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Abstract— Game-theoretic motion planners are a powerful
tool for the control of interactive multi-agent robot systems. In-
deed, contrary to predict-then-plan paradigms, game-theoretic
planners do not ignore the interactive nature of the problem,
and simultaneously predict the behaviour of other agents while
considering change in one’s policy. This, however, comes at the
expense of computational complexity, especially as the number
of agents considered grows. In fact, planning with more than a
handful of agents can quickly become intractable, disqualifying
game-theoretic planners as possible candidates for large scale
planning. In this paper, we propose a planning algorithm
enabling the use of game-theoretic planners in robot systems
with a large number of agents. Our planner is based on the
reality of locality of information and thus deploys local games
with a selected subset of agents in a receding horizon fashion
to plan collision avoiding trajectories. We propose five different
principled schemes for selecting game participants and compare
their collision avoidance performance. We observe that the use
of Control Barrier Functions for priority ranking is a potent
solution to the player selection problem for motion planning.

I. INTRODUCTION

While interactions among multiple mobile agents can be
thoroughly modeled using game theory, the complexity of
game-theoretic planners grows cubically with the number
of the agents considered [1]. Thus, in large scale settings
where a large number of interactive agents are present, game-
theoretic planning is intractable [2]. The typical procedure in
large scale settings is to identify the closest neighbors and
perform local game-theoretic planning while ignoring the rest
of the agents in the scene [3]. This neighbor selection scheme
is justified in structured environments such as driving, where
the geometry of the road and driving rules ensure agents clos-
est are generally the most important to consider. However, in
congested settings, taking the spatially closest neighbors into
account (e.g. all agents in a given radius) might still result in
a computationally expensive planning scheme. Furthermore,
in unstructured environments such as quadrotor flight, the
validity of the argument for planning with the closest agents
is highly questionable.

In this work we study the problem of game-theoretic
motion planning for systems with a number of agents beyond
the computational feasibility of a full game solution. The
investigation aims to provide insights into this question on
two levels. First, we aim to evaluate the capacity of receding
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Fig. 1: In practice, robots make decisions based on local information. This
can lead to agents solving games with different subsets of agents present
in the scene. For example, based on a fixed radius criterion, agent 1 may
consider 2, 3, 4, and 9 as neighbors in its game, while agent 2 may consider
1, 3, 4, 5, 6, and 9. How do such systems behave and can local information
be leveraged to select only significantly interacting neighbors, in order to
mitigate the computational burden of considering agents with little or no
impact on one’s actions?

horizon local game-theoretic planners to achieve satisfactory
trajectories in crowded environments, when the maximum
number of agents considered for planning is constrained.
Trajectories in this setting are obtained by reasoning about
agents’ equilibrium behavior in the game perceived by the
ego agent. However, in general, no two agents need to share
the same pool of players during planning. The influence of
agents optimizing different games have been studied from
the point of view of cost mismatch [4]. To the best of our
knowledge, the question of games with player mismatching,
or local games, has not been addressed in the literature.
Second, with the nearest neighbor criterion as a baseline,
we introduce several neighbor selection schemes based on
Control Barrier Functions (CBF) [5] [6], cost sensitivity, and
contribution to cost evolution. The aim is to understand how
much improvement principled player selection methods can
achieve with respect to the baseline, in order to make a case
for the use of local games as a scalable solution to multi-
agent motion planning problems. The contributions of this
paper are as follows:

• We investigate local games (in which each agent con-
siders only a small number of local neighbors) for
scalable decentralized trajectory planning in congested
environments.

• We propose multiple neighbor selection schemes,
amongst which is a novel use of Control Barrier Func-
tions (CBF) for priority ranking, to overcome shortcom-
ings of a naive nearest neighbor criterion.

• We provide numerical analysis to study how game
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complexity (in number of players per game) affects
anticipation capacity and safety in congested environ-
ments, and compare methods with double integrator
agents in the plane and nonlinear quadrotor agents in
R3.

The paper is organized as follows: Sec. II reviews the related
work. Sec. III describes the problem statement. Sec. IV
presents different proposed player section methods. Sec. V
presents the numerical results based on simulation studies.
Sec. VI makes concluding remarks and discusses the future
work.

II. RELATED WORK

Game-theoretic planning: Game-theoretic planning pro-
vides a mathematical formalism to model highly complex
interactions among different agents. Interactive planning ap-
proaches can be categorized in two categories of (i) Predict-
then-Plan approaches and (ii) Predict-and-Plan approaches.
In Predict-then-Plan approaches, the prediction and planning
are decoupled. The ego agent first predicts the other agents’
behavior along a horizon in the future and then plans based
on the predicted trajectories as presented in [7], and [8].
In the second category which is predict-and-plan approaches
such as game-theoretic planning, the prediction and planning
steps are coupled. The planning and prediction is performed
together by finding a game theoretic equilibrium in the joint
space of trajectories of all the agents in the scene as presented
in [9], [1], [10], [11], [12], and [4]. With these methods, the
coupled interaction or mutual influence between the other
agents in the scene and the ego agent is captured. In game-
theoretic planning, not only the future actions of the other
agents in the scene are predicted, but the prediction is in a
feedback loop with ego agent actions. The ego agent will
be able to reason about how its action will affect the future
reactions of other agents in the scene.

Interaction quantification and player selection: Little
literature covers the question of quantifying the interactions
between motion planning robots, which is important infor-
mation for the selection of a subset of agents relevant to
the ego robot’s performance. In [3], the authors touch on
this topic in the work’s appendix. They implement an MPC
game-theoretic planner limiting interactions to 4 neighboring
agents in the context of autonomous driving. This limitation
is justified by empirical tests but also in post analysis by com-
puting how one agent’s utility gradient depends on another
agent’s inputs, i.e. a Hessian norm in the game formulation
framework. To quantify the mutual influence of interactive
agents, the authors in [13], address the influential neighbor
selection problem and propose a decentralized influential
maximization problem by selecting k neighbors rather than
arbitrary agents. The authors have introduced different types
of neighbor selection schemes and have shown information
on online social networks e.g. Twitter can be propagated
efficiently by selecting neighbors with high propagation rate
rather than those with a high number of neighbors. In [14],
the authors present a reversed nearest neighbor heat map

which provides influence distribution in a two-dimensional
space.

In [15], the authors propose to select neighbors to conduct
communication with, using deep reinforcement learning.
In [16], the authors propose Graph Attention Networks to
choose which agents to communicate with. In [17], the
authors study a range of k Nearest Neighbor (kNN) search
techniques for crowd simulation. Finding kNN neighbors by
querying different data structures including k-d trees, BD
trees, R-trees, Voronoi diagrams, hierarchical k-mean cluster-
ing, line search and grids is studied. The query performance
of these methods are compared in terms of computation time.
Also, the methods are compared based on how they scale
with increasing number of agents. For all approaches the
number of neighboring agents is assumed to be constant k.
In contrast, we propose to quantify the influence of other
agents and take that into account to select the most influential
agents as the ego agent neighbors and not a constant number
of neighbors.

III. PROBLEM STATEMENT

We design and compare player selection methodologies to
enable scalable receding horizon multi-agent motion plan-
ning where each robot repeatedly solves Generalized Nash
Equilibrium Problems (GNEPs), updating their pool of oppo-
nents at each iteration. We thus present the GNEP framework
in its general formulation. Also, a novel contribution of the
work is the use of Control Barrier Functions as an interaction
quantification method. The CBF framework is thus also
presented in this section.

A. Generalized Nash Equilibrium Problem

A given GNEP will involve N players i ∈ {1, . . . ,N} over
a horizon of T time steps. An agent i’s state at time step
index k is denoted xi

k ∈ Rni
and control input ui

k ∈ Rmi
,

with dimensions of agent i’s state and control ni and mi. Let
xk = [x1,⊤

k , . . . ,xN,⊤
k ]⊤ ∈ Rn denote the joint state and uk =

[u1,⊤
k , . . . ,uN,⊤

k ]⊤ ∈ Rm denote the joint control of all agents
at time k, with joint dimensions n = ∑i ni and m = ∑i mi. We
define player i’s policy as π i = [u1,⊤

1 , . . . ,u1,⊤
T−1]

⊤ ∈Rm̃i
where

m̃i =mi(T −1) denotes the dimension of the entire trajectory
of agent i’s control inputs. The notation ¬i indicates all
agents except i, for instance π¬i represents the vector of the
agents’ policies except that of i. Also, let X = [x⊤2 , . . . ,x

⊤
N ]

⊤ ∈
Rñ, with ñ = n(T − 1), denote the trajectory of joint state
variables resulting from the application of the joint control
inputs to the dynamical system defined by f : Rn×Rm →Rn

such that,

xk+1 = f (xk,uk). (1)

Over the whole trajectory we can express the above kinody-
namic constraints with ñ equality constraints,

D(X ,π1, . . . ,πN) = D(X ,π) = 0 ∈ Rñ (2)

The cost function of each player i depends on its policy π i

as well as on the joint state trajectory X , which is common



to all players, such that ∀i ∈ {1, . . . ,N},

C i(X ,π i) = ci
T (xN)+

T−1

∑
k=1

ci
k(xk,ui

k). (3)

Notice that as player i minimizes C i with respect to X and
π i, the selection of X is constrained by the other players’
strategies π¬i and the dynamics of the joint system via (2). In
addition, the strategy π i could be required to satisfy (safety)
constraints that depend on the joint state trajectory X as well
as on the other players strategies π¬i . This can be expressed
with a set of l inequality constraints,

C(X ,π)≤ 0 ∈ Rl (4)

where C : Rñ ×Rm(T−1) → Rl . The GNEP we form is the
problem of minimizing (3) for all players i ∈ {1, . . . ,N} with
respect to (2) and (4). More specifically,

min
X ,π i

C i(X ,π i) ∀i ∈ {1, . . . ,N}

subject to D(X ,π) = 0 (5)
C(X ,π)≤ 0.

The solution to such a dynamic game is a generalized Nash
equilibrium, i.e. a policy π̂ such that, ∀i ∈ {1, . . . ,N}, π̂ i is a
solution to (5) with the other players’ policies given by π̂¬i

that is also solved by (5) for all ¬i. As a consequence, at a
Nash equilibrium point solution, no player can improve their
strategy by unilaterally modifying their policy.

B. Control Barrier Functions

Control Barrier Functions (CBFs) [5] are a popular control
synthesis tool for safety-critical systems. CBFs can trans-
form safety constraints of control-affine systems into state-
feedback constraints that are linear in controls. With such
control constraints, one can formulate convex optimization
problems (CBF-based optimization) whose solutions (opti-
mal controls) guarantee system safety. Consider a safety
constraint hi, j(X) ≥ 0 between two agents i and j, where
hi, j : Rñ →R (recall ñ is the dimension of X) is continuously
differentiable. Following the CBF method, we have that
hi, j(X)≥ 0 is guaranteed for all times if hi, j(X(t0))≥ 0 and
the following CBF constraint is satisfied:

ḣi, j(X)+α1(hi, j(X))≥ 0, (6)

where α1 is a class K function (strictly increasing function
that passes through the origin). If the relative degree (number
of times we need to take the derivative of hi, j(X) along
dynamics until any control shows in the corresponding
derivative) of hi, j(X) is one, then we would have control
π in ḣi, j(X), i.e., we rewrite ḣi, j(X) as ḣi, j(X ,π), and (6)
can be rewritten as:

ḣi, j(X ,π)+κα1(hi, j(X))≥ 0, (7)

where κ > 0 is a scalar that we added to the class K
function. The magnitude of κ will determine the size of
the activation zone of the CBF; with empirical evidence
suggesting that it grows larger for smaller values of κ .

If the relative degree of hi, j(X) is m ∈N that is larger than
one, then the control terms would not appear in (7). In this
case involving high-relative-degree safety constraints, high
order CBF (HOCBF) methods [6] are required, by defining,

ψk(X) := ψ̇k−1(X)+αk(ψk−1(X)), k ∈ {1, . . . ,m}, (8)

where ψ0(X) = hi, j(X), αk,k ∈ {1, . . . ,m} are class K
functions, and ψm(X ,π) ≡ ψm(X) ≥ 0 implies hi, j(X) ≥ 0
and therefore safety. Again, κ > 0 can be added to each
of the class K functions above to regulate the size of the
HOCBF activation zone.

IV. PROPOSED PLAYER SELECTION METHODS

In this section, we develop the multiple ranking techniques
that aim to sort agents in terms of the significance of their
interactions. As the resolution of a dynamic game over some
time horizon T , is performed on a fixed set of agents (both
in number and identity), we aim to use the ranking systems
to update the subset of players the ego agent takes into
consideration for planning. We propose 5 methods to rank
agents and to be compared along with the naive approach of
considering the Euclidean nearest neighbors.

For all applications presented in this paper, we explicitly
provide the structure of the cost at time step k < T of a given
agent i, appearing in (3),

ci
k(xk,ui

k) = (xi
k −xi

f )
⊤Qi(xi

k −xi
f )+ui

k
⊤

Riui
k

+
N

∑
j=1, j ̸=i

µ

2
max(0,R−

∥∥∥xi
k −x j

k

∥∥∥)2 (9)

where Qi is the state quadratic cost matrix, Ri the control
quadratic cost matrix, µ the multiplicative constant associ-
ated with the collision avoidance cost, and R the repulsion
radius. We mention that the collision avoidance term only
contributes to the cost when agents are within the distance
R. To obtain a global ranking of agents independent of the
repulsion radius we can use a proxy for the collision cost by
looking at the quantity,

C i
col(k) =

N

∑
j=1, j ̸=i

µ∥∥∥xi
k −x j

k

∥∥∥2 , (10)

where C i
col represent the portion of the cost associated with

collision avoidance. Indeed, in equation (9), the maximum
operator sets the pairwise collision cost to zero as long as two
agents are farther than the selected repulsion radius. Hence,
two agents could be indistinguishable in terms of collision
cost (i.e. both with zero contribution), while presenting very
disparate collision risks with the ego agent. For instance, it is
clear that an agent entering the repulsion radius at high speed
in the direction of the ego agent should score much higher
in terms of interaction significance compared to another that
is both distant and moving away from the ego agent. The
collision cost structure in (9) is oblivious to this, but the
proposed proxy (10), continuous in space, can capture this
difference.



A. Jacobian/Hessian

The sensitivity of an agent i to another agent j’s actions
can be defined as the derivative of the cost of agent i with
respect to agent j’s actions. In general, this metric distin-
guishes whether one agent has sensitivity towards another but
without the other way around needing to hold. We compute
it first by noticing that only the collision cost incorporates a
direct short term dependence on the actions of agent j.

Agent i can compute a pairwise utility Jacobian with
respect to agent j as follows,

Ji, j =
∂C i

col
∂u j . (11)

Each scalar term in the Jacobian can be approximated
by the finite elements method, perturbing the controls from
the previous state and forward propagating the dynamics to
obtain perturbed costs. At a given time, we can evaluate the
norm of this Jacobian. This will give agent i information
about the sensitivity of its objective to changes in j’s control.
Larger norms will indicate higher interaction and we thus
propose a pairwise scoring function f J

i, j(X ,µ) such that,

f J
i, j(X ,µ) =

∥∥Ji, j(X ,µ)
∥∥ . (12)

Furthermore, the Hessian of that accumulated reward is
the derivative of the sensitivity of agent i to j with respect
to agent i’s actions. In other words, it expresses how much
agent i’s actions will change if agent j’s actions change.
Agent i can compute a pairwise utility Hessian with respect
to agent j as follows,

Hi, j =
∂ 2C i

col
∂ui∂u j . (13)

Again, we can evaluate the norm of this Hessian using finite
elements. This can be an even more intricate indicator, since
the cost might be sensitive to changes in j’s actions without
i being able to react to it. The Hessian norm will remain
small in such a case. In contrast, larger norms will indicate
higher interaction and we thus propose a pairwise scoring
function f H

i, j(X ,µ) such that,

f H
i, j(X ,µ) =

∥∥Hi, j(X ,µ)
∥∥ , (14)

where we use the Frobenius norm.

B. Cost evolution

Another approach to quantify interaction can be based
on the cost impact agents have on each other. Accordingly,
greedy ranking can be used to limit the impact of the
highest contributing agents. Statically, the highest cost is
associated to the nearest neighbor. However, dynamically
we can consider looking at which agent has had the biggest
recent impact on cost increase. This can be achieved based on
position observations only, although we implicitly take into
account dynamics as we estimate the additional contribution
of each agent over the past time step. Indeed, we rank agents

by how fast their contribution increases the ego collision
avoidance cost, i.e. by evaluating the pairwise quantity,

f CE
i, j (X) =

µ∥∥∥xi
k −x j

k

∥∥∥2 − µ∥∥∥xi
k−1 −x j

k−1

∥∥∥2 . (15)

Negative contributions indicate the other agent is getting
farther away from the ego agent, and can more easily be
ignored in planning. Another desirable feature of this metric
is that for equal distance reductions, agents that are closer
will contribute more to the cost increase, and will thus be
higher up the interaction ranking.

C. Control Barrier Function

In this work, we use CBFs as a risk metric evaluation tool
that can be used to select the most safety-threatening agents
in local games. This tool is useful since CBFs usually have
activation zones around the unsafe sets, and these activation
zones are larger than the unsafe sets (the size depends on
the CBF parameters), which means that CBFs can help to
predict collisions before they may happen, as previously
discussed in Sec. III. Between each pair of agents i and j,
given the collision radius to avoid violating, we can define a
zeroth order barrier function, capturing the pairwise collision
avoidance constraint, as follows,

hi, j(X) =
∥∥xi −x j∥∥2 −R2 (16)

its first Lie derivative (along the trajectory) is with respect
to time, thus,

ḣi, j(X) = 2(xi −x j)⊤(vi −v j) (17)

With the choice of linear class K functions in (7) and (8),
a first order pairwise barrier function can thus be obtained,

f BF
i, j (X ,κ) = ḣi, j(X)+κhi, j(X) (18)

with κ > 0. We can repeat the process to obtain a higher
order barrier function in which the control input appears.
For motion dynamics considered in this paper (both double
intergrator and quadrotor), the order required is 2. We thus
derive the second derivative,

ḧi, j(X ,π) = 2[(vi −v j)⊤(vi −v j)+(xi −x j)⊤(ai −a j)]
(19)

where the acceleration vector of a given agent i, denoted
above by ai, is a known function of its control input. Hence,
we obtain a pairwise Control Barrier Function,

f CBF
i, j (X ,π,κ) = ḧi, j(X ,π)+2κ ḣi, j(X)+κ

2hi, j(X) (20)

with κ > 0. Both the BF and CBF constraints requires
f BF
i, j (X)≥ 0 and f CBF

i, j (X ,π)≥ 0 for the (i, j) pair of agents to
avoid collision. Thus, larger values will correspond to pairs
of agents who are far from activating the collision constraint
and that are subsequently unlikely to have significant inter-
action. The barrier functions thus constitute a natural ranking
method for planning priority.



TABLE I: Characteristics of considered player selection methods.
Ticks/crosses indicate whether or not the method requires the associated
information/computation. We consider access to positions (pos), velocities
(vel), control inputs and dynamics (c&d), in addition to need for forward
integration of dynamics in time (f-i) and tuning (tun).

pos vel c&d f-i tun

NEAREST NEIGHBOR ✓ ✗ ✗ ✗ ✗
COST EVOLUTION ✓ ✗ ✗ ✗ ✗
JACOBIAN ✓ ✓ ✓ ✓ ✗
HESSIAN ✓ ✓ ✓ ✓ ✗
BF ✓ ✓ ✗ ✗ ✓
CBF ✓ ✓ ✓ ✗ ✓

D. Methods summary

We have thus proposed 5 methods in addition to the
naive nearest neighbor approach, two of which are based
on the sensitivity analysis of the cost function with respect
to other agents’ control (Jacobian and Hessian), another,
adopting a greedy perspective consisting in dealing with
agents that contribute to a cost increase at the biggest rates
(Cost Evolution), and, finally, two more inspired by control
theory and specifically barrier functions (BF and CBF).
The computational requirements and characteristics of each
method are presented in Table I.

V. SIMULATIONS

We compare our proposed player selection criteria in
three scenarios with increasing complexity. All tests consist
in having the agents navigate from a start position to a
random final position on a grid, minimizing their control
input and simultaneously attempting to avoid other agents.
This spatial architecture is interesting as agents have to deal
with potential collisions from all sides, at least on the inside
of the grid. The crucial computationally limiting factor is
p, the number of players considered by the ego agent at
each planning step, in other words the size of the (p+ 1)-
player game considered. We aim to understand how the
increase in game complexity, by incorporating additional
players, impacts an agents capacity to safely navigate the
environment. We assume all agents plan using the receding
horizon game theoretic planner with the same p and the
same player selection method for each run. The performance
metric we select to differentiate the methods is the minimum
distance between any pair of agents along the joint trajectory.

A. Simulations setup

The dynamic games solver we use is ALGAMES [1],
which is an open-source solver for game theoretic planning
problems with multiple actors and general nonlinear state
and input constraints. First, we test the methods for double
integrator dynamics in the plane, considering a 3x3 grid
of agents. This smaller setup, though less congested, will
allow us to compare the methods’ performance in avoiding
collisions against the full game implementation, i.e. one with
all other agents considered during planning. We extend this
experiment to a larger 5x5 grid, increasing the congestion
and number of interactions occurring during navigation. We
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Fig. 2: 3x3 grid: Mean normalized minimum distances between any pair
of agents with p other participants using the Jacobian, Hessian, Nearest
neighbor, Cost evolution, BF, and CBF schemes. The dotted black line is
the value obtained by solving the full 9-player game (also averaged over
runs). The normalization factor is the constraint activation radius defined in
(9).

finally test on an even larger cubic grid of 3x3x3 agents
following 12 dimensional quadrotor dynamics to exhibit the
advantages of our method in real world flight applications.
The tuning of κ , appearing in the barrier functions is done
separately for the BF and CBF functions as well as for the
chosen dynamics. However in all 4 cases we converge to a
close value and thus fix κ = 5.0 in all experiments.

B. Double integrator

We first consider agents evolving in the 2D plane accord-
ing to double integrator dynamics. The state of a vehicle
comprises of its 2D positions and velocities and the control
input comprises of the 2D accelerations.

1) 3x3 grid: The setup is small enough to permit the com-
plete resolution of the game in reasonable time offline, i.e.
taking all other 8 agents into account when planning at each
receding horizon time step. Thus, we can obtain a ground
truth baseline against which to compare the performance
of local games with different player selection criteria. We
repeat the experiment 20 times, randomizing the desired final
positions of agents on the grid, for p = 1, . . . ,4, and for all
6 player selection methods, as well as solving the entire 9-
player game. The minimum pairwise distances are averaged
over the runs, the results are presented in Fig. 2.

First, we notice that both methods (Jacobian and Hessian)
based on the partial differentiation of the ego agent’s cost
with respect to controls perform even worse than the nearest
neighbor approach. This could be due to the absence of
dependence on the agents’ trajectories and their evolution
in time, taking only into account a short term relation-
ship to a change in controls. We will abandon the further
analysis of these methods in the subsequent experiments.
Also, we notice that both barrier function methods and the
cost evolution criterion perform similarly well and improve
performance against the nearest neighbor method, especially
for games restrained to 1 or 2 opponents. Elsewhere, the



Fig. 3: Nearest neighbor vs CBF player selection for p = 2: Trajectory
screenshots at 4 equally spaced time steps, the solid markers depicting
instantaneous positions of the agents in the plane and the lines their past
trajectories. The ego agent is in blue, agents used for planning are in red,
and agents ignored in green.

limited congestion due to the small number of agents in
the scene ensures that collision avoidance performance levels
comparable to those for the full game can be achieved by
considering 3 or more participants.

We can also analyse how non-static methods anticipate the
future collision threat of agents in the scene and the effect
of such anticipation on the safety of planned trajectories.
Indeed, as depicted in Fig. 3, we can see that the myopic
nearest neighbor approach can easily lead to more dangerous
situations. At time t = δ t, the ego agent switches attention
from the agent on the top left (benignly passing behind) to
the one coming from the bottom right with whom it is on
a collision course. By the time the bottom right agent is
considered using the nearest neighbor approach at t = 2δ t,
a maneuvre is required to avoid it. In the meantime, using
the CBF ranking system, the bottom left agent is already
included in planning as the ego agent notices they can neglect
the centre agent which is near immobile. At t = 3δ t, the ego
is in the clear using CBF, whereas it has to deal with another
short notice collision avoidance maneuvre with the bottom
left agent with the nearest neighbor selection method.

2) 5x5 grid: The more crowded setup provides a plat-
form to emphasize the differences between player selection
methods. Indeed, the sample trajectory depicted in Fig. 4
shows the large number of multi-directional robots an agent
finds themselves surrounded by while navigating towards
their desired positions. Again, we repeat the experiment 20
times, randomizing the desired final positions of agents on
the grid, for p = 1, . . . ,4, and for the nearest neighbor, cost
evolution, BF, and CBF methods. The minimum pairwise
distances are averaged over the runs, the results are presented
in Fig. 5. It is clear that the increased number of agents
makes this experiment more challenging than the previous.
Indeed, we notice that performance levels are, as expected,
globally lower. More interestingly, this experiments exhibits
the limits of the myopic nearest neighbor approach, which
performs poorly in avoiding other agents, even as the number
of participants considered grows. Moreover, a hierarchy
between the remaining methods manifests itself in crowded
maneuvering. Ranking agents based on their contribution in

Fig. 4: Sample run depicting the congested environment agents have to
negotiate their way through to their target positions. Solid circles depict
agents’ instantaneous position, lines represent the agents trace of positions
over the last 10 time steps. Time increases from left to right, top to bottom.
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Fig. 5: 5x5 grid: Mean normalized minimum distances between any pair of
agents with p other participants using the Nearest neighbor, Cost evolution,
BF, and CBF schemes. The normalization factor is the constraint activation
radius defined in (9).

increasing the value of an ego agent’s cost function over the
last time step performs consistently worse than the barrier
function based methods. Indeed, this disparity is clearest for
pairwise game planning (p = 1), where the repulsion radius
is violated on average by over 60% with the cost evolution
method, while the CBF criterion limits violation to under
40%. We mention that the effect of the difference in cost
is even more exacerbated as the dependency is quadratic as
per (9). Although this gap decreases as p grows, it remains
significant enough to consider the cost evolution criterion
inferior to the barrier function methods. In fact, the latter
two offer similar performance for p ≥ 2, with the added
information of CBF seamingly giving it a slight advantage.



Fig. 6: Sample run depicting 3x3x3 grid swap with quadrotor dynamics.
Solid circles depict agents’ instantaneous position, lines represent the agents
trace of positions over the last 10 time steps. Time increases from left to
right, top to bottom.

A nice advantage of the CBF metric, is that it seems to
suffer less from fluctuation in performance with respect to
the number of agents considered than the simpler BF, and
presents consistent improvement as p grows.

C. Quadrotor dynamics

Next, we retain the Cost Evolution and CBF methods
and test them against the Nearest Neighbor baseline with
agents evolving according to quadrotor dynamics randomly
exchanging positions on a 3x3x3 grid. The state of an agent
comprises of the Euclidean positions x = [x,y,z]⊤, Euler
angles q = [φ ,θ ,ψ]⊤, translation velocities v = [vx,vy,vz]

⊤,
and angular rates ω = [ωφ ,ωθ ,ωψ ]

⊤ constituting a 12 di-
mensional vector [x⊤,q⊤,v⊤,ω⊤]⊤. The control vector is the
power input to each of the 4 motors u = [w1,w2,w3,w4]. The
dynamics are given by,

ẋ = v, q̇ = R(φ ,θ ,ψ)ω,

v̇ =
F
m
, ω̇ = I−1(τ −ω × (Iω)), (21)

with R(φ ,θ ,ψ) the rotation matrix between the drone body
and world frames, m the mass, and I the inertia of the drone
[18]. The force F and moment τ vectors are given by,

F = mg+R(φ ,θ ,ψ)[0,0,k f (w1 +w2 +w3 +w4)],

τ = [Lk f (w2 −w4),Lk f (w3 −w1),km(w1 −w2 +w3 −w4)]

with g = [0,0,−g] the gravity vector, k f and km the motor
force and torque constants, and L the distance between the
motors.

We run 20 batches of simulations, each with a different
random final state configuration over the 3x3x3 grid. For
each, we compare the Nearest Neighbor approach with
the player selection schemes based on the Cost Evolution
Criterion and the CBF metric. Each experiment is repeated
for games of fixed sizes 2 to 4. For every configuration,
the minimum pairwise distances over all trajectories are
computed, averaged over random final positions on the grid
and presented in Figure 7. Surprisingly, the nearest neighbor
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Fig. 7: Mean normalized minimum distances between any pair of quadrotors
versus p. Nearest neighbor, Cost evolution and CBF schemes. The normal-
ization factor is the constraint activation radius defined in (9).

and cost evolution schemes perform consistently as the
number of agents per game increases. Also, both methods
seem to do better than the BF selection criterion. The latter,
however, behaves as expected; improving performance as the
game size grows, although its performance is substantially
worse on smaller games. The CBF method also consistently
improves collision avoidance as the games grow in size.
Again, it outperforms the other methods, and does so sig-
nificantly for p ≥ 2.

VI. CONCLUSION

We explored the concept of local game-theoretic motion
planning that scales with the number of agents in the scene.
To maintain satisfactory collision avoidance performance
while ensuring scalability, we designed local planners se-
lecting agents with the strongest interaction as neighbors.
To this end we proposed different player selection schemes
and quantified the interactions of the ego agent with others in
the scene. We compared various methods including Jacobian,
Hessian, Nearest Neighbor, Cost Evolution, Barrier Function,
and Control Barrier Function. Based on the numerical results,
Control Barrier Functions consistently outperform the rest of
the player selection methods, and prove to be the strongest
candidate for principled player selection for local games.
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