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Abstract— The outdoor navigation capabilities of ground
robots have improved significantly in recent years, opening
up new potential applications in a variety of settings. Cost-
based representations of the environment are frequently used
in the path planning domain to obtain an optimized path
based on various objectives, such as traversal time or energy
consumption. However, obtaining such cost representations is
still cumbersome, particularly in outdoor settings with diverse
terrain types and slope angles. In this paper, we address this
problem by using a data-driven approach to develop a cost
representation for various outdoor terrain types that supports
two optimization objectives, namely energy consumption and
traversal time. We train a supervised machine learning model
whose inputs consists of extracted environment data along a
path and whose outputs are the predicted energy consumption
and traversal time. The model is based on a ResNet neural
network architecture and trained using field-recorded data. The
error of the proposed method on different types of terrain is
within 11% of the ground truth data. To show that it performs
and generalizes better than currently existing approaches on
various types of terrain, a comparison to a baseline method is
made.

I. INTRODUCTION

Navigation for ground robots in outdoor environments is
a highly active research domain where several disciplines
meet. One of these disciplines is path planning which aims
to obtain an optimal path between two locations within the
robot’s environment based on given objectives [1]. Typical
objectives used in path planning are the safe traversal through
the environment avoiding the risk of collision [2], the mini-
mization of the robot’s energy consumption [3], its traversal
time [4], or a combination of multiple objectives. Finding a
suitable representation for objectives is still challenging, par-
ticularly for complex outdoor terrains. Simple objectives to
avoid non-traversable obstacles are effective on flat surfaces
on similar terrain, but they do not translate well to other
types of terrain that can have a significant impact on the
objective. Furthermore, depending on whether a robot goes
up or down a slope in an outdoor environment, the outcome
of an objective for a robot in that location may be affected.
This directional influence on a given location complicates
the representation of the planning space used by the planning
algorithms, which is typically a cost-based representation of
the environment [5], also known as a cost map. As a result
of these issues, determining cost values for path planning
in outdoor environments is still a challenge. Therefore, one

This work was partially supported by the Austrian Research Promotion
Agency (FFG) with the projects RoboNav and FutureWoodTrans.

1Matthias Eder and Gerald Steinbauer-Wagner are with the Institute
of Software Technology, Graz University of Technology, Graz, Austria.
{matthias.eder, steinbauer}@ist.tugraz.at

Fig. 1. Overview of the proposed approach. A neural network is trained
on environment information around a path segment Pi, which consists of
the elevation Hi, terrain class Ci, and recorded orthophoto Oi to predict
the average power ŵi and velocity v̂i of the robot. The result is then used
to estimate the traversal time T and energy consumption E.

of the key tasks in field robotics is to define a planning
space that accurately represents given objectives in order to
plan an optimal path through an environment with a complex
terrain [6]. Ideally, path planning considers several objectives
at the same time to find an optimal path. We take a step
in this direction by using the connection of two objectives,
namely energy consumption and traversal time, to create a
cost representation that can be used to represent both, energy
and time optimal paths.

To generate cost maps for minimizing the energy con-
sumption of a path, some work in literature already exists us-
ing physics-based models [7], [8] or data-driven approaches
[9], [3]. These methods, however, only take into account
a limited or simplified understanding of the environment
and the capabilities of the robot. Similar to that, there are
objectives to find time-optimal paths that take into account
the robot’s capabilities (e.g. acceleration limits [10]) but
do not consider how the environment affects the robot’s
dynamics and its limits. However, this is a critical element in
finding time-optimal paths in complex outdoor environments
since specific environmental factors have an impact on the
robot’s capabilities and must be taken into account when
planning a path through the environment.

To address these challenges, we present a data-driven
approach that generates a cost representation for the two
aforementioned path-planning objectives, energy consump-
tion and traversal time, taking into account multiple types of
outdoor terrain. To do so, we use machine learning to train
a target function that can predict the energy consumption
and traversal time along a path using only environmental
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information along that path. To learn the target function,
a path is divided into segments of unit length which are
used to extract environment information around that path
segment. The energy consumption and traversal time of a
robot along the path are predicted using a ResNet-based
network architecture that has been trained on a regression
task. A field-deployed ground robot is used to collect data
in a realistic outdoor setting on different types of terrain.
Information about the environment is extracted using pho-
togrammetry and high-resolution aerial images. An overview
of the proposed method is shown in Figure 1.

The main contributions of this paper are 1) the presentation
of a machine learning-based method to predict the energy
consumption and traversal time of a ground robot in outdoor
terrains using environment information; 2) the incorporation
of divers environmental knowledge to improve the prediction
performance on different types of outdoor terrain; and 3) a
comparison of our method to a baseline to show that our
network outperforms the baseline method and also eliminates
the need to retrain the model for different types of terrain.

The remainder of this paper is structured as follows. Sec-
tion II discusses related work in the field of cost estimation
for outdoor traversal w.r.t. energy prediction and traversal
time estimation. Section III formulates the problem, which is
learned in Section IV. In Section V, a performance evaluation
of the proposed method and a comparison to a baseline
approach is presented. Section VI concludes this paper.

II. RELATED WORK

Typically, a cost map representation is used as planning
space for path planning algorithms to efficiently compute
a path through the environment that is optimal concerning
a given objective. Such a representation can either provide
binary (traversable/non-traversable) [11], continuous [12],
or discrete cost estimates [13] following a given objective.
There are multiple objectives for optimizing the traverse in an
environment such as risk of collision, smoothness, traversal
time, or energy consumption [14]. Another approach is to
model costs based on a robot’s motion stability by identifying
unstable motion patterns that should be avoided [15]. While
some work focuses on the estimation of a single objective
(e.g. [8]), others define the traversability as a combination of
multiple objectives (e.g. [16]). In this work, we focus on the
simultaneous estimation of the objective function for energy
consumption and traversal time.

However, the development of an energy-based cost repre-
sentation is a non-trivial task for complex outdoor terrains as
the energy consumption varies on different types of terrain
and thus physics-based methods lack in applicability in non-
uniform and rough terrains [17], [18], [7]. Quann et al. aim
to solve this task by acquiring friction coefficients from a
designated area and terrains first and then applying Gaussian
Process Regression to estimate the coefficients for new areas
[8]. The method also proposes the usage of a greyscale
satellite image to gain more information about unseen en-
vironments. While this method works well on terrain with
available energy measurements, it is also shown that it does

not generalize well in new environments where no data is
available. Wei and Isler proposed a data-driven approach to
predict energy consumption based on the height information
around the robot using deep learning [3]. It is shown to work
well on the same type of terrain but does not generalize
well on other types of terrain without retraining the network
on new data. Our proposed approach aims to overcome this
problem by incorporating terrain information in the trained
model to accurately predict the energy consumption of a
robot on multiple types of terrain. Other factors that affect the
energy consumption of a ground robot are its dynamics, e.g.
acceleration and linear/angular velocity [7]. The authors of
[19] present a method to characterize the power of a robot
for a skid-steered mobile robot and optimizes the turning
costs by deriving a mathematical model of friction for skid-
steered platforms. Other works focus on the optimization of
a trajectory for a ground robot which minimizes the energy
consumed during motion [20]. In this work, we focus on
the estimation of the energy consumption for a given path
segment which can be used as an objective to plan energy-
optimal paths between two locations in the environment.

Planning time-optimal paths through an environment is
one of the main objectives in path planning and is explored
in a variety of settings, primarily focusing on the robot’s
dynamics in a given environment [10], [21]. Therefore,
research has been conducted to estimate the traversability
of a robotic system using different types of sensors and
information, such as proprioceptive measurements [22], [23],
geometry-based representations [24], or vision sensors [25].
While such traversability estimates can be used in connec-
tion with the robot’s theoretical dynamics to compute a
time-optimal path, they do not take the influence of the
environment on the robot’s dynamics and its limits into
account. To consider environmental factors, the authors of [4]
propose a time-optimal path planning algorithm for AUVs
that integrates the continuous dynamic flow of the ocean
into the planning procedure. Unlike for AUVs, terrain rarely
changes for a ground robot. However, certain environmental
characteristics still have a limiting factor on the robot’s
capabilities and need to be considered when planning a path
through the environment. In this work, we aim to improve
time-optimal path planning by considering the environmental
influence on the robot’s dynamics. Therefore, we identify the
robot’s translational velocity limits in different environmental
scenarios and use this information to improve the objective
for time-optimal planning.

III. PROBLEM FORMULATION

To present the used method for predicting energy con-
sumption and traversal time, we first formally describe the
machine learning problem with the corresponding concepts
and notations. Therefore, assume we have a ground robot
that is driving along a path P in environment M and is
able to measure its energy consumption E and traversal time
T . This work aims to predict E and T for any path in the
environment using a target function F :

(T,E) = F (M,P). (1)



For this, we define path P = {p0, ..., pN} as a list of N
points pi = (xi, yi)

T , and environment M = {O,H,C}
as a set of three maps that store specific information about
the environment. A map is represented as a two-dimensional
array holding environment information for a dedicated point
in the environment [26]. The map H represents the height
map of an environment which provides information on the
elevation of the area. O is a map holding information of
a gray-scale orthophoto from the environment and C stores
information about the type of terrain for each global location.

When a robot is navigated through an environment, it can
measure its energy consumption E using the battery voltage
V and its current I . Therefore, when driving along a path
P the energy consumption between two points ps, pg can
be calculated as the integral over time t, between the two
time instances ts, tg of ps and pg: E =

∫ t=tg
t=ts

V (t)I(t)dt.
Since the energy of a robot is usually measured in dis-
crete time intervals, the energy consumption between ps
and pg can be estimated over K measurements as E ≈∑K

i=1 V (ti)I(ti)△ti, where t0 = ts is the time at point ps
and tK = tg the time at pg . △ti = ti − ti−1 is the time
difference between the current and last measurement. When
the measurements of a robot are conducted in a constant
interval such that △ti = △tj ,∀i, j ∈ [1,K], the equation
can be reformulated as

E ≈
K∑
i=1

V (ti)I(ti)△ti =
T

K

K∑
i=1

V (ti)I(ti) (2)

where T = tK − t0 corresponds to the difference between
ts and tg and thus to the traversal time as stated in Eq. 1.

IV. LEARNING METHOD

The problem definition as formulated in Section III is
difficult to solve using machine learning, as the prediction
of a path with arbitrary length requires a large number of
training samples and faces the challenge of how to represent
the paths as input. Furthermore, the estimation of energy
consumption E is directly correlated with traversal time T , as
shown in Eq 2. Due to their interdependence, it is challenging
to independently learn both variables in a single model. To
resolve these issues, we break down the formulation from
Eq. 1 into a more manageable problem that can be solved
using machine learning, and then generalize it to the entire
problem as stated above.

To do so, we divide a path P into path segments of unit
length d, resulting in l path segments Pi = {pi0, ..., pin}, 1 ≤
i ≤ l with

√
(pi0 − pin)

2 = d. d is assumed to be small
enough so that it is a good approximation of the actual path
length of Pi such that

∑n
j=1

√
(pij − pij−1)

2 ≈ d. Next, we
define Mi to be a patch of size d× d, holding environment
information M which was extracted along the path segment
Pi. For a description of how Mi is extracted, see Section IV-
B. Since Mi holds the environment information along Pi and
d is an approximation of the path length, it also indirectly
holds information about the path Pi.

Following Eq. 2, we define w = 1/K
∑K

j=1 V (tj)I(tj)
to be the average power used on a path segment Pi with t0

being the time at pi0 and tK being the time at pin. Moreover,
if d is small enough, T can be estimated as the length of the
path segment d divided by the average linear velocity v of
the robot on the path segment: T ≈ d/v.

The assumptions made above allow us to resolve the
challenges arising from Eq. 1 by learning a prediction func-
tion in a single machine-learning model on two independent
variables w, v for a path of unit length d. Therefore, we train
a function f̂ which takes an environment patch Mi as input
and predicts the average power ŵi as well as the velocity of
the robot v̂i for traversing the patch:

(ŵi, v̂i) = f̂(Mi). (3)

The function is trained by minimizing the normalized
root mean squared error (NRMSE) between the prediction
(ŵi, v̂i) and the ground truth (w∗

i , v
∗
i ), which was recorded

by the robot:

min

l∑
i=1

√
α(ŵi − w∗

i )
2 + β(v̂i − v∗i )

2 (4)

with α = 1/max(w∗) and β = 1/max(v∗) being the
normalization factors for both variables, and l being the
number of data samples used for training.

Using the predictions of f̂ , the target function F from Eq.1
can be solved for any path P in M using the predictions f̂
for Eq. 2 over all l path segments in P

(T,E) = (

l∑
i=1

d/v̂i,

l∑
i=1

ŵi ∗ d/v̂i) (5)

A. Data Collection Process

This section describes the process of building a representa-
tion of the environment and the data collection process using
a ground robot to record the ground truth data for prediction.

To build the maps of the environment, a commercial UAV
equipped with a high-resolution camera was flown over the
recording scene to take overlapping pictures. Photogrammet-
ric processing was then conducted on the recorded images
as proposed in [27] using Agisoft Metashape1 to generate
an orthophoto O and 3D spatial data, which was used to
generate the height map H . H holds altitude information
ranging from 574.8m to 661.3m above sea level between
the lowest and highest recorded point. The orthophoto was
manually segmented to annotate the terrain types in C.
Following the label definitions as used in [28], a total of
seven terrain classes were used for annotation, of which four
(grass, mud, paved/unpaved road) were set to be traversable
by the robot. A visualization of the three environment maps
is shown in Figure 2. The resulting maps covered an area of
around 596m× 305m and have a resolution of 0.05m.

To generate training data and ground truth measurements,
the differential drive robot Husky from Clearpath Robotics2

1https://www.agisoft.com/ (Accessed on Feb 22nd 2023)
2https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/

(Accessed on Feb 22nd 2023)



Fig. 2. Overview of the test environment. a) orthographic overview of the experimental environment, visualizing the driven path with the robot for data
recording. The red area was used for training/testing and the rest for validation, b) the height map of the environment, c) the segmented environment with
seven terrain classes of which the latter four are traversable by the robot. White areas do not hold information about the environment.

Fig. 3. The ground robot used for data collection on two different types
of terrain, namely mud (left) and grass (right).

was used. Figure 3 shows the robot in the recording envi-
ronment on two different types of terrain. It is powered by a
lead-acid battery with a nominal voltage of 24V. The system
itself can read the battery voltage and current consumed by
the motors for propulsion. Moreover, the robot was equipped
with a RTK GNSS from GeoKonzept to record the robot’s
3D pose with an accuracy of 5cm. The global positioning
data was fused with the robot’s wheel odometry, an Xsens
MTi-G-710 IMU, and the visual odometry received from a
Stereolabs ZED2 using an Unscented Kalman Filter (UKF)
to improve the velocity measurements during data recording.
For data recording, the robot was guided manually through
the environment to cover all the traversable terrains with
varying slopes. Figure 2a shows the driven path through
the environment which was used for training and validation.
During the motion of the robot, the pose, battery voltage,
current and fused velocity were recorded by the system
at a frequency of 20Hz. To investigate the velocity limits
in the environment, the robot was permanently controlled
through the environment at its maximum speed of 1.0m/s.
Accelerations and in-place rotations were discarded during
the training data generation process. The slope angles of
the robot’s recorded path range from −22.5◦ to 22.5◦. In
this work, only traversable surfaces are considered for the
proposed method. Therefore, we do not consider scenarios
where the robot gets stuck which would result in infinite
energy consumption and a velocity equal to zero. Following
the patch extraction process from Section IV-B, a total of
10.886 patches were extracted of which 51% were on grass,

Fig. 4. Patch generation process. A patch from each environment map is
extracted along the path segment of the robot and rotated to face East. This
is used as input for the neural network to predict energy consumption and
traversal time for the given patch.

9% on mud, and 20% on paved and unpaved roads each.

B. Training Sample Generation

To generate training samples for the training function
f̂(Mi), we need to extract the environment patches Mi. The
patch representation is based on the approach from [3] and
is used as it has information about the path segment Pi

encoded and also contains information about the immedi-
ate surrounding of the robot. For the training process, we
define the length of the path segment to be d = 1m and
subsequently extract a patch of size 1m× 1m from all three
maps O,H,C held by M. Therefore, for any given path
segment Pi = {pi0, ..., pin}, we place pi0 on the middle point
(d/2) on one edge of patch Mi and select pin as the middle
point on the opposite edge. This way, the patch is rotated
along the robot’s path in the environment by θ◦, where 0◦

is heading towards the East. To use the patch as a training
sample on existing network architectures, it is rotated by
−θ◦ such that Mi can be represented as a matrix of size
s × s × 3, with s = d/r depending on the path length d
and the resolution r of the environment information M. As
described in Section IV-A, a resolution r = 0.05m is used,
resulting in s = 40 data points per row and column for each
layer and thus in a patch size of Mi = (40 × 40 × 3). A
constant depth of 3 is chosen for Mi to represent each map
(O,H,C) in a separate layer. The first layer in Mi holds
the grey-scale values origin from the orthophoto O, scaled
into [0, 1]. The second layer holds information on the terrain



Fig. 5. The ResNet18-based network architecture used for training.

class C which is scaled from [1, c] to [0, 1], where c is the
number of terrain classes. As described in Section IV-A, a
total of c = 7 terrain classes were used within this work,
of which four are traversable by the robot. The third layer
holds the relative height information H of the path segment.
Therefore, each absolute height value in Mi is subtracted by
the minimum height value min(Hi) of the patch. The height
layer is then also scaled into [0, 1] using a maximum height
difference of 1m. The height difference was chosen as it
represents a 100% grade on the path segment. An exemplary
visualization of the sampling process is shown in Figure 4.

C. Network Architecture and Training

To learn the f̂(Mi), the common ResNet-18 network
architecture [29] was used with an adapted head for image
regression on two variables (see Fig. 5), as it has already
proven to work for similar tasks [3]. For the training process,
environment patches Mi of size 40 × 40 × 3 are used as
input and two floating point values w∗

i , v
∗
i are used to learn

the regression function. As loss function, the NRMSE as
described in Equation 4 was used for the final layer. For
training, a learning rate of 10−4 was used. The network was
trained using Keras. The collected data from Section IV-
A was split into two areas of which one was used for
training/testing and one for validation regarding an unseen
environment. Figure 2a shows how the collected data was
separated. Furthermore, the data for training and testing was
split randomly to contain 80% training samples and 20% test
samples. This results in a total of 5.142 training samples,
1.286 test samples, and 4.458 samples for validation. The
predicted outputs ŵi, v̂i of the network were used to compute
the estimated traversal time T and the energy consumption
E as shown in Equation 2.

V. PERFORMANCE EVALUATION

In this section, we present the results of our proposed
method in different scenarios. First, we present the results
of the training environment and show that with the proposed
approach it is possible to predict the traversal time and
energy consumption of a given path segment reliably on
different types of terrain. Second, we assess the performance
of the network in a previously unseen area and confirm the
applicability of the trained network in unseen environments.
Third, to investigate the effect of the environment informa-
tion on the anticipated output, we conduct an ablation study
on the various input layers. Finally, we demonstrate that our
approach outperforms the baseline and eliminates the need

TABLE I
PERFORMANCE RESULTS OF THE PROPOSED APPROACH ON THE TEST

DATA, EXTRACTED FROM THE SAME ENVIRONMENT WHICH WAS USED

FOR TRAINING.

Type of Terrain

Variable Error Grass Mud Unpaved
Road

Paved
Road All

RMSE (W ) 14.35 13.92 7.81 16.09 14.04
w MAPE (%) 9.96 7.51 5.74 11.53 9.39

RMSE (m/s) 0.04 0.05 0.02 0.05 0.04
v MAPE (%) 3.32 5.27 1.78 3.64 3.41

RMSE (s) 0.06 0.10 0.03 0.07 0.06
T MAPE (%) 3.26 5.50 1.74 3.52 3.37

RMSE (J) 18.22 29.26 10.98 25.55 21.51
E MAPE (%) 11.06 10.64 6.15 12.90 10.77

to retrain the network for every type of terrain by comparing
it to the baseline, presented in [3].

To evaluate the performance of the trained networks, the
Root Mean Squared Error (RMSE) and Mean Absolute
Percentage Error (MAPE) were chosen as metrics. Both
metrics were used for all subsequent evaluations, including
the comparison to the baseline. To compute the relative
error for a single prediction value, its prediction value (x̂)
and the ground truth (x∗) are used to compute the absolute
percentage error (APE): e = abs(x̂− x∗)/x∗.

A. Results on the Known Test Environment

To evaluate the applicability of the proposed method on
the task of predicting the average power consumption and
velocity of the robot driving through a given input patch,
we investigated the performance of the trained network
on test data that was recorded in the same environment
where the data for training the network was recorded. We
summarized the results in Table I, which describes the overall
network performance over all given types of terrain (’All’)
and additionally investigates the performance on each type
of terrain to see how well the predictions work on different
terrain. While the first two rows show the performance of
the trained values w and v, the last two rows show the
performance of the computed traversal time T = d/v and
the energy consumption E as described in Equation 2.

The average error (MAPE) for predicting the power w
over all types of terrain is 9.39%, and 3.41% for velocity
v. Using both variables to compute the traversal time and
energy consumption leads to an error of 3.37% and 10.77%.
It can be seen, that the network is trained well on all types
of terrain, as the performance on all terrain types shows a
good prediction. The lowest MAPE for w and v could be
observed on unpaved roads (5.74% and 1.78%), while the
highest MAPE for w was observed on paved roads and for
v on mud. Overall, a good prediction performance could
be observed in the training environment. Figure 6 shows
the prediction performance for energy consumption E on
a number of selected data samples from the test dataset on
different types of terrain. It can be seen, that the prediction
works well for any type of terrain. This is also confirmed
when inspecting the relative error e for the same data samples
in Figure 7.
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TABLE II
PERFORMANCE RESULTS OF THE PROPOSED APPROACH ON THE

VALIDATION DATA, WHICH WAS RECORDED IN AN ENVIRONMENT THAT

WAS NOT USED DURING TRAINING.

Type of Terrain

Variable Error Grass Mud Unpaved
Road

Paved
Road All

RMSE (W ) 18.85 29.20 15.07 16.15 17.73
w MAPE (%) 11.29 19.25 8.42 11.58 10.74

RMSE (m/s) 0.07 0.06 0.04 0.07 0.06
v MAPE (%) 5.60 5.22 2.90 5.70 5.14

RMSE (s) 0.09 0.09 0.04 0.09 0.08
T MAPE (%) 5.74 5.18 2.91 5.67 5.04

RMSE (J) 27.50 49.58 19.24 22.69 26.63
E MAPE (%) 13.04 22.46 10.12 13.69 12.80

B. Generalization to unseen Environments

To show that our trained network generalizes well on
unseen environments, we investigate the performance of
traversal time T and energy consumption E on the validation
dataset, which was selected as shown in Figure 2a. Therefore,
a total of 4.458 data points were used to evaluate the
performance of our approach in said environment. Table II
shows the results for the predicted values w, v, as well as
for the computed objective values T,E.

The predictions of the average power w and velocity v on
all terrains deviate from the ground truth with a RMSE of
17.73W and 0.06m/s and a MAPE of 10.74% and 5.14%
respectively, which is close to the network’s performance
in the training environment. Moreover, the network seems
to generalize well in nearly all types of terrain. Only the
error of w (and consequently E) on terrain ’Mud’ increases
significantly on unseen data. One reason for the error in-
crease could be the relatively small proportion of samples
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Fig. 9. Absolute Percentage Error (APE) of the estimated traversal time
T̂ for exemplary data samples from the validation set on different terrain.

for terrain of type ’Mud’ in the validation set (5.6%) which
does not fully reflect the properties of the terrain. Other than
that, the network shows good results in the prediction of
traversal time and energy consumption. This verifies that the
proposed approach generalizes well to new environments in
surrounding areas since the errors are similar to the errors
in the training environment. Fig. 8 and Fig. 9 show the
prediction performance for traversal time T on a number of
selected data samples from the validation dataset on different
types of terrain.

C. Ablation of the Input Layers

To investigate the effect of the given environment informa-
tion on the trained model, an ablation study was conducted
which systematically removes input layers and observes the
effect on the predicted outcome. The ablation of individual
layers has already been proven to be useful to investigate the
stability of the trained network on missing features and also
to reveal causal relationships of the features [30].

To evaluate the stability of the proposed model and to
investigate the effect of the environment features, we con-
ducted an ablation of the trained network by systematically
replacing environment layers from the network input with
random noise. This way, the performance of the trained
model could be evaluated with different combinations of
input layers. Table III gives an overview of the performance
results when ablating an environment feature. In the context
of this work, the ablation was conducted by not removing the
feature completely but by replacing the layer using random
noise. The ablation was conducted on the test set (’Test’), as
well as on the validation set (’Val’).

First, only a slight performance decrease can be observed
when removing the ortho patch on the input layer and



TABLE III
PERFORMANCE RESULTS OF THE PROPOSED APPROACH USING ABLATED

INPUT LAYERS.

w v E T
Input
Patch Set RMSE

(W )
MAPE

(%)
RMSE
(m/s)

MAPE
(%)

RMSE
(J)

MAPE
(%)

RMSE
(s)

MAPE
(%)

Test 14.04 9.39 0.04 3.41 21.51 10.77 0.06 3.37{O,H,C} Val 17.73 10.74 0.06 5.14 26.63 12.8 0.08 5.04
Test 19.33 10.94 0.05 3.84 30.35 12.29 0.08 3.71{H,C} Val 19.00 12.49 0.06 5.05 27.59 14.53 0.08 5.18
Test 14.78 9.86 0.04 3.62 22.17 10.92 0.06 3.63{O,H} Val 22.39 13.82 0.07 6.25 34.95 17.38 0.10 6.54
Test 50.63 41.02 0.07 5.69 67.59 47.84 0.09 5.64{O,C} Val 55.63 45.07 0.08 7.22 73.75 52.20 0.11 7.57
Test 54.52 44.63 0.09 6.49 57.34 57.17 0.11 6.41{O} Val 61.77 50.24 0.09 8.10 87.39 60.39 0.13 8.68
Test 66.37 44.10 0.07 5.73 91.93 47.16 0.11 5.32{C} Val 61.49 37.11 0.07 5.92 79.83 40.07 0.10 5.98
Test 19.33 11.69 0.05 3.71 28.67 13.31 0.07 3.60{H} Val 22.52 15.17 0.07 5.53 32.09 17.36 0.09 5.64

TABLE IV
PERFORMANCE COMPARISON TO THE BASELINE APPROACH. ’WEI &
ISLER [3]’ IS ONLY TRAINED ON TERRAIN ’GRASS’, WHILE ’WEI &
ISLER [3] RETRAINED’ CONSISTS OF MULTIPLE NETWORKS WHICH

WERE SEPARATELY TRAINED ON EACH TYPE OF TERRAIN.

Ours Wei & Isler
[3]

Wei & Isler [3]
Retrained

Prediction
Value Set RMSE

(J)
MAPE

(%)
RMSE

(J)
MAPE

(%)
RMSE

(J)
MAPE

(%)
Test 21.51 10.77 51.39 27.25 34.52 14.64

E Val 26.63 12.80 56.16 28.37 32.92 16.96

using {H,C} for prediction, suggesting that the network
is robust against the loss of ortho information. Similarly
to that, the evaluation of {O,H} shows that the network
structure can cope with the loss of terrain information
in the training environment to some extent. However, an
MAPE increase in energy prediction E of nearly 5% on
the validation set suggests that information on terrain is
already an important feature for the generalization of the
predictions on new environments. When removing the height
information ({O,C}), a significant loss in performance can
be observed, indicating that height information is the crucial
factor to predict energy consumption and traversal time. This
is further confirmed when looking at the performance results
on a single environment feature used as input. {O} is not
able to provide stable predictions for the energy consumption
and traversal time. {H} as a single input layer can provide
relatively precise predictions, confirming the work of [3].
However, to gain the full performance an different types of
terrain, the use of all three features as input is still required.

D. Comparison to a baseline approach

To demonstrate the contribution of our proposed approach,
we compare it to baseline approaches which are used to
predict the energy consumption E and the traversal time
T . As no approach exists so far that provides both ob-
jectives simultaneously, each objective is compared to its
own baseline. We show that our approach performs better
than the baseline approaches and also generalizes better
to different types of terrain and new environments. For
the performance comparison, the same datasets as used in
Section V-A and V-B are used for baseline comparison in
the training environment and for an unseen environment.

For the comparison of the energy consumption, the method
proposed by Wei and Isler [3] is used as a baseline, as it has
been proven to work well in outdoor terrains and outperforms
certain physics-based models. However, it has to be noted
that the baseline approach is not able to adapt to new types
of terrain within a single trained network. Therefore, our ap-
proach is compared to two variants of the baseline: The first
variant is the network trained solely on data samples recorded
on the terrain of type ’Grass’ (as done in [3]). For the second
variant, the approach from [3] is retrained separately on every
type of terrain to show the best possible performance of the
baseline method on the given terrain class. Table IV shows
the overall performance comparison of our approach to the
baseline. As can be seen, when evaluated on multiple types
of terrain, our approach outperforms the baseline approach
which was trained on grassy terrain by more than 15%.
This proves that our approach can adapt to different types
of terrain. Moreover, our approach outperforms the baseline
by 5% in both the training and validation environments
when compared to the overall performance of the retrained
baseline. This demonstrates that the proposed approach can
further improve energy prediction in outdoor environments
on multiple types of terrain and also generalizes better to
unseen environments.

To investigate the performance of the traversal time esti-
mation, our approach is compared to the expected traversal
time which is based on the theoretical system limitations
of the robot. We compare the expected traversal time to
the outcome of our approach, which takes into account
the robot’s immediate surroundings while moving through
a patch, to demonstrate that the expected traversable time
also depends on environmental factors such as slope and
type of terrain. Therefore, as a baseline, the robot’s expected
velocity ve along a data sample is divided by the length
d of a path segment such that Te = d/ve. As the robot
is driven through the environment at the maximum speed
of ve = 1m/s and the distance of a path segment in
the recorded dataset is d = 1, the expected traversal time
is a constant factor of one second. Table V shows how
the consideration of environmental limits can improve the
traversal time estimation, when compared to the expected
traversal time. It can be seen that the standard deviation
(RMSE) of the actual time and expected time is within
0.17−0.22s causing an error of up to 17.45%. By estimating
the velocity limit under consideration of the environment,
an overall error (MAPE) of 5% can be achieved. This
shows, that the consideration of the robot’s limits in different
environmental settings is an important factor when planning
a time-optimal path through the environment.

VI. CONCLUSION

In this paper, we presented an approach to predict the
energy consumption and traversal time of a ground robot
for path planning on different types of terrain in outdoor
environments. We showed that in our trained machine-
learning model, height information has the biggest impact
on predicting the energy consumption and traversal time of



TABLE V
PERFORMANCE COMPARISON TO THE EXPECTED TIME.

Ours Expected Time
Prediction

Value Set RMSE
(s)

MAPE
(%)

RMSE
(s)

MAPE
(%)

Test 0.06 3.37 0.22 17.45
T Val 0.08 5.04 0.17 13.82

a given path. However, to improve the overall prediction per-
formance, more information about the environment and type
of terrain has to be considered. Therefore, we showed that
the incorporation of information on the type of terrain and
visual information from an orthophoto is a valuable factor
to improve the prediction performance. We showed that our
method significantly reduces the error when predicting the
energy consumption when compared to a baseline approach
and also gets rid of the necessity to retrain a model for
every type of terrain. We also showed that the expected
traversal time based on simple robot definitions from a
fact sheet cannot be used to precisely predict the traversal
time in complex terrain. Our approach, however, takes into
account a robot’s immediate surroundings to improve the
estimation for traversal time. To further improve the proposed
approach, future work can incorporate rotational velocities in
the model, as rotations also play a crucial role in accurately
predicting the robot’s energy consumption and traversal time.
Furthermore, the model can be used as a baseline to adapt
the trained information to new circumstances, such as a new
robot system or changing weather/seasonal conditions.
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