2308.08271v1 [cs.RO] 16 Aug 2023

arxXiv

Detecting Olives with Synthetic or Real Data? Olive the Above

Yianni Karabatis', Xiaomin Lin', Nitin J. Sanket?, Michail G. Lagoudakis®, Yiannis Aloimonos

Abstract— Modern robotics has enabled the advancement
in yield estimation for precision agriculture. However, when
applied to the olive industry, the high variation of olive colors
and their similarity to the background leaf canopy presents a
challenge. Labeling several thousands of very dense olive grove
images for segmentation is a labor-intensive task. This paper
presents a novel approach to detecting olives without the need
to manually label data. In this work, we present the world’s
first olive detection dataset comprised of synthetic and real olive
tree images. This is accomplished by generating an auto-labeled
photorealistic 3D model of an olive tree. Its geometry is then
simplified for lightweight rendering purposes. In addition,
experiments are conducted with a mix of synthetically generated
and real images, yielding an improvement of up to 66%
compared to when only using a small sample of real data. When
access to real, human-labeled data is limited, a combination of
mostly synthetic data and a small amount of real data can
enhance olive detection.

I. INTRODUCTION

The olive tree, native to the Mediterranean region, has
played an essential role in the advancement of humanity for
millennia. The olive harvest is a lengthy process requiring
almost a year-long preparation and is essential for the global
economy, with a market valued at $13.77B and is forecasted
to reach $17.99B by 2029 [1].

Yield estimation aims to forecast the output of crops.
Manual inspections help farmers better understand their
crops, but patrolling a grove with thousands of trees is
time-consuming. One solution is to utilize Unmanned Aerial
Vehicles (UAVs) to capture and analyze aerial image data
for making better decisions.

Object detection via robotics has been employed for
multiple types of crops [2]-[6]. However, olives present
additional problems not encountered with other crops.
Specifically, one must account for moderate variation in olive
color, since the olive may have multiple shades of green.
Another problem is the similarity between the olive fruit and
the surrounding leaves, making it challenging to differentiate
between the two. This similarity can be exacerbated even
further when only the end of an olive is visible, resembling
a leaf. In addition, the dense canopy of an olive tree occludes
many of the olives, making them partially visible and difficult
to recognize as shown in Fig. 1. Finally, the average size of

*This work was funded by the Fulbright foundation

IPerception and Robotics Group, University of Maryland Institute for
Advanced Computer Studies, University of Maryland, College Park, MD
20742, USA. Emails: {yianni, x1in01, jyaloimo}@umd.edu.

2Perception and Autonomous Robotics Group, Robotics
Engineering, Worcester Polytechnic Institute, MA 01609, USA. Email:
nsanket@wpi.edu.

3School of ECE, Technical University of Crete, Greece. Email:
lagoudakis@tuc.gr.

1

Input Images

i

Without Synthetic With Synthetic With Synthetic IGA

Fig. 1. Each column left to right: Input image, prediction using only
real data, prediction using real and synthetic data, prediction using real and
synthetic data in IGA. Predictions are shown in orange and ground truths
are shown in blue. Adding synthetic data to the training set increases the
number of correct predictions.

an olive is 2cm x lem X lem, magnifying all the difficulties
mentioned above.

However, labeling images collected from UAVs is an
exhausting task, especially when there could be up to 17,500
olives [7] in a single olive tree (up to 1000 olives in a single
image from our observation). An olive grove may contain
thousands of olive trees, making this very labor-intensive.
Therefore, we investigate a new approach to cover the
deficiency of labeled data, namely we create and incorporate
synthetic data as an aid to training models for olive
segmentation. Synthetic data is automatically labeled and
can be easily scaled up to higher orders of magnitude. We
create synthetically generated image-mask pairs of an olive
tree, including its olives, leaves, branches, and surrounding
background. We propose the use of our synthetic data to
create a high-performing, automated system for detecting
olives in olive groves. The contributions of this paper are
as follows:

e We create the world’s first olive detection dataset
consisting of mostly synthetic and some real images
of olive trees

— We generate a photorealistic 3D model of an olive
tree to create an auto-labeled synthetic dataset
— We propose and simplify a geometric model for
olives on an olive tree for lightweight rendering
purposes
o We create a novel color input space for our synthetic
data, making it more generalizable to real-world data
o We experiment with segmentation models to assist in
situations where the amount of real labeled data is very
limited

The remainder of this paper is structured as follows:

Render Outputs

Simplified 3D Olive Tree

|
I Image |

|Rendering "

2, 1 Image
i ITranslation

! [
! I
! [
_______) I

—— =

Fig. 2.

Synthetic Data

PRy

Change |
of Input |

An overview of our approach: The proposed geometric model is used to generate synthetic images which are further fed into a VSAIT to enable

image-to-image translation. We then combine the synthetic data with real data to train an Unet for olive detection.

Section II presents related works. In Section III we describe
the generation of the 3D synthetic olive tree model and
discuss the image-to-image translation technique used to
create realistic synthetic images. Section. IV presents the
experiments using a mix of synthetic and real data. Finally,
Section. V contains the conclusion and future work.

II. RELATED WORK

Climate change along with the rise of the human
population calls for efficient and modern agricultural
solutions [8]. Precision agriculture offers a partial
solution by maximizing crop outputs while minimizing the
environmental footprint [9].

UAVs have reduced the time required to monitor
agricultural properties [10]. However, RGB cameras cannot
detect phenomena invisible to the eye, such as early
symptoms of plant diseases. Therefore, UAVs have been
armed with thermal, multispectral, and hyperspectral cameras
that see beyond the human eye [11] to calculate certain
vegetation indices (NDVI, NDRE, CWSI, etc.) and diagnose
diseases early [12], [13].

UAVs are also utilized to track and monitor livestock
and perform search and rescue missions [14]. Alanezi et
al. discuss tracking animals [15]. However, the number
of objects involved in livestock detection is fewer than in
tracking fruit production.

Robotics coupled with machine learning techniques has
assisted in better segmentation of crops [16], [17]. Chen
et al. used deep learning techniques to count apples and
oranges in orchards given UAV-captured data [2]. Similar
approaches have been utilized to identify apples, bananas,
grapes (individually and in clusters), pears, and pineapples
[18]-[23]. However, these fruits are easy to identify given
their large size, and their striking color differences against
their respective backgrounds (Figs. 3b, 3c, 3d). Detecting
fruits of small size is even more of a challenge when the

Fig. 3. (a): Olive Tree. (b): Apple Tree. (c): grape Tree. (d): Strawberry
Bush. Olives are small and they have the same color as the background.
Some fruits stand out among their background given their large size, and
color differences.

leaves partially obstruct the fruits. Computer vision efforts
to count fruits of small sizes, such as cranberries, blueberries,
and cherries have been explored in [24]-[26]. Olives are of
small sizes, making them more challenging to identify as we
can see in Fig. 3a. Furthermore, they also blend very well
into the surrounding background which has a very similar
color, making detection very challenging.

The closest research to our proposed olive detection
method is systems to count how many olive trees there are in
a grove [27]-[29]. Ponce et al. proposed a direct method to
count olives however only after they are harvested and sent
for processing in an external image acquisition chamber [29].
Therefore, to the best of our knowledge, we propose the first
autonomous on-site olive detection system.

Previous approaches utilize synthetic data to detect objects
for both agricultural and non-agricultural purposes. Lin et
al. [30] uses the 3D model of a BlueROV and creates

photo-realistic aerial image datasets with the ground truth
for BlueROV detection. Sanket et al. [31] model the 3D
geometry of a quadrotor propeller to generate a vast,
automatically-labeled dataset which is then used to detect
quadrotor propellers. Other works such as [32] and [33]-[35]
use synthetic data to perform tomato plant and corn field
reconstruction, respectively.

To the best of our knowledge, the first major breakthrough
in applying synthetic data for deep learning-based fruit
counting was in [36], where red circles of various sizes
were scattered onto a blurred green and brown background
in order to count tomatoes. This novel approach resulted in
approximately 91% counting accuracy and inspired many
other synthetic data approaches. Synthetic data is not just
successful in fruit counting, but also in detecting oysters.
Lin et al. [37] propose a novel open-source simulation
that is used to generate photo-realistic synthetic images
of oyster reefs. Using a combination of the synthetically
generated oyster reef images and read images, Lin et al. [38]
trains a semantic segmentation model resulting in a major
improvement than when only trained on real data. Another
synthetic data generation approach for precision agriculture
is presented by Blekos et al. [39] where a synthetic olive
tree (not containing olives) is designed and used in detecting
Verticillium Wilt, a fungal disease that can lead to the death of
an olive tree. In our paper, we create a lightweight synthetic
olive tree, design a novel olive model, and train a deep
semantic segmentation model for olive detection, seeing an
improvement when real data is augmented by synthetically
generated data.

III. SYNTHETIC OLIVE TREE

Given the arduous nature of real-world data collection and
labeling for semantic segmentation, we propose a system
to rapidly streamline the process of creating a rich, diverse
hybrid dataset containing real and synthetic data. The need
for such a swift system is highlighted further, given that each
olive tree contains around 2500 to 17500 olives, on average
[7]. The resulting generated synthetic data is then combined
with real data to train a segmentation model to detect
olives as shown in Fig. 2. In Sec. III-A.1, we illustrate the
process of creating synthetic data by modeling the geometry
of an olive tree utilizing Blender™, a 3D open-source
graphics software to perform rendering [40]. We also ensure
that our 3D model is light enough to be rendered under
constrained computational resources (such as a modern-day
laptop), further democratizing our synthetic data pipeline.
In Sec. II-B, we explain how modern image-to-image
translation methods may be applied to make the rendered
synthetic images appear photorealistic.

A. Olive Tree 3D Model

1) Synthetic Olive: To generate synthetic data for an olive
tree, we first need to create its most fundamental component:
the olive. We model the geometry of an olive, by using an
ellipsoid mesh as a baseline:

0000

Fig. 4. (a) the 3D modeling of our ellispoid. (b) the 3D modeling of an
olive (c) an example olive rendered with texture.

.’152 92 22

Here in Eq.1, a = 1.2 cm and b = 1.2 cm are the width factor
of the ellipsoid while ¢ = 2.3 cm is the length and width of
the olive as shown in Fig. 4a. We added some randomness in
the scaling factor to make it more realistic. Then, the vertices
near the end of the ellipsoid are extended to create a sharp
point, matching the shape of a real olive.

Subsequently, a smoothing process is applied to the olive
3D model to eliminate any form of rigidness. The final
dimensions of our 3D olive model are 2.5cm x 1.4cmx 1.4cm
respectively as such are the approximate dimensions of olives
when ready for harvest. Fig. 4b demonstrates the process of
modeling our proposed olive models. We then initiate the
process of adding texture to the olive model. The appearance
of an olive is impacted by the lighting, shading, and albedo
of the environment. All olives begin as green fruits and
gradually transform into darker shades, ending in an almost
black, dark purple color as the harvest season progresses
(see Fig. 4c and its examples underneath). Occasionally, a
single olive may have two different colors simultaneously.
In addition, olives usually do not have a smooth texture but
may exhibit bumps and wrinkles on their surface. Given the
grove environment, it is possible for olives to accumulate
dust, providing a lighter shade on certain sections of the
surface. Finally, many olive groves suffer from the insect
dacus olea, which punctures the olive causing black spot(s)
to appear on its surface. We consider all the above variations
when designing the texture of an olive. We model a set of
eleven unique textures to be applied onto the 3D olive model,
each varying in noise, roughness, distortion, bump, and color
mixing. This ensures that the set of synthetic olives closely
resembles real-world olives.

2) Olive tree and leaves: Next, we create the leaves and
the branches of the olive tree. We scan a pair of leaves from
a real olive tree to model the 3D geometry. The scanner
automatically provides the texture of an olive leaf. To model
the branches and subbranches, we utilize the bezier curve as
a baseline, and is modeled as follows:

a b C c '
— /L’T b O

Fig. 5. Fig. 5. (a) a single bezier curve with 2 control points. (b) the
bezier curve we use as a branch. (c) the bezier curve with 3D-scanned
leaves scattered onto it.

n
B(t) = (n) 1 —)it p, 2)
2 L)

where t represents the position of the point on the curve
and P; represents the i'” control point. In Eq. 2 we select
n = 5 control points per branch. We then prune the ends of
the curves in Blender to make them more realistic. To match
the texture of an olive tree’s branches onto our 3D model’s
branches, we use a dark brown as our base color and apply
dark noise to the branches. This process is illustrated in Fig.
5.

In an effort to make our 3D model more accessible to
those without high-end computing devices, we decide to
make a lighter version of an olive tree model without a
trunk or a dense canopy. Choosing to do so drastically
reduces the average time needed for rendering synthetic
image-mask pairs. First, we eliminate the trunk. Then, we
reduce the number of leaves and branches required by using
an invisible 2D plane as a baseline for their scattering.
Finally, to address the excessively high number of vertices
on the 3D-scanned leaf, we apply a limited dissolve onto the
leaf model for simplification, further democratizing (making
it easily accessible for all) our 3D model.

To complete the model, we first create four separate layers
of scattered leaves, two separate layers of scattered branches,
and one layer of scattered olives per rendering session
in the formation of 2D planes. The randomness of leaf
orientation is set to no more than 9°and the size randomness
is set to be no more than 10% of the original dimensions.
When scattering the olives onto the leaves and branches, we
place them behind one leaf layer in order to simulate the
obscurity that real olive leaves provide to the olive fruit. We
apply orientation randomness within 45°and size randomness
within 5% of the original dimensions to all olives. In total,
we scatter approximately 2,600 olives onto the leaves per
rendering session. In total, we run 16 rendering sessions
to produce 15,960 image-mask pairs. Example renderings
are shown in Fig. 6¢. Since the Mediterranean olive harvest
occurs during the months of mid-Autumn, we emulate
appropriate background and lighting conditions for our 3D
model. We first simulate dry, sunny days with little to no
clouds using Blender’s sky, Musgrave, and gradient texture
nodes. We then simulate a cloudy, overcast environment
using Blender’s dynamic sky. Finally, we place a plane
behind the final leaf layer with ground texture projected
onto it via UV mapping to simulate a UAV flying above a
canopy with the ground as the background. We also UV-map
an image of scattered leaves onto a background plane to
simulate a UAV flying at the height of the canopy.

3) Rendering: At this point, the 3D olive tree model
is ready to be rendered into image-mask pairs, a very
computationally demanding task. Therefore, we take the
following steps to shorten the rendering process, expanding
the dataset’s availability to computers with lower processing
power (such as modern laptops).

e We utilize Intel OpenlmageDenoise [41], an
open-source library of denoising filters made for
images rendered with ray tracing

o We lower the maximum number of samples in Cycles
render (number of paths to trace for each pixel in the
final render) to 50, still producing a high-quality output

« We eliminate all subsurface scattering in all objects

B. Image-to-Image Translation

Image-to-image translation is a technique that converts
an image from a source domain to a target domain (e.g.
convert an image of a horse to a zebra) [42] [43]. Typically,
synthetic data does not possess the realistic features of
the real data domain. Models trained on untranslated
synthetic data perform poorly on real-world testing
data. Therefore, we conduct image-to-image translation to
transform synthetically rendered images in Blender of our
3D model to the real-world olive tree domain. The objective
is that training with synthetic data closely resembling
the real world will result in higher accuracy models.
Specifically, we employ Unpaired Image Translation via
Vector Symbolic Architectures (VSAIT) [44] to translate the
Blender-generated images to the real-world domain. We also
choose VSAIT in order to reduce occurrences of semantic
flipping (when a green olive gets translated into a leaf,
corrupting the translated data) given that VSA-based methods
are capable of learning high-level, abstract concepts [45].

Formally, VSAIT is trained to learn the translation
between the Blender-generated synthetic olive tree images
X to the real olive grove images Y. The three major
components of this network are the Generator G, the
Discriminator Dy, and the Source <> Target Mapper F.
The overall loss consists of the sum of the Hypervector
Adversarial Loss and the VSA-based Cyclic Loss [44].

Hypervector Adversarial Loss: This ensures the
similarity between the synthetic translated image
hypervectors vg(x) and the real target hypervectors
vy. This is done by applying the VSA binding operation
on hypervector mapping F'(v,) and source vectors vx to
yield a hypervector of synthetic features mapped to the real
domain. The Hypervector Adversarial Loss is calculated as:

Laan(G, Dy, X,Y) = Eypy(y llog Dy (v,)]
+ Eznpx (2)[l0g(1 — Dy (vG(a)))]
+ Eznpx()log(l — Dy (v @ F(vz)))] (3)

VSA-based Cyclic Loss: This cyclic loss minimizes
occurrences of semantic flipping by constraining G so
that similar hypervectors may be returned when mapping
translated vectors back to the synthetic domain from the

VSAIT
Training

VSAIT
Inference

Fig. 6. Image-to-image translation (a) A single sample of the simulated
olive, (b) A single sample of the real olive, (c) Simulated olive image, (d)
Synthetic olive image translated into real world for photorealism.

real domain. Meaning, vy = vg(X) — X. The VSA-based
Cyclic Loss is calculated as:

IR i
ﬁng(G,X) :]Ewme(:v) EZ;dZSt(’Ux,U(;(x)_}x) 4)
where the dist is the cosine distance between the source
hypervectors and inverted translated hypervectors.
Therefore, the overall loss is as follows:

E(G, Dy, X, Y) = EGAN(G,Dy,X, Y) +£VSA(G7X)
4)

To create X, the source domain, we render 12,768 images
of our 3D olive tree model for training and 3,192 images as
validation. To create Y, the target domain, we use 12,452
UAV-captured images for training and 3,113 for validation.
Overall, we train VSAIT for 98 epochs using its default
settings (see Fig. 6a, 6b). Then, we perform inference
to apply VSAIT to rendered images (Fig. 6¢), yielding a
photorealistic synthetic output (Fig. 6d).

We ensure that the images used in the Y domain for
image-to-image translation do not overlap with any of the
real images that will later be used in testing segmentation
models. When X gets translated to Y, it learns the features
of Y. Training a segmentation model using synthetic images
translated to the same Y as the real-world test set is just like
training with testing data as input (and must be avoided).

C. Synthetic Data Color Input Space

After the synthetic data undergoes image-to-image
translation, the olives in the synthetic data still stand
out brightly, unlike in real olive groves. Furthermore, the
synthetic data translated by VSAIT can easily still be
distinguished from images of the real domain, if looked
at closely. Therefore, in an attempt to make the olives
in the VSAIT output less distinguishable (just like in the
real-world), we create a new input space, with the goal of
making the olives more concealable. We draw inspiration
from [46] who propose a novel input space from (RGB —
R, M=max(G,B), I) where I is the overall intensity. However,

Yu et al. [46] apply this technique to the underwater domain
where there is a deficiency of red reflections to extract a
clearer image for depth estimation. We propose a color input
space for the opposite purpose: to obscure the olives further
into their backgrounds. This new input space may be applied
to all synthetic agricultural domains with the purpose of
blending any small fruit into its respective backgrounds and
is as follows (called IGA):

RGB — (I,G, Avg(R, B))

Converting the VSAIT-translated synthetic data to this input
space yields a slight improvement as shown in Table I and
is labeled as Orga_and.real-

IV. EXPERIMENTS AND RESULTS

We first describe our datasets. Then we analyze our
segmentation experiments on models trained on images with
and without synthetically generated data.

A. Dataset Overview

Synthetic Data: As described in Section III, we initiate
multiple rendering processes of our Blender scene, each
reproducing parts of an olive tree with a blue sky, leaf-only,
or ground texture background. In addition, we utilize
multiple lighting conditions to augment the variety of our
synthetic data. Afterward, we initiate the image-to-image
translation process [44]. The result of these two processes is
the speedy generation of 15,960 synthetic image-mask pairs.
Real Data: We conducted several UAV flights over the
island of Crete, Greece. Our UAV is the DJI Mavic 2 Pro
with a Hasselblad L1D-20C camera. To make the dataset
as diverse as possible, the flights were staggered to record
differences in cloud cover and albedo, and to capture images
of olives during different temporal stages of the olive harvest,
approximately ranging from one to two months. We also
chose to only set our ISO to 100 for daytime capture and
400 for evening capture. We then labeled our UAV-captured
images by hand using LabelMe [47]. In total, we have 3,113
real-world image-mask pairs in patches of size 256 x 256 x
3 and 256 x 256 x 1 and we labeled approximately 2,600
olives. The maximum number of olives per unpatched image
is around 600.

B. Experiments

We construct two training sets: one with 15,960 synthetic
and 100 real image-mask pairs and another with only 100
real image-mask pairs. This was decided to reflect the reality
that it is very difficult to manually create a large enough
labeled olive dataset. We select UNet [48] as our model
architecture and train with several backbones [49], [50] as
shown in Table 1. To standardize experiments across our two
data sets, we only employ the Adam optimizer [51] with an
initial learning rate of 0.001 and use the Jaccard index [52]
as our loss function. All models are trained for a maximum
of 100 epochs using a batch size of 32. We use minimal
real-world data as it is arduous to obtain and label, simulating

TABLE I
TIoU USING REAL ONLY, SYNTHETIC/REAL, AND SYNTHETIC IGA/REAL

Training Data Backbone IoU
Oreal EfficientNetBS | 41.41%
syn-and.real EfficientNetBS | 53.06%
O16 A andreal EfficientNetB5 54.05%
Oreal ResNet101 24.22%
syn-and.real ResNet101 36.28%
O16 A andreal ResNet101 40.22%
Oreal ResNet152 28.99%
syn-and_real ResNet152 40.54%
OrGA.and.real | ResNetl52 45.33%

situations where one may only have limited access to real
data, which are more realistic cases.

Our testing set consists of more than 3000 real-world
image-mask pairs that are hand-labeled [47]. Our metric
of choice is the Intersection over Union, as there is only
one class of objects to segment. We opt out of using mean
Average-Precision as an evaluation metric given that models
trained on mostly synthetic data perform well only with
low-confidence score thresholding, as is in our case.

C. Results

Based on our experiments, as shown in Table. I,
we observe that the models with identical architectures
and backbones trained on both synthetic and real
images outperform the baseline models, which are trained
without synthetic data. In our Training Data column,
Oreaqi represents the set of just real-world training
data, Ogyn_andrear represents the set of real-world
and VSAIT-translated synthetic data, and O;gA_and.real
represents the VSAIT-translated synthetic data converted to
the IGA input space. Our biggest marked improvement, when
compared to the baseline, was observed from 24.22% to
40.22% 1IoU, corresponding to a percent change of 66%
when using ResNetl01 [49] as our backbone. We also
observe that when using EfficientNetB5 [50], ResNetl101,
and ResNet152, the highest-performing models are trained
on VSAIT-translated images converted to the IGA input
space. Fig. 1 shows the difference in segmentation prediction
when using models trained with and without synthetic data.
When using an EfficientNetBS backbone, we observe a
12.64% jump in IoU over the baseline when the model is
supplemented with synthetic data in the IGA input space.
Similarly, when we use Resnet152 as a backbone, we observe
an increase of 16.34% compared to the baseline when
supplemented with unedited VSAIT-generated data.

D. Discussion

Detecting olives in an olive grove is a problem in the
low training data regime domain. Under this setting, it is
not convenient to label vast amounts of olive tree images
and hence synthetic data offers a reasonable alternative.
In this paper, we simulate such a situation and have
demonstrated that supplementing a low amount of real
data with easy-to-generate synthetic images improves the
segmentation results by 66% as shown in Table I.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel approach to detect
olives in an olive grove without the need to manually label
data. We described a technique to generate a photorealistic
3D model of an olive tree. Its geometry is then simplified
for lightweight rendering purposes, thus democratizing the
synthetic dataset. The goal is to supplement low levels of real
data with our synthetic data to improve detection results. To
evaluate our approach, we conducted experiments exhibiting
promising results with a maximum observed change in IoU
of 66%, when using our proposed method versus low-data
regime methods. To conclude, this demonstrates that when
access to real, labeled data is restricted or non-attainable, a
combination of mostly synthetic data and real data can help
to enhance olive detection.

ACKNOWLEDGMENTS

This work was partially sponsored by the Fulbright
Foundation and USDA NIFA Award# 20206801231805. We
thank all olive grove farmers, Dr. Panagiotis Partsinevelos’

SenseLab, and Zisis Charokopos for data collection
assistance.
REFERENCES
[11 F. B. Insights, “Olive oil market size, trends amp;
growth: Global forecast [2029],” Sep 2022. [Online].
Available: https://www.fortunebusinessinsights.com/industry-reports/

olive-oil-market-101455 1

[2] S. W. Chen, S. S. Shivakumar, S. Dcunha, J. Das, E. Okon, C. Qu,
C. J. Taylor, and V. Kumar, “Counting apples and oranges with deep
learning: A data-driven approach,” IEEE Robotics and Automation
Letters, vol. 2, no. 2, pp. 781-788, 2017. 1, 2

[3] M. H. Junos, A. S. Mohd Khairuddin, S. Thannirmalai, and M. Dahari,
“An optimized yolo-based object detection model for crop harvesting
system,” IET Image Processing, vol. 15, no. 9, pp. 2112-2125, 2021.
1

[4] M. T. Pratama, S. Kim, S. Ozawa, T. Ohkawa, Y. Chona, H. Tsuji,
and N. Murakami, “Deep learning-based object detection for crop
monitoring in soybean fields,” in 2020 International Joint Conference
on Neural Networks (IJCNN). 1EEE, 2020, pp. 1-7. 1

[5] X. Chen, Z. Li, Y. Yuan, G. Yu, J. Shen, and D. Qi, “State-aware
tracker for real-time video object segmentation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 9384-9393. 1

[6] T. Liu, N. Chopra, and J. Samtani, “Information system for detecting
strawberry fruit locations and ripeness conditions in a farm,” in Biology
and Life Sciences Forum, vol. 16, no. 1. MDPI, 2022, p. 22. 1

[71 P. Dz, “How many olives are harvested on an average olive
tree? (detailed answer),” Jan 2022. [Online]. Available: https:/
oliveknowledge.com/how-many-olives-are-harvested-on-olive-tree/ 1,
3

[8] R. Elijah, “Combating climate change: How precision agriculture
can help,” Feb 2023. [Online]. Available: https://eos.com/blog/
how-precision-farming-fights-climate-change/ 2

[91 A. Balafoutis, B. Beck, S. Fountas, J. Vangeyte, T. Van der Wal,
I. Soto, M. G6émez-Barbero, A. Barnes, and V. Eory, “Precision
agriculture technologies positively contributing to ghg emissions
mitigation, farm productivity and economics,” Sustainability, vol. 9,
no. 8, p. 1339, 2017. 2

[10] G. Livanos, D. Ramnalis, V. Polychronos, P. Balomenou,
P. Sarigiannidis, G. Kakamoukas, T. Karamitsou, P. Angelidis,
and M. Zervakis, “Extraction of reflectance maps for smart
farming applications using unmanned aerial vehicles,” in 2020 12th
International Symposium on Communication Systems, Networks and
Digital Signal Processing (CSNDSP). 1EEE, 2020, pp. 1-6. 2

https://www.fortunebusinessinsights.com/industry-reports/olive-oil-market-101455
https://www.fortunebusinessinsights.com/industry-reports/olive-oil-market-101455
https://oliveknowledge.com/how-many-olives-are-harvested-on-olive-tree/
https://oliveknowledge.com/how-many-olives-are-harvested-on-olive-tree/
https://eos.com/blog/how-precision-farming-fights-climate-change/
https://eos.com/blog/how-precision-farming-fights-climate-change/

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

T. Adao, J. Hruska, L. Padua, J. Bessa, E. Peres, R. Morais, and
J. J. Sousa, “Hyperspectral imaging: A review on uav-based sensors,
data processing and applications for agriculture and forestry,” Remote
sensing, vol. 9, no. 11, p. 1110, 2017. 2

T. Poblete, J. Navas-Cortes, C. Camino, R. Calderon, A. Hornero,
V. Gonzalez-Dugo, B. Landa, and P. Zarco-Tejada, ‘“Discriminating
xylella fastidiosa from verticillium dahliae infections in olive trees
using thermal- and hyperspectral-based plant traits,” ISPRS Journal of
Photogrammetry and Remote Sensing, vol. 179, pp. 133-144, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0924271621001994 2

M. Pantelidakis, A. A. Panagopoulos, K. Mykoniatis, S. Ashkan, R. C.
Eravi, V. Pamula, E. C. Verduzco III, O. Babich, O. P. Panagopoulos,
and G. Chalkiadakis, “Identifying sunlit leaves using convolutional
neural networks: An expert system for measuring the crop water stress
index of pistachio trees,” Expert Systems with Applications, vol. 209,
p- 118326, 2022. 2

D. Chatziparaschis, M. G. Lagoudakis, and P. Partsinevelos, “Aerial
and ground robot collaboration for autonomous mapping in search and
rescue missions,” Drones, vol. 4, no. 4, p. 79, 2020. 2

M. A. Alanezi, M. S. Shahriar, M. B. Hasan, S. Ahmed, Y. A.
Sha’aban, and H. R. Bouchekara, “Livestock management with
unmanned aerial vehicles: A review,” IEEE Access, 2022. 2

J. Champ, A. Mora-Fallas, H. Go€au, E. Mata-Montero, P. Bonnet,
and A. Joly, “Instance segmentation for the fine detection of crop and
weed plants by precision agricultural robots,” Applications in plant
sciences, vol. 8, no. 7, p. e11373, 2020. 2

D. Su, H. Kong, Y. Qiao, and S. Sukkarieh, “Data augmentation
for deep learning based semantic segmentation and crop-weed
classification in agricultural robotics,” Computers and Electronics in
Agriculture, vol. 190, p. 106418, 2021. 2

N. Hini, P. Roy, and V. Isler, “Minneapple: a benchmark dataset for
apple detection and segmentation,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 852-858, 2020. 2

A. 1. B. Parico and T. Ahamed, “Real time pear fruit detection and
counting using yolov4 models and deep sort,” Sensors, vol. 21, no. 14,
p- 4803, 2021. 2

R. Wan Nurazwin Syazwani, H. Muhammad Asraf, M. Megat
Syahirul Amin, and K. Nur Dalila, “Automated image identification,
detection and fruit counting of top-view pineapple crown using
machine learning,” Alexandria Engineering Journal, vol. 61, no. 2,
pp. 1265-1276, 2022. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S111001682100418X 2

B. Neupane, T. Horanont, and N. D. Hung, “Deep learning
based banana plant detection and counting using high-resolution
red-green-blue (rgb) images collected from unmanned aerial vehicle
(uav),” PloS one, vol. 14, no. 10, p. 0223906, 2019. 2

A. K. Nellithimaru and G. A. Kantor, “Rols: Robust object-level slam
for grape counting,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 2019, pp. 0-0.
2

T. T. Santos, L. L. de Souza, A. A. dos Santos, and S. Avila, “Grape
detection, segmentation, and tracking using deep neural networks
and three-dimensional association,” Computers and Electronics in
Agriculture, vol. 170, p. 105247, 2020. 2

P. Akiva, K. Dana, P. Oudemans, and M. Mars, “Finding berries:
Segmentation and counting of cranberries using point supervision
and shape priors,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 2020, pp. 50-51.
2

S. Gonzalez, C. Arellano, and J. E. Tapia, “Deepblueberry:
Quantification of blueberries in the wild using instance segmentation,”
leee Access, vol. 7, pp. 105776-105788, 2019. 2

J. F. Villacrés and F. Auat Cheein, “Detection and characterization of
cherries: A deep learning usability case study in chile,” Agronomy,
vol. 10, no. 6, p. 835, 2020. 2

J. Gonzilez, C. Galindo, V. Arevalo, and G. Ambrosio, “Applying
image analysis and probabilistic techniques for counting olive trees in
high-resolution satellite images,” in Advanced Concepts for Intelligent
Vision Systems: 9th International Conference, ACIVS 2007, Delft, The
Netherlands, August 28-31, 2007. Proceedings 9. Springer, 2007, pp.
920-931. 2

A. Khan, U. Khan, M. Waleed, A. Khan, T. Kamal, S. N. K.
Marwat, M. Magsood, and F. Aadil, “Remote sensing: an automated

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

methodology for olive tree detection and counting in satellite images,”
IEEE Access, vol. 6, pp. 77816-77 828, 2018. 2

J. M. Ponce, A. Aquino, B. Millan, and J. M. Andujar, “Automatic
counting and individual size and mass estimation of olive-fruits
through computer vision techniques,” IEEE Access, vol. 7, pp.
59451-59 465, 2019. 2

X. Lin, C. Liu, A. Pattillo, M. Yu, and Y. Aloimonous, “Seadronesim:
Simulation of aerial images for detection of objects above water,” in
Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2023, pp. 216-223. 2

N. J. Sanket, C. D. Singh, C. M. Parameshwara, C. Fermiiller,
G. C. de Croon, and Y. Aloimonos, “Evpropnet: Detecting drones by
finding propellers for mid-air landing and following,” arXiv preprint
arXiv:2106.15045, 2021. 3

A. K. Burusa, E. J. van Henten, and G. Kootstra, “Attention-driven
active vision for efficient reconstruction of plants and targeted plant
parts,” arXiv preprint arXiv:2206.10274, 2022. 3

A. Bacharis, H. J. Nelson, and N. Papanikolopoulos, “View planning
using discrete optimization for 3d reconstruction of row crops,” in
2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2022, pp. 9195-9201. 3

H. Freeman, E. Schneider, C. H. Kim, M. Lee, and G. Kantor,
“3d reconstruction-based seed counting of sorghum panicles for
agricultural inspection,” in 2023 [EEE International Conference on
Robotics and Automation (ICRA). 1EEE, 2023, pp. 9594-9600. 3
S. Khaki, H. Pham, Y. Han, A. Kuhl, W. Kent, and L. Wang,
“Deepcorn: A semi-supervised deep learning method for
high-throughput image-based corn kernel counting and yield
estimation,” Knowledge-Based Systems, vol. 218, p. 106874, 2021. 3
M. Rahnemoonfar and C. Sheppard, “Deep count: fruit counting based
on deep simulated learning,” Sensors, vol. 17, no. 4, p. 905, 2017. 3
X. Lin, N. Jha, M. Joshi, N. Karapetyan, Y. Aloimonos, and
M. Yu, “Oystersim: Underwater simulation for enhancing oyster reef
monitoring,” in OCEANS 2022, Hampton Roads. 1EEE, 2022, pp.
1-6. 3

X. Lin, N. J. Sanket, N. Karapetyan, and Y. Aloimonos, “Oysternet:
Enhanced oyster detection using simulation,” 2022. [Online].
Available: https://arxiv.org/abs/2209.08176 3

K. Blekos, A. Tsakas, C. Xouris, I. Evdokidis, D. Alexandropoulos,
C. Alexakos, S. Katakis, A. Makedonas, C. Theoharatos, and A. Lalos,
“Analysis, modeling and multi-spectral sensing for the predictive
management of verticillium wilt in olive groves,” Journal of Sensor
and Actuator Networks, vol. 10, no. 1, p. 15, 2021. 3

B. O. Community, Blender - a 3D modelling and rendering package,
Blender Foundation, Stichting Blender Foundation, Amsterdam, 2018.
[Online]. Available: http://www.blender.org 3

Intel, “Intel® open image denoise.” [Online]. Available: https:
/lwww.openimagedenoise.org/ 4

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Computer
Vision (ICCV), 2017 IEEE International Conference on, 2017. 4

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” CVPR, 2017. 4

J. Theiss, J. Leverett, D. Kim, and A. Prakash, “Unpaired
image translation via vector symbolic architectures,” in Computer
Vision—-ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23-27, 2022, Proceedings, Part XXI. Springer, 2022, pp.
17-32. 4,5

P. Kanerva, Sparse Distributed Memory. Cambridge, MA, USA: MIT
Press, 1988. 4

B. Yu, J. Wu, and M. J. Islam, “Udepth: Fast monocular depth
estimation for visually-guided underwater robots,” arXiv preprint
arXiv:2209.12358, 2022. 5

K. Wada, “Labelme: Image Polygonal Annotation with Python.”
[Online]. Available: https://github.com/wkentaro/labelme 5, 6

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in Medical Image
Computing and Computer-Assisted Intervention-MICCAI 2015: 18th
International Conference, Munich, Germany, October 5-9, 2015,
Proceedings, Part III 18. Springer, 2015, pp. 234-241. 5

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770-778. 5, 6

M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for

https://www.sciencedirect.com/science/article/pii/S0924271621001994
https://www.sciencedirect.com/science/article/pii/S0924271621001994
https://www.sciencedirect.com/science/article/pii/S111001682100418X
https://www.sciencedirect.com/science/article/pii/S111001682100418X
https://arxiv.org/abs/2209.08176
http://www.blender.org
https://www.openimagedenoise.org/
https://www.openimagedenoise.org/
https://github.com/wkentaro/labelme

convolutional neural networks,” in International conference on
machine learning. PMLR, 2019, pp. 6105-6114. 5, 6

[51] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014. 5

[52] P. Jaccard, “The distribution of the flora in the alpine zone. 1,” New
phytologist, vol. 11, no. 2, pp. 37-50, 1912. 5

	INTRODUCTION
	RELATED WORK
	Synthetic Olive Tree
	Olive Tree 3D Model
	Synthetic Olive
	Olive tree and leaves
	Rendering

	Image-to-Image Translation
	Synthetic Data Color Input Space

	Experiments and Results
	Dataset Overview
	Experiments
	Results
	Discussion

	Conclusion and Future Work
	References

