CRF Acc 0.766

Ours Acc 0.856

method outperforms the baseline techniques in terms of
accuracy.

IV. DISCUSSIONS AND FUTURE WORK

We propose a hierarchical semi-supervised learning frame-
work for surgical gesture segmentation and recognition.
In the first hierarchy, we identify the critical points from
kinematics data and video data and then determine the
potential segmentation points. In the second hierarchy, we
use an unsupervised learning approach to cluster the potential
segmentation points and determine the final segmentation
points. By leveraging implicit information from both kine-
matic and video data, the proposed method is capable of
successfully identifying segmentation points and recognizing
gesture labels. The effectiveness of our proposed method was
verified using the JIGSAWS dataset, achieving an impressive
accuracy of 0.856 for classification and an F1 score of 0.623
for segmentation.

In the future, we plan to expand the algorithm by incor-
porating self-supervised methods and leveraging sim-to-real
learning techniques to further eliminate the need for labeling
real operation data for surgical gesture recognition tasks
[28]. Furthermore, we aim to apply the proposed method
to support the development of automation in robotic surgery
based on learning from demonstration.
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