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Abstract— Recognizing and comprehending human actions
and gestures is a crucial perception requirement for robots to in-
teract with humans and carry out tasks in diverse domains, in-
cluding service robotics, healthcare, and manufacturing. Event
cameras, with their ability to capture fast-moving objects at a
high temporal resolution, offer new opportunities compared to
standard action recognition in RGB videos. However, previous
research on event camera action recognition has primarily
focused on sensor-specific network architectures and image
encoding, which may not be suitable for new sensors and
limit the use of recent advancement in transformer-based
architectures. In this study, we employ using a computation-
ally efficient model, namely the video transformer network
(VTN), which initially acquires spatial embeddings per event-
frame and then utilizes a temporal self-attention mechanism.
This approach separates the spatial and temporal operations,
resulting in VTN being more computationally efficient than
other video transformers that process spatio-temporal volumes
directly. In order to better adopt the VTN for the sparse and
finegrained nature of event data, we design Event-Contrastive
Loss (LEC) and event specific augmentations. Proposed LEC
promotes learning fine-grained spatial cues in the spatial
backbone of VTN by contrasting temporally misaligned frames.
We evaluate our method on real-world action recognition of
N-EPIC Kitchens dataset, and achieve state-of-the-art results
on both protocols - testing in seen kitchen (74.9% accuracy)
and testing in unseen kitchens (42.43% and 46.66% Accuracy).
Our approach also takes less computation time compared to
competitive prior approaches. We also evaluate our method
on the standard DVS Gesture recognition dataset, achieving
a competitive accuracy of 97.9% compared to prior work
that uses dedicated architectures and image-encoding for the
DVS dataset. These results demonstrate the potential of our
framework EventTransAct for real-world applications of event-
camera based action recognition. Project Page: https://
tristandb8.github.io/EventTransAct_webpage/

I. INTRODUCTION

The ability to recognize and interpret human actions and
gestures is critical for robots to interact with people and
perform tasks in various domains, such as manufacturing,
healthcare, and service robotics. Some of such actions could
be reaching, grasping, or pointing, as they often provide
important cues about the user’s intentions and needs.

Advancements in deep neural architectures [1], [2], [3],
[4], [5] and large-scale datasets [6], [7], [8], [9] have sig-
nificantly improved the performance of action recognition.
Traditionally, action recognition has been performed using
video-based sensors, such as RGB cameras. However, these
sensors have several limitations in robotics applications.
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(a) wash (b) close

(c) arm roll (d) left hand wave

Fig. 1: Event-based actions samples First two rows are
from real-world action recognition N-EPIC Kitchens [15]
dataset, whereas, second row shows samples from DVS
gesture recognition dataset [16].

For example, they require high computational resources to
process large amounts of data, which can be a challenge
for resource-constrained robots. They are also sensitive to
motion blur and lighting conditions, which can reduce their
action recognition performance and reliability [10].

Event-based sensors, on the other hand, offer several
advantages for action recognition in robotics [11]. These
sensors only capture changes in the scene, rather than full
frames, which makes them more efficient and robust to high-
speed movements and lighting changes. They also provide
high temporal resolution, which can capture fast and subtle
actions that may be missed by video-based sensors. Addition-
ally, the event cameras also avoid breaching the visual private
information of the user such as skin color, gender, clothing,
etc, while recognizing the action [12], [13], [14]. Therefore,
there is growing interest in developing event-based action
recognition methods for robotics applications.

Event-based action recognition has been focused mainly
on gesture recognition [16] or egocentric action recognition
in the real-world cooking videos [15]. Since these datasets
are acquired using different devices and post-processing, they
look very different. Some samples and their action labels are
shown in Fig 1. The event-specific representation proposed
for one dataset may not be effective for the other. For
instance, spiking neural architectures are not suitable for N-
Epic Kitchens dataset since it is acquired using different a
type of sensor. Also, event-based action recognition methods
like [15] have not focused on leveraging the advancement
of recent neural architectures like vision transformers which
have shown great improvement in learning spatio-temporal
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dependencies of the actions [17], [1], [18] compared to prior
vision architectures including convolutions and aggregation
modules like LSTM [19]. In this work, our goal is to
leverage the recent vision transformer and develop a training
framework which can be suitable for different event-based
action datasets.

Most standard action recognition methods that utilize RGB
cameras rely on 3-dimensional operations to capture spatio-
temporal changes across frames. However, with event-stream
data, a single event-frame is capable of capturing spatio-
temporal changes, thus eliminating the need for spatio-
temporal volume-based operations. Instead, we employ sep-
arate spatial and temporal operations which are more com-
putationally efficient. To achieve this, we leverage the Video
Transformer Network (VTN) [17] (Fig 2). VTN computes
spatial embeddings for each frame and applies temporal
attention to aggregate these embeddings across time.

Event data is typically more sparse and fine-grained
compared to RGB data. Therefore, a standard video-level
classification loss is not adequate to train the spatial-
backbone of VTN for event data. To overcome this limitation,
we propose a within-instance contrastive objective called
“Event-Contrastive Loss”. This loss promotes temporal-
distinctiveness across the spatial embeddings of the same
video, aiding the spatial backbone to capture fine-grained
changes in the event data.

The primary contribution of our work can be summarized
as follows:

• Our work proposes a video transformer network-based
framework for event-camera based action recognition.
In this framework, we introduce an event-contrastive
loss and specific augmentations to better adapt the
network to event data.

• Our model is evaluated on the real-world N-EPIC
Kitchens [15] dataset for the purpose of classifying
actions in kitchen videos. We achieve state-of-the-art re-
sults in both testing protocols—within seen kitchens and
unseen kitchens. Importantly, our method offers a lower
computational cost compared to previous approaches.

• We further assess our method’s performance on the stan-
dard DVS [16] Gesture recognition dataset, achieving an
impressive 97.9% accuracy. This result is competitive
with prior works which employ dedicated architectures
and image-encoding specifically for the DVS dataset.

II. RELATED WORK

Event-based Vision In recent years event cameras have
emerged as a valuable vision modality for various computer
vision applications, ranging from low-level tasks such as ob-
ject tracking [20], detection [21] and optical flow estimation
[22] to high-level tasks such as image reconstruction [23],
recognition [24], and segmentation [25]. These applications
benefit from the unique properties of event cameras such as
their ability to capture fine-grained temporal resolution and
process visual information in an efficient manner.

Research in the field of event cameras can be broadly
categorized into two main groups [26]. The first group

includes methods that treat events as an asynchronous stream
in conjunction with spiking neural networks (SNN) [27].
The second group comprises techniques that initially convert
events to an image-like representation, which allows for
an extension of the existing literature [28], [29]. Although
sparse event data is suitable for SNNs, the absence of ded-
icated hardware and effective back-propagation algorithms
makes it difficult to utilize and optimize SNNs [12]. On the
other hand, image-like representations can take advantage of
the existing deep-learning literature.
Action Recognition is a popular topic in the computer vision
community, deep learning-based approaches succeed without
needing tedious feature engineering [7].

While there is a large body of work on action recogni-
tion [30] employing RGB videos, the research on event-
based action recognition is still in its infancy [31]. Intrinsic
motion information encoded by event data motivated [16]
to exploit event cameras for gesture recognition, a subset
problem of action recognition. Specifically designed event-
based neuromorphic processor TrueNorth is used to achieve
gesture recognition in real-time. A recent work [15] shows
that the environmental bias in egocentric action recognition
can be solved using event cameras. CNN-based architectural
variations are introduced to handle the inter-channel relations
in the event data. Moreover, [15] uses optical flow to
distill motion information in event data in a student-teacher
approach. The key challenge to processing the event data is
to effectively extract the fine-grained temporal information
from asynchronous and sparse data.

The existing literature on event-based vision is often lim-
ited to utilizing specific network architectures based on the
acquisition sensor, and has not fully explored the potential of
recent developments in RGB data. However, in recent years,
vision transformers have demonstrated the ability to enhance
spatio-temporal reasoning in videos through self-attention
mechanisms [1], [18], [17]. In this paper, we propose a
computationally efficient video transformer network solution
that can perform both gesture and action recognition on
various event datasets.
Contrastive Learning has become a popular method for
training neural networks without labeled data [32], [33], [34],
as it enables unsupervised learning and promotes learning of
fine-grained features through instance-discrimination objec-
tives [35]. In recent years, several works have applied intra-
instance contrastive losses to videos to increase temporal
distinctiveness in the features of the same video [36], [37].
Our aim is to adopt the spatial-backbone of VTN model to
the sparse and finegrained event data. To achieve this, we pro-
pose a frame-level intra-instance contrastive loss to improve
the spatial embeddings of the VTN by encouraging frame-
to-frame differences and enhancing temporal distinctiveness.

III. METHOD

In this section, we describe a novel framework for event-
camera-based action recognition. In Sec III-A, we first for-
mulate the problem. In Sec. III-B, we explain our network

2



F( ) F( ) F( ) F( ) F( ) F( )

PE
 1

PE
 3

PE
 n

-2

Transformer (LongFormer) based Temporal Encoder E( )

frame 1 frame 2 frame 3 frame n-2 frame n-1 frame n

Input frame
sequence

Image
Encoder

Positional
Embedding

Clip-Level
prediction

Event-
Contrastive loss

Standard Cross-
Entropy Loss

Multi-Layer
Perceptron G( )

Output CLS Token

PE
 2

PE
 n

-1

 P
E 

n

Fig. 2: We employed a Video Transformer Network (VTN) architecture [17], which expands an image encoder F with a
transformer E that uses frame embeddings as input tokens. Each event-frame x(i)t is passed through a spatial-encoder F(·)
to extract spatial features, which are then processed by a transformer-based LongFormer module E(·), augmented with
positional embeddings (PE) and a [CLS] token, to learn global temporal dependencies. The [CLS] token output is then
classified by head G(·). The model is trained using both cross-entropy loss and a proposed event contrastive loss. Details
about network architecture can found in Sec III-B and loss functions can be found in Sec III-C.

architecture in detail, whereas in Sec. III-C, we provide
details on proposed event-contrastive loss.

A. Problem Formulation

Event-based action recognition is a simple multi-class
classification problem, where an input video V(i) is classified
into one of the NC possible action classes. After learning on
a training set Dtrain, the learned model θ is evaluated on a
disjoint test set Dtest . We measure the performance of the
model in terms of top-1 classification accuracy.

B. Video Transformer Network

Event data is aggregated into frame-encoding following
prior work [15] to get a video V(i) from the event sequence
i. Let y(i)c ∈ [0,NC] be the action-class label of V(i). Each
video has T frames, from which we randomly sample n
frames and define it as clip X(i) = {x(i)1 ,x(i)2 , ...,x(i)n }, where
x(i)t represents an event-frame at time t and n < T .

We utilize a video transformer network (VTN) [17] to
learn from training data. Unlike other video architectures
like C3D [38], I3D [7], X3D [39] or 3D-ResNet [40]
which have spatiotemporal learnable modules, VTN provides
a computationally efficient way by introducing separable
spatial and temporal modules. A schematic of our framework
is shown in Fig 2. VTN architecture consists mainly of three
components: Spatial Encoder F(·), Temporal Encoder E(·),
and classification head G(·).

First of all, each event-frame x(i)t (where t ∈ [1,n]) is
passed through spatial-encoder F(·) to capture spatial fea-
tures. These spatial features are responsible for capturing the
shape and appearance of individual event-frames.

Now, the goal is to learn the temporal features like
object motion, pose-changes, gesture, etc. from the spa-
tial features. To learn global temporal dependencies of the

spatial features, a transformer-based LongFormer module
E(·) is used. Instead of self-attention [41] over the full
sequence, LongFormer implements a constraint attention
window which reduces the computation. Each spatial feature
is appended with a positional embedding (PE) to associate
its relative position in time before passing through E(·) as
an input token. A special classification token ([CLS]) is
also attached to the sequence of spatial features. Finally, the
output [CLS] token is passed through the classification head
G(·) to achieve the final prediction.

The VTN model is trained using standard cross-entropy
loss and proposed event contrastive loss. The supervision
from the ground-truth label y(i)c is utilized using standard
cross-entropy loss, as depicted in the following equation:

L
(i)

C =−
NC

∑
c=1

y(i)c logp(i)
c (1)

For instance i, p(i)
c is the classwise prediction vector.

C. Event Contrastive Loss

Standard Cross-Entropy loss focuses on learning the fea-
tures at the video-level and may not effectively utilize the
capacity of the spatial encoder and may perform subopti-
mally due to overfitting with the lower amount of data. In
order to learn the fine-grained spatial features, we derive
event-contrastive loss from the standard contrastive loss
formulation.

Contrastive loss deals with maximizing the agreement be-
tween anchor and positive whereas maximizing disagreement
between anchor and negatives. Our proposed event con-
trastive learning deals with learning temporally-distinctive
features across the event-frames of the same video instance
i. In order to accomplish this, a new clip denoted as X̃(i) =
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Fig. 3: Event Contrastive Learning increases temporal-distinctiveness of the spatial embedding F(x) by maximizing the
agreement between two differently augmented version of the same frame, whereas maximizes the disagreement between
temporally misaligned frames. For visualization purpose only 3 frames per clip are shown. Details in Section III-C.

{x̃(i)t }n
t=1 is created, which comprises randomly augmented

versions of event-frames present in X(i). These randomly
augmented clips are shown in Fig 3. The embeddings of
spatial encoder are projected through a non-linear projection
head P(·). The projection of each event-frame can be defined
as z(i) = P(F(x(i))).

Next, we maximize the agreement between the projec-
tions of a pair of frames {(z(i)t1 , z̃

(i)
t1 ) | t1 ∈ {1..n}} from the

same timestamp and maximize the disagreement between
the projections of pair of temporally misaligned frames. A
mathematical expression for this contrastive objective can be
written as:

L
(i)

EC =−
n

∑
t1=1

log
h
(

z(i)t1 , z̃
(i)
t1

)
n
∑

t2=1
t2̸=t1

h(z(i)t1 ,z
(i)
t2 )+h(z(i)t1 , z̃

(i)
t2 )]

, (2)

where h(u1,u2) = exp
(
u1

T u2/(∥u1∥∥u2∥τ)
)

is used to com-
pute the similarity between u1 and u2 vectors with an
adjustable temperature parameter, τ . 1[ j ̸=i] ∈ {0,1} is an
indicator function which equals 1 iff j ̸= i.

Finally, to train the entire framework we add both L
(i)

C
(Eq. 1) and L

(i)
EC (Eq. 2) as shown in the following equation:

L (i) = L
(i)

C +αL
(i)

EC, (3)

where α is a weighting factor between two losses.

D. Event specific augmentations

Augmentations play a crucial role in contrastive learning
as shown in multiple prior contrastive learning works [32],
[36], [42]. If we do not have meaningful augmentations, then
contrastive loss may not help in learning meaningful repre-
sentation for the downstream task (here, action recognition).
Note that if we use simple augmentations like cropping,
scaling, etc. then LEC becomes trivial to solve. To this
extent, we look into more specific augmentations for the
event-based camera. We encourage the reader to watch the

supplementary video while reading this section. In order to
get the event-frame from the real event data, we first need
to aggregate the events with a temporal window (denoted as
ρ) to generate a frame. Employing a high ρ results in more
events per frame, therefore, the fine-grained spatial structure
is lost, as shown in augmented version-1 in Fig 3. We use
the different values of ρ to generate differently augmented
versions of a clip. That way contrastive loss is encouraged to
learn spatial features which are invariant to such granularity
changes. Apart from the temporal window, we also use a
random event drop to get the differently augmented version
of the same video instance.

IV. EXPERIMENTS

A. Datasets

N-EPIC Kitchens [15] is extended from EPIC-Kitchens [43]
to validate the performance of event cameras for ego-centric
action recognition. Videos in the EPIC-Kitchens are first
upsampled using Super SloMo [44] to match the micro-
second temporal resolution of event cameras. Next, the event
camera simulator ESIM [45] is used to convert the input
RGB videos to event streams. Three largest kitchens from
EPIC-Kitchens are converted named D1, D2, and D3. The
dataset covers 8 action classes including open, close,
pour, mix, cut, take, wash, and put.
DVS Gesture Recognition [16] is collected using DVS128
camera with 128x128-pixel Dynamic Vision Sensor. The sen-
sor can support a maximum event rate of 1M events/sec and
provides a high dynamic range of 120 dB. A total of 1,342
instances from 29 subjects are collected under 3 different
lighting conditions. And, the dataset is divided into 11 hand
and arm gestures including hand waving, air drums,
air guitar, and forearm rolling. Following the
standard setting [16], 23 subjects are used for training and
the remaining 6 subjects are used for testing.

4



TABLE I: Comparison of gesture recognition performance
on DVS dataset [16].

Method 10 classes 11 classes
Time-surfaces [50] 96.59 90.62
SNN eRBP [51] - 92.70
Slayer [52] - 93.64
Space-time clouds [53] 97.08 95.32
DECOLLE [54] - 95.54
Spatiotemporal filt. [55] - 97.75
RG-CNN [56] - 97.20
TBR [49] 97.50 97.73
Ours 97.69 97.92

B. Implementation Details

Architectural Detail For VTN implementation, we use the
original codebase1. For 2D-image encoder F(·), we show
results on ViT-B [46]. For Temporal Encoder E(·), we utilize
a LongFormer of 3 layers with 8 attention heads. For the non-
linear projection head of LEC, we utilize MLP of 1 hidden
layer with output representation dimension = 128.
Input We utilize spatial resolution of 224× 224 with clip-
length (n)= 16.
Training setup We train for 100 epochs. For weight up-
dates, we utilize Adam optimizer [47] with β1 = 0.9,β2 =
0.999,ε = 1e−8, the default parameters for PyTorch. We
utilize a base learning rate of 4e−5 with a linear warm-
up of 10 epochs which is followed by a cosine learning
scheduler for 90 epochs. For both losses LC and LEC, we
use equal weight i.e. α = 1. For contrastive loss LEC, we
use temperature τ = 0.1.
Inference setup For inference, we adhere to the standard
protocol [48] of averaging the forecasts of 5 clips that are
uniformly spaced, resulting in a prediction at the video-level.

C. Results

We assess our model’s accuracy on two protocols for the
DVS dataset: 10-class classification without the background
class, and 11-class classification with the background class
included. As shown in Table I, our method achieves com-
parable results with previous studies. Note that while some
studies like [49] report similar performance using specialized
image-encoding methods for DVS event data, our method
does not utilize such specialized encoding for the DVS
dataset.

We also compare our method on N-EPIC Kitchens on two
protocols: (1) Recognizing actions in the same kitchen, and
(2) Recognizing actions in different kitchens. We compare
various prior baselines mentioned in [15], which are trained
with various other corresponding modalities with Events like
RGB, and Optical-Flow. As shown in Table II, our method
outperforms all methods only using the single modality on
both protocols.

Our experimental results demonstrate the effectiveness
of the proposed method for both gesture and real-world
action recognition tasks. Particularly, the state-of-the-art per-
formance on the N-EPIC Kitchens dataset, where the model

1https://github.com/bomri/SlowFast

TABLE II: Comparison of action recognition performance
on N-EPIC Kitchens dataset [15].

Model Modality D1 D1→D2 D1→D3
(a) I3D [7] RGB 53.67 34.50 35.70
(b) I3D [7] Event 50.32 37.27 39.12
(c) E2(GO)-3D [15] Event 50.52 38.07 38.71
(d) TSM [57] RGB 61.61 37.39 32.49
(e) TSM [57] Event 56.86 28.73 34.00
(f) E2(GO)-2D [15] Event 56.58 34.98 35.16
(g) TSM + Ldist RGB 63.36 38.61 35.73
(h) E2(GO)MO-2D [15] Event 61.38 39.77 37.19
(i) E2(GO)-2D [15] Event+Flow 65.11 42.12 41.80
(j) Ours (VTN) Event 74.90 42.43 46.66

is evaluated on unseen environments, highlights its ability to
generalize to novel settings, making it a more reliable choice
for deployment.

D. Inference Accuracy vs Speed
To assess the performance of our method in terms of

inference time and compare it with prior work, we fol-
low the timing protocol used by the prior state-of-the-art
method [15]. We utilize an NVIDIA Titan RTX GPU for
computation and report the input preprocessing time and
forward time of a single clip (batch size = 1). We present
the accuracy-time trade-off plot in Fig 4, which illustrates the
relationship between the model’s performance and inference
time (in milliseconds). Our approach achieves better accu-
racy than previous works in a comparable processing time
and significantly outperforms the multimodal approach [15]
in terms of both accuracy and computational speed.

E. Ablations

TABLE III: Ablation with different Components on DVS

Method Top-1 Accuracy (%)
Our Complete Framework 97.92
Without Event Contrastive loss 95.49 (-2.43)
Without Event specific Augmentations
(Time window ρ and event drop) 92.71 (-5.21)

Effect of Event-based augmentations and LEC To in-
vestigate the impact of each component in our framework,
we conduct an ablation study on the DVS dataset using
all classes, as presented in Table III. The results indicate
that removing the proposed event contrastive loss (LEC)
causes a decrease in accuracy by 2.43%, highlighting the
importance of maintaining the fine-grained nature of the
spatial embedding of VTN. Moreover, removing the pro-
posed event-specific augmentations has the greatest negative
impact on performance, mainly due to two reasons: (1) LEC
becomes trivial without event-specific augmentations, and (2)
a decrease in augmentations leads to a smaller training set
and potential overfitting.
Effect of different video models We conducted ex-
periments using various video models such as I3D [7],
VideoSWIN [58], and VTN [17]. Based on the results
presented in Table IV, it can be observed that the VTN ar-
chitecture performs significantly better than the other models
and requires minimum number of learnable parameters.
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Fig. 4: Accuracy vs Speed (Log-Scale) Trade-off: The graph shows the trade-off between accuracy and speed for two
settings of the N-EPIC Kitchens dataset, following the same protocol as in [15]. Our proposed method using only event
modality achieves better performance than previous methods, including the multi-modal approach of event+optical flow.

TABLE IV: Ablation with different backbone on DVS

#parameters (M) Top-1 Accuracy
I3D [7] 25.0 84.4
VideoSWIN [58] 88.1 95.7
VTN [17] 11.0 97.9

V. CONCLUSION

In this paper, we proposed a video transformer-based
framework for event-camera based action recognition, which
leverages event-contrastive loss and augmentations to adapt
the network to event data. Our method achieved state-of-
the-art results on N-EPIC Kitchens dataset and competitive
results on standard DVS Gesture recognition datase, while
requiring less computation time compared to competitive
prior approaches. Our findings demonstrate the effectiveness
of our proposed framework and highlight its potential impact
in real-world applications.

Future research in this area could extend our work to Ac-
tion Quality Assessment tasks that require more fine-grained
temporal understanding than Action Recognition task, mak-
ing them more relevant for event-based cameras. Another
interesting direction could be exploring recent masked im-
age modeling-based learning techniques to efficiently adapt
RGB models to event data. Overall, we believe that our
work contributes to the advancement of event-based video
understanding and provides a strong foundation for future
research in this area.
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