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Poly-MOT: A Polyhedral Framework For 3D Multi-Object Tracking
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Abstract— 3D Multi-object tracking (MOT) empowers mobile
robots to accomplish well-informed motion planning and nav-
igation tasks by providing motion trajectories of surrounding
objects. However, existing 3D MOT methods typically employ
a single similarity metric and physical model to perform data
association and state estimation for all objects. With large-scale
modern datasets and real scenes, there are a variety of object
categories that commonly exhibit distinctive geometric proper-
ties and motion patterns. In this way, such distinctions would
enable various object categories to behave differently under
the same standard, resulting in erroneous matches between
trajectories and detections, and jeopardizing the reliability
of downstream tasks (navigation, etc.). Towards this end, we
propose Poly-MOT, an efficient 3D MOT method based on the
Tracking-By-Detection framework that enables the tracker to
choose the most appropriate tracking criteria for each object
category. Specifically, Poly-MOT leverages different motion
models for various object categories to characterize distinct
types of motion accurately. We also introduce the constraint of
the rigid structure of objects into a specific motion model to
accurately describe the highly nonlinear motion of the object.
Additionally, we introduce a two-stage data association strategy
to ensure that objects can find the optimal similarity metric
from three custom metrics for their categories and reduce miss-
ing matches. On the NuScenes dataset, our proposed method
achieves state-of-the-art performance with 75.4% AMOTA. The
code is available at https://github.com/lixiaoyu2000/Poly-MOT.

I. INTRODUCTION

Multi-Object Tracking (MOT) is a critical component
of environment perception systems in autonomous robots.
It provides valuable information on the motion of tracked
objects over time, enabling robots to predict the future
motion patterns of surrounding objects effectively. Compared
with 2D MOT [1], [2], [25], 3D MOT [3] offers more
explicit and convenient spatial information about objects,
culminating in more reliable and accurate tracking. Typically,
current 3D MOT techniques can be divided into “Tracking-
By-Detection” (TBD) [4], [5] and “Joint Detection and
Tracking” (JDT) [6]-[8]. Due to the data-driven nature of
JDT, it is generally less precise and robust than TBD, and
consequently, the majority of 3D MOT approaches adhere to
the TBD architecture.

In the most previous works [3], [4], [9], KITTI [10] and
MOT15 [11] are employed to evaluate algorithm perfor-
mance. Under these platforms, trackers are usually required
to track only a single category of objects. Therefore, these
works simply use a single linear motion model and similarity
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Fig. 1.  Trajectory state estimation of our proposed (CTRA and
Bicycle Model) and existing (CA Model) motion model on Car and
Motorcycle. For trackers equipped with different motion models, we truncate
the tracking process from the same timestamp, which means that the
trajectory can receive detection updates before this timestamp. In contrast,
the trajectory can only use historical information to predict the future
state after this timestamp. (a) CTRA Model exhibits a significantly higher
prediction accuracy for Car than other models. This is particularly useful
for recovering historical mismatch trajectories when objects are occluded, or
detectors miss detections. (b) Bicycle Model is more suitable for Motorcycle
due to different object categories exhibiting distinct motion patterns.
metric for state prediction and construct the cost matrix be-
tween trajectories and detections. However, with the advent
of large-scale datasets such as NuScenes [12] and changeable
real scenes, a long-ignored yet fundamental fact must be
carefully considered: there are multiple object categories in
real scenes, and objects of different categories often exhibit
various geometric features and motion patterns. A single pre-
diction and matching criterion is unsuitable for distinct object
categories, which distorts the affinities between trajectories
and detections, resulting in false matches and compromising
the stability of subsequent tasks (navigation, prediction, etc.).
To the best of our knowledge, only a few recent works [4],
[5] have optimized the MOT problem in multi-category
settings. These methods prevent correlation between different
categories by masking [5] or removing [4] invalid costs in
the cost matrix calculated under the same standard. However,
these methods can not tackle the issue of accurate tracking in
multi-category settings fundamentally due to the inaccuracy
of the cost matrix induced by unreliable prediction and
irrationality metric. On the one hand', as shown in Fig. 1,
due to the distinct and nonlinear motion patterns of different
object categories, utilizing the same linear motion model
for state prediction will result in an unreliable estimation
of motion. Moreover, due to variances in geometric features,

n Fig. 1, CA denotes Constant Acceleration, CTRA denotes Constant
Turn Rate and Acceleration
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TABLE I
ABLATION STUDIES USING DIFFERENT SIMILARITY METRICS FOR THE
DISTINCT CATEGORY (FOR Ped AND Bus). AMOTA AND IDS ARE
REPORTED BEST FOR DIFFERENT SIMILARITY METRICS.

Category Similarity Metric AMOTA?T IDS|
gIOU3d 81.7 175
Ped gloUpey 81.2 203
devcl 81.0 220
gloUsq 88.1 2
Bus gloUpey 88.2 2
deyel 87.5 1

different object categories are susceptible to various similar-
ity metrics and correlation thresholds. As presented in Table
, we conduct a simple and intuitive experiment confirming
that a single similarity metric cannot perform well in all
object categories. Thus, precise yet reliable motion prediction
and affinity calculation for various object categories is a vital
step toward deploying 3D MOT methods in real scenes.

To this end, we introduce Poly-MOT, a polyhedral frame-
work for 3D MOT under multi object category scenes fol-
lowing the TBD framework. Specifically, to ensure accurate
motion prediction in such scenes, we introduce geometry
constraints to the motion model and establish multiple mo-
tion models (CTRA and Bicycle model) based on the distinct
features of each object category. For accurate object match-
ing, we design three similarity metrics and then introduce
categorical data association, in which the tracker selects the
optimal similarity metric for different categories to achieve
accurate affinity calculation. We also employ a technique
that combines Non-Maximum Suppression (NMS) and Score
Filter (SF) to preprocess detections at each frame to eliminate
the gap between detection task and tracking task. Finally, we
additionally employ a combined count-based and confidence-
based strategy so that Poly-MOT can handle the lifecycle of
trajectories with various matching statuses.

Poly-MOT is learning-free and not data-driven, using
only detection results as input and achieving state-of-the-art
performance and manageable real-time performance without
substantial computational resources, as shown in Tables
and [11. Thanks to the TBD framework, Poly-MOT achieves
stable tracking performance with multiple 3D detectors (Cen-
terPoint [8], etc.). With 75.4% AMOTA, our technique
achieves state-of-the-art performance on the NuScenes
test set. We anticipate that Poly-MOT can provide an ef-
fective 3D MOT baseline algorithm for the community. The
primary contributions of this work are as follows:

e We propose Poly-MOT, an efficient 3D MOT approach
for multiple object category scenes based on the TBD
framework.

o We introduce geometry constraints to the motion model
and establish multiple motion models (CTRA and Bicy-
cle model) according to the distinct features of different
object categories, enabling capture motion pattern dif-
ferences between categories.

o We design three custom similarity metrics and a novel
two-stage data association strategy to ensure that various
objects can identify the optimal similarity metric for
their categories, thus reducing missing matches.

II. RELATED WORK

3D Multi-Object Tracking. Weng [3] pioneers the ap-
plication of the TBD framework to the 3D MOT method,
using Linear Kalman Filter and 3D IOU to build an advance
and fast 3D MOT system. The TBD framework divides the
tracker into four steps: (1) Receiving and preprocessing the
3D detection, (2) Predicting motion for active trajectories,
(3) Correlating and matching trajectory with detection, (4)
Managing the lifecycle of all state trajectories. Simple-
Track [9] applies simple techniques to analyze and improve
each of these four parts, resulting in impressive tracking
performance. EagerMOT [4] takes the lead in employing
result-level fusion to integrate 2D and 3D detections, im-
proving the robustness of tracker to false negatives from
different sensor modalities. In addition to TBD, the JDT
framework processes tracking and detection tasks in a single
Neural Network(NN). Feature alignment between multiple
modalities is an important yet difficult point of JDT.

Data Association in 3D MOT. Data association is the core
of MQOT, as it is accomplished by calculating a cost matrix
between trajectories and detections with a similarity metric
and then applying a matching algorithm to obtain the final
associations. Geometry-based and appearance-based are two
common types of similarity metrics. The former leverages
location and motion information to boost the performance
under occlusion, and common metrics include 3D IOU [3],
3D GIOU [5], [9]. Appearance-based metrics, which utilize
appearance information, can achieve more robust results in
cases of large distance movement or low frame rate, as
demonstrated in several studies [5], [7], [13]. Multi-modal
3D MOT methods typically use multi-level correlation [4],
[5] (applying multiple metrics to match objects multiple
times) to fuse different modalities and improve performance.
Poly-MOT demonstrates the benefits of multi-level corre-
lation in reducing FN matches in LiDAR-only methods.
Hungarian algorithm [3], [5] and greedy algorithm [8] are
commonly used to solve the cost matrix. A concern is
that existing methods use a single similarity metric for all
object categories, despite the differences in geometric and
appearance features among them. In contrast, Poly-MOT
enables the tracker to select the optimal metric for each
category based on its characteristics.

Motion module in 3D MOT. The motion module pre-
dicts the state of active trajectories, maintaining temporal
consistency with detection. Motion prediction techniques
can be divided into learning-based and filter-based methods.
The former usually uses NN to predict the inter-frame
displacement. CenterPoint [8] uses a center-based detector to
output 3D detections and predicts the displacement of objects
between frames by adding a regression branch. Filter-based
methods use real-world physical models for state transitions,
exhibit better robustness and real-time performance, and are
widely adopted by most methods. Kalman Filter is a widely
used method. Most Filter-based methods typically use CA [5]
or Constant Velocity (CV) [3], [8], [9] model as the motion
model. However, these models assume that the movements
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Fig. 2. The Pipeline Of Our Proposed Method At Frame ¢. (I) Previous active trajectory 73—1 is divided into TtCP;RA and TtEi Ilc according to the
different motion patterns. State predictions for TtC;T;RA and TtB_ IIC are then made based on the distinct and nonlinear motion models using the EKF. (II)
Raw detections output by 3D detector are subjected to NMS and SF to reduce false positives to obtain Dy. (IIT) The prediction states thgl’fA, TtBtﬂ Ci,
and Dy are input to the Class Filter to classify the category. The first association is implemented within each category using the optimal similarity metric
and a category-specific threshold. For unmatched trajectories Ttlfl and unmatched detections D}“, the second association is implemented with a distinct
metric than before and a strict threshold. The final matched pairs DT}™ are used to update the corresponding trajectory. (IV) Dj' are initialized as new
active trajectories. Part of T}* | are discarded based on the count-based strategy, while others are added to the active trajectories again after the confidence

score decays. Still active trajectories will be output to the result file. Eventually, all active trajectories 7% will be passed to the next frame ¢ + 1.

of objects on each coordinate axis are independent, ignor-  B. Multi-Category Trajectory Motion Module
ing nonlinear motion patterns constrained by geometry and
differences in motion patterns across categories. Therefore,
to ensure accurate prediction in multi-category scenes, we
introduce geometry constraints and establish multiple models
based on distinct features of each category.

Most previous methods [5], [9] employ a uniform CA or
CV model to predict the trajectories of all objects, whereas
they fail to capture the highly nonlinear motion features
of objects and ignore the differences in motion patterns
across categories. To address this issue, we propose Multi-
Category Trajectory Motion Module that utilizes different
motion models (CTRA Model and Bicycle Model) for various

Poly-MOT can be divided into four parts: the pre-  object categories to characterize distinct types of motion
processing module, multi-category trajectory motion mod-  accurately. In addition, we also introduce the constraint of the
ule, multi-category data association module, and trajectory  rigid structure of objects into a specific model to accurately

III. METHOD

management module, as shown in Fig. 2. describe the highly nonlinear motion of the object. Notably,
] our motion models are formulated in the East(x)- North(y)-
A. 3D Detector and Pre-processing Module Up(z) coordinate system, which follows the right-hand rule.

Existing 3D detectors [8], [19], [27] generate numerous CTRA Model. For the CTRA model, the turn rate w
low-confidence bounding boxes to ensure high recall, but  and acceleration a of the object are considered constant. As
applying these detections directly to update trajectories can  shown in Fig. , the heading angle and motion pattern
result in severe ID switches (IDS). To tackle this issue, raw  of objects are tightly coupled in the CTRA model, which
detections D must be preprocessed to reduce false-positive ~ means the directions of the heading angle 6, velocity v, and
matches. We apply Non-Maximum Suppression (NMS) to  acceleration a of the object are on the same straight line.
D; at each frame to remove bboxes with high similarity, =~ CTRA model is suitable for car-like objects and pedestrian.
improving precision without significant loss of recall. Nev- We formulate the state of an object trajectory as a 10-
ertheless, each frame of the large-scale dataset (Waymo [14],  dimensional vector T¢TR4 = [2,y,2,v,a,0,w,w,l, h] in
NuScenes [12], etc.) and real scenes usually contains a large ~ the CTRA model, where (x,y, z) represent the location of
number of objects while the number of D) is significant.  the geometric center of objects in the 3D space, (w,l,h)
Directly applying NMS to D; would lead to substantial represent the 3D size of objects.
computational overhead, as illustrated in Table V. Before Bicycle Model. For the Bicycle model, it maintains the
NMS, we apply a filtering process called Score Filter (SF) to  rigid structure of objects and enables the velocity direction
remove detections D; with confidence scores less than §gr.  and heading angle of objects to vary, rendering it suitable
SF can efficiently remove apparent false-positive detections,  for objects that behave like bicycles, as illustrated in Fig.
improving the inference speed of the algorithm. After prepro- . Meanwhile, we assume that the steering angle and
cessing, we obtain D,, which includes the center of geometry  velocity of the object remain constant. The state of the
position (z,y, z), 3D size (width, length, height) (w,[,h), trajectory is also represented by a 10-dimensional vector
heading angle 6, and velocity (v, v,) on the ground plane.  TB1¢ = [2/,y/ 2z, v,a,0,5,w,l,h] , where (2',y) repre-
Note that whether velocity information is included or not sents the location of the gravity center of the object on the
depends on the dataset. ground, § represents the steering angle of the object, the



remaining variables have the same meaning as the variables
in TC'TRA.

Model Establishment and State Prediction. Due to the
nonlinear property of the motion models, we leverage the
Extended Kalman Filter (EKF) to estimate the trajectory
state. The prediction process can be described by:

Tii—1 = f(Ty-1), Pry—1 = EP 1 FF +Q, (D

where T;_; denotes TCTEA or TBIC  depending on the
motion model of objects. P;_1 is the covariance matrix at the
previous moment ¢ — 1. T3 ;1 is the predict state of 7T;_; at
the current moment ¢. () is the process noise, which has an
artificially set value. f(-) is the state transition function that is
established from the motion model, reflecting the changes of
all state variables of the trajectory between two consecutive
frames. F; is the Jacobian matrix obtained through the partial
derivative of f(-) with respect to T;_;.

During the state transition of all motion models, the
variables a, z,w, [, h are assumed to remain constant.

The object location transition process as components of
f() can be formulated as:

to
Tp—1 =Tt +/( ) v(T)cos(n(T))dr, )
t—1)o

to
Brect = o1+ / e@sintr)dr Q)
(t—1)o

where o is the interval between two adjacent frames of the
LiDAR scan. Depending on the choice of motion model, the
geometric center (x,y) or gravity center (x’,y’) of the object
can be represented uniformly by (Z, ). To better illustrate
the state transition process of variables over time in each
motion model, we introduce the time interval At, which is
defined as follows:

At=71—(t—1)o. 4

At is the distance between the integral variable 7 and the
integral lower limit (¢ — 1)o during the integration process.
A tricky problem is that directly setting each variable in (2)
and (3) to be time-varying would result in non-integrable
outcomes. A key insight is to leverage various motion
models to simplify the complex nonlinear motion of objects
to varying degrees, while accurately capturing the distinct
motion patterns of different object categories. The velocity
transition function v(7) is formulated as:

o(r) = {vt_l + aAt

Fig. 3 illustrates the angle 7 between the velocity of the
object and the X-axis of the coordinate system, and its state
transition process is described by:

’Lf T = TC'TRA

if T=Bic O

Zf T = TC’TRA

if T =TBI¢ 7~ ©

(a) CTRA Model

(b) Bicycle Model

Fig. 3. Representation of CTRA Model and Bicycle Model in 2D and
3D space.

where [ represents the slip angle between the velocity and
heading of the object, which can be calculated from assumed
constant steering angle ¢ according to:

1l
Blr) = tan™(Zptan(o(r))), (7

where ~y is the ratio of the wheelbase to object length .
I denotes the distance between the gravity center and the
rear tire of the object, which is artificially set to 0.4-0.5
times the wheelbase. (7) is the embodiment of retaining the
rigid structure of the object, and it also constitutes the major
distinction between CTRA Model and Bicycle Model. The
reason for introducing [ is that the instantaneous center
of the object in the Bicycle Model is not on the body of
the object. In addition, incorporating [ in (7) signifies a
deeper utilization of object observation and state information,
enhancing motion accuracy. However, a crucial observation
that follows is that Bicycle Model is susceptible to erroneous
predictions caused by incorrect object structure information,
thereby rendering it unsuitable for object categories where
detectors tend to produce inaccurate detections.

0(7) represents the heading angle transition function of an
object, which is expressed uniformly in all models as:

O(1) = 0—1 + w(T)AL. 8)

w(7) in (8) describes the turn rate transition function, which
is formulated as:

W1 Zf T = TCTRA
w(r) = {v(f)siln(ﬁ(f)) igr—qoic O

which is actually constant in all motion models. (2)-(9) are
the complete expression of state transition function f(-).

C. Multi-Category Data Repetition Association Module

In the data association process, a crucial but frequently dis-
regarded fact exists: Different object categories are sensitive
to various similarity metrics and association thresholds as
a result of their unique geometric characteristics. However,
most existing 3D MOT methods [3], [9] leverage a single
tracking standard for each category in multi-category scenar-
ios, resulting in inferior tracking performance due to the lack



TABLE II
A COMPARISON OF EXISTING ALGORITHMS APPLIED TO THE NUSCENES TEST SET. THE BEST PERFORMANCE IS MARKED IN RED, THE SECOND IS
MARKED IN BLUE. (BIC, MOTOR, PED, TRA, TRU) REFERS TO (BICYCLE, MOTORCYCLE, PEDESTRIAN, TRAILER, TRUCK).

Method Detector Input Data - AMOTAT IDS| FP| FN|
Overall Bic Bus Car Motor Ped Tra

CAMO-MOT [5] BEVFuison [16] & FocalsConv [17] 2D +3D 753 59.2 77.7 858 78.2 858 723 67.7 324 17269 18192
CBMOT [18] CenterPoint [8] & CenterTrack [20] 2D+3D 681 462 668 833 70.7 823 69.6 57.5 709 21604 22828
EagerMOT [4] CenterPoint [8] & Cascade R-CNN [21] 2D +3D  67.7 583 74.0 81.0 62.5 744 63.6 59.7 1156 17705 24925
Minkowski Tracker [6] Minkowski Tracker [6] 3D 69.8 443 723 839 72.6 76.8 753 634 325 19340 21220
SimpleTrack [9] CenterPoint [8] 3D 66.8 40.7 71.5 823 674 79.6 67.3 58.7 575 17514 23451
OGR3MOT [22] CenterPoint [8] 3D 65.6 38.0 71.1 81.6 640 787 67.1 59.0 288 17877 24013
CenterPoint [8] CenterPoint [8] 3D 65.0 33.1 71.5 81.8 58.7 78.0 69.3 62.5 684 17355 24557
Ours LargeKernel3D [19] 2D+3D 754 582 78.6 86.5 81.0 82.0 75.1 66.2 292 19673 17956

of category-specific pertinence. To address these issues, we
introduce Multi-Category Data Repetition Association Mod-
ule that enables the tracker to choose the optimal similarity
metric from a set of custom multiple metrics for each object
category, thereby improving the accuracy and robustness of
the MOT system. In addition, a two-stage association strategy
based on different similarity metrics is applied to the module
to reduce false negative matches.

First Association. After obtaining 7} ;1 and Dy, affin-
ity between T; ;1 and D, need to be calculated at each
frame ¢. We first design three robust similarity metrics for
distinct object categories to construct the first motion cost
matrix C} € RNetsXNact.tXNerat—1 petween Dy and Tii—1.
Nira,t—1 and Ngg + represent the number of 7; ;—; and Dy,
respectively. N5 is the number of categories in the dataset.
We propose two similarity metrics (11), (12), (13) by the
first time. In addition, we introduce a rotation angle penalty
factor in a specific metric to avoid false-positive associations
in the opposite direction. These three similarity metrics,
including 3D Generalized Intersection over Union (gloUsy),
BEV Generalized Intersection over Union (gloUp.,), and
Euclidean Distance (de,.;), are described as follows:

V(Bl U Bj)

I0Us4(B;, B;) = IoUsg(Bi, B;) + —————92 _ 1,
g10Usa 3) 3 2 Vaanui (B, Bj)
(10)
A(B; U B;

I0Uper (Bi, B;) = IoUper (B;, Bj) + —————2 _ 1,

gl0Usex( 2 0Upen J)+Abevhu,ll(B1iaBj)
(11)
deucl(Bi7Bj) :d(BzaB])*(2_008|A9D7 (12)

d(B;, Bj) = Ygeol B = By |2 + vais| | B** = B2,

(13)
where B is formulated as a high-dimensional vector rep-
resenting the states of 7;; ¢ or D;, which contain the
3D size and 3D center position. [oUsy and [oUy., are
Intersection over Union in the 3D and bird’s-eye view (BEV)
representation space. V(B; U B;) and A(B; U B;) are the
union volume and area of B; and B;. ‘/E),dhu”(Bi,Bj) and
Apevhuii(Bi, Bj) are the convex hulls computed by B; and
Bj; in the 3D and BEV representation space. B*Y* and Bvih

are the vectors containing the 3D center position and 3D size
of B. vgeo and 74;s are geometric and spatial distance ratios
to the overall distance. Af € [0, 7] is the heading angle
difference between B; and B;. ||-||2 is the 2-norm function.

For each category, we obtain the cost matrix C’tl’cls €
RNaet,i:xNira,i-1 by utilizing its optimal-performing similar-
ity metric to compute the affinity of this category between
D¢ and Ttdf_ 1. After aggregating Ctl)cls, we end up with
C}. Hungarian algorithm [15] is employed to match D; and
T;+—1 based on C’tl. To account for the geometric size dif-

ferences between objects of different categories, we employ

1 Neis
(SRR A

to constrain the matching process. After matching, we ob-
tain three classes of matching instances, including matched
pairs DT}™ = {(Dé, T} t—1§ Lo }, unmatched detections
D} C Dy, and unmatched trajectories T}%, C T;_1. D}
and T} will be further associated in the second stage.
Second Association. To reduce false-negative associa-
tions, we use gloUpe, for objects of all categories’ to
construct the cost matrix C7 € RNumdet.tXNumerai—1 pe-
tween D;% and T} in the second stage’. Nymdet,+ and
Numtrat—1 are the number of D}* and T}, respectively.
We use the Hungarian Algorithm with a strict threshold 6,
based on the cost matrix C? to match D} and T}",. After
aggregating the matching results of the two-stage association,
we obtain the final matched pairs DT}", unmatched detec-
tions D C D, and unmatched trajectories 77 ; C T;_;.

different association thresholds 67, = (9

D. Trajectory Management Module

Following most 3D MOT methods [3], [4], the trajectory
management module is also responsible for four key func-
tions, which include trajectory updating, trajectory initializa-
tion, trajectory death, and output file organization.

Trajectory Update. We utilize the detection in DT}™
and the standard update process of EKF to update the state
of the corresponding trajectory and covariance matrix. It is
important to note that in the state-measurement transition

2Costs between different categories are filled with invalid values.

31f an object utilizes gloUpe,, in the first association, then gloUsq will
be applied in the second stage, as the core of multi-stage association is to
use different metrics to perform repeated associations.



TABLE III
A COMPARISON OF EXISTING METHODS APPLIED TO THE NUSCENES VAL SET. ALL MAIN METRICS REPORTED IN COMPETITOR PAPERS ARE LISTED.

Method Detector Input Data AMOTA?T AMOTP| IDS)
CBMOT [18] CenterPoint [8] & CenterTrack [20] 2D + 3D 72.0 48.7 479
EagerMOT [4] CenterPoint [8] & Cascade R-CNN [21] 2D + 3D 71.2 56.9 899

SimpleTrack [9] CenterPoint [8] 3D 69.6 54.7 405
CenterPoint [8] CenterPoint [8] 3D 66.5 56.7 562
OGR3MOT [22] CenterPoint [8] 3D 69.3 62.7 262
Ours CenterPoint [8] 3D 73.1 52.1 281
Ours LargeKernel3D-L [19] 3D 75.2 54.1 252

function h(-) of Bicycle model, the geometric center of
objects should be calculated based on the gravitational center.

Trajectory Initialization. We employ the count-based
approach to initialize D}* as new tentative trajectories Tyep, ;.
If the j-th Tien: is continuously hit in the next Ritpmin
frames, T}, , will change to an activate trajectory and be
merged into still active trajectories.

Trajectory Death. We adopt the count-based scheme to
discard T} ;. Part of the trajectory in T;* ; will be discarded
if it has not been updated in the last max-age frames.
Trajectories that are not deleted are still considered active,
but we penalize the confidence scores of these trajectories
using oy, and the exponential function exp(-).

Result Output. After obtaining all active trajectories T
at the current frame ¢, the updated trajectories (estimated
motion state), newly initialized trajectories, and parts of the
penalized trajectories are output to the result file. Note that,
to reduce false-positive predictions, we only output N,
frames of the penalized trajectories’ predicted state to the
result file, and also apply NMS with 6,,,s = 0.08 to all
output trajectory states.

IV. EXPERIMENTS
A. Datasets

NuScenes. NuScenes [12] contains 850 training sequences
and 150 test sequences, each comprising approximately 40
frames showcasing diverse scenarios such as rainy days and
nights. The keyframes are sampled at a frequency of 2Hz,
and annotation information is provided for each keyframe.
However, this keyframe frequency poses a challenge for
precise motion model prediction, leading to significant inter-
frame displacement. The official evaluator utilizes AMOTA
as the primary evaluation metric [3].

B. Implementation Details

NuScenes. Our tracking method is implemented in Python
under the Intel® 9940X without any GPU. Hyperparameters
are chosen based on the best AMOTA identified in the
validation set. We utilize 0,,,,s = 0.08 for all categories
and 3D detectors. Ogp is detector-specific. ToUpe, is used
as the metric in NMS. During NMS process, objects of
all categories are blended together. We employ Bicycle
model with v = 0.8 for (bicycle, motorcycle) and CTRA
model for the remaining categories. The similarity met-
ric for bus and (bicycle, motorcycle, car, trailer, truck,
pedestrian) are gloUye, and gloUsg, respectively. We ap-
ply 0¢m = (1.6,1.4,1.3,1.3,1.3,1.2,1.7) and max-age =

(10,20, 10, 15,10, 20, 10) for bicycle, motorcycle, bus, car,
trailer, truck, pedestrian and 6, = 1 for all seven categories
in the data association module. For trajectory management,
we set hityin = 0, apyn = 0.05, Npyp = 1.

C. Experimental Results

1) Run-time discussion: To solve the real-time challenge
caused by extensive affinity calculations brought by a large
number of objects, we first proposed the half-parallel” g/oU
operator under the Python implementation. On the NuScenes,
Poly-MOT can run at 3 FPS (Frame Per Second) on Intel
9940X, which has surpassed most advanced 3D MOT meth-
ods (SimpleTrack 0.51 FPS, Minkowski Tracker 1.7 FPS).

2) Comparative Evaluation: We compare Poly-MOT to
published and peer-reviewed state-of-the-art methods on the
test and validation sets of the NuScenes dataset.

NuScenes Test Set. Among all 3D MOT methods, Poly-
MOT ranks first on the NuScenes tracking benchmark test
set, i.e., 75.4% AMOTA, exceeding most 3D MOT methods.
As shown in Table II, Poly-MOT achieves an impressively
low IDS 292 while maintaining the highest AMOTA (75.4%)
among all modal methods, which indicates that Poly-MOT
is capable of achieving stable tracking without loss of recall.
Without any image data as additional input, Poly-MOT still
acquires state-of-the-art performance, surpassing the best-
performing multi-modal tracker CAMO-MOT, which lever-
ages a more superior integrated detector through [16], [17].
Additionally, Poly-MOT outperforms competing algorithms
by a significant margin in the crucial category (Car). Com-
pared to learning-based methods [5], [6], [8], Poly-MOT
incurs minimal computational overhead and delivers a more
impressive performance, highlighting the promising potential
of integrating filter-based 3D MOT methods into practical
robotic systems. Notably, the IDS of Poly-MOT is slightly
inferior to that of OGR3MOT [22]. However, the FN/FP in
Table Il shows that Poly-MOT can offer the same robust
continuous tracking capability without compromising recall.

NuScenes Val Set. As presented in Table III, Poly-
MOT outperforms other trackers in terms of both higher
AMOTA and lower IDS when adopting the same detector
(CenterPoint [8]). Moreover, Poly-MOT yields an incredible
tracking performance when assembled with a more strong
LiDAR-only detector [19], i.e., 75.2% AMOTA, exceeding
the best validation set accuracy reported by most methods.

4Since convex hull and rotation IoU calculations are still serial.



TABLE IV
THE RESULTS OF THE ABLATION STUDY OF EACH MODULE ON THE
NUSCENES VAL SET. OS MEANS ORIGINAL STATE. PRE MEANS
PRE-PROCESSING MODULE. MO MEANS TRAJECTORY MOTION
MODULE. ASS MEANS DATA ASSOCIATION MODULE.

Module AMOTAT IDS] FNJ| FP|

Os 67.4 467 21442 14009

Os + Pre 71.4 374 18099 13299

Os + Pre + Mo 71.9 443 18086 13340

Os + Pre + Ass 72.0 410 15979 15932

Os + Pre + Mo + Ass 73.1 281 17637 13437
TABLE V

THE ABLATION STUDY OF WHETHER OR NOT TO USE SCORE FILTER
AND NON-MAXIMUM SUPPRESSION. RUN-TIME REFERS TO THE
RUNNING TIME OF PRE-PROCESSING MODULE.

Variable AMOTA?T IDS] Run-Time (s) |
NMS + SF 73.1 281 0.055
NMS 71.8 320 0.093
SF 68.6 354 0.008

3) Ablation Studies: In this part, we conduct extensive
ablation experiments to evaluate the individual performance
of proposed modules in Poly-MOT. We select CenterPoint [8]
as the 3D detector and employ CA Model with Linear
Kalman Filter to predict the trajectory state from the Origin
State (OS). We leverage gloUsy and 6 set to 0.14 as the
similarity metric and association threshold, respectively. A
series of experiments are then performed on the NuScenes
validation set using various module combinations.

The effect of Pre-processing Module. The significant
gap between "Os” and ”Os+Pre” in Table IV showcases the
impact of leveraging Pre-processing Module on the overall
performance. We can observe that ”Os+Pre” provides a +4%
AMOTA boost and a 93 IDS drop, resulting in a significant
performance boost. The reason is that SF can filter out low-
score bounding boxes while NMS can remove duplicate
bounding boxes with high confidence, which makes the
remaining bounding boxes have superior quality. In addition,
using SF before NMS brings inference 40% reduction in pre-
processing inference time while boosting AMOTA by 1.3%
compared with only using NMS, as demonstrated in Table

The effect of Multi-Category Trajectory Motion Mod-
ule. In Table [V, we demonstrate the impact of the Multi-
Category Trajectory Motion Module. ~Os+Pre+Mo+Ass”
achieves an AMOTA improvement of +1.1% and an IDS
decrease of 129 compared to “Os+Pre+Ass”. Benefiting
from improved trajectory estimation, we can apply stricter
thresholds to filter FP (-2495) in complex scenes (objects
are dense and numerous, detectors exhibit poor performance,
etc.) to achieve more stable tracking (-129 IDS) without
incurring a significant loss in recall (+1658 FN). In addi-
tion, an intriguing observation is that while ”Os+Pre+Mo”
yields a +0.5% AMOTA boost over ”Os+Pre” alone, it also
causes more ID switches (+69). The key insight is that the
more accurate motion models change the bias distribution
between predictions and ground truths for individual object
categories, which makes a single metric and threshold unable
to accurately capture inter-object affinities, thereby obtaining

TABLE VI
ABLATION STUDIES USING DIFFERENT MOTION MODELS IN
MULTI-CATEGORY (FOR Bic AND Moto). AMOTA AND IDS ARE
REPORTED BEST FOR DIFFERENT MOTION MODULES.

Category  Motion Model AMOTAT IDS| FP| FNJ|
Bicycle 57.1 0 227 765
Bic CTRA 55.4 0 256 747
CA 56.1 1 234 765
Bicycle 77.0 1 121 464
Moto CTRA 73.6 4 154 537
CA 75.1 6 94 547
false matches and leading to IDS. Moreover, Table VI reveals

that using an inappropriate motion model for objects would
decrease tracking performance, underscoring the importance
of carefully deciding the motion model for each category.
The effect of Multi-Category Data Repetition Associ-
ation Module. As shown in Table [V, ”Os+Pre+Mo+Ass”
achieves a +1.2% AMOTA improvement and a -162 IDS
reduction compared to ”Os+Pre+Mo”. This shows our pro-
posed two-stage categorical association strategy can better
capture the affinity between tracklet and detection of each
category, enabling a more accurate matching relationship,
improved tracking results and reduced FN matches.

D. Visualization

We qualitatively compare our Poly-MOT (LiDAR-only
version) and advanced multi-modal 3D MOT method CB-
MOT on the NuScenes val set. As shown in Fig. , when
the object moves intensely and quickly, CBMOT has ID
switches (ID changes from 20 to 247), while the Poly-MOT
can still achieve stable tracking. As shown in Fig. , when
objects are dense and have irregular movement, CBMOT
not only has ID switches (ID changes from 37 to 25) but
also fails to effectively suppress false-positive detection (ID:
231 at Frame 12), while Poly-MOT still maintains stable
tracking. The above comparison results show that Poly-MOT
can alleviate the problem that LiDAR-only trackers cannot
accurately track objects with large inter-frame displacements.
In addition, Poly-MOT can also achieve stable tracking when
the object suffers from occlusion.

V. CONCLUSIONS

In this work, we introduce Poly-MOT, a polyhedral frame-
work for 3D MOT under multi object category scenarios
following the TBD framework. Poly-MOT achieves accurate
matches between tracklets and detections in multi-category
scenarios by ensuring prediction reliability and metric ratio-
nality, including: (1) Two distinct and nonlinear motion mod-
els (CTRA and Bicycle Model) are established to represent
the motion patterns of different object categories; (2) Three
similarity metrics (gIoUsq, gloUpey, deyer) are designed to
calculate the affinity of different object categories. Besides,
a two-stage association strategy and confidence-based pre-
processing module are applied to the tracker to reduce FN
matches and eliminate the gap between detection and track-
ing. Without requiring additional training and GPU, Poly-
MOT achieves state-of-the-art tracking performance with
75.4% AMOTA on the NuScenes dataset while achieving



CBMOT

Our proposed Method

(a) Scenel:Nuscene scene-0524

(b) Scene2:Nuscene scene-0919

Fig. 4. Visualization of comparison results between Poly-MOT and CBMOT [18]. All methods use CenterPoint as a 3D detector. CBMOT simultaneously
uses CenterTrack [20] as a 2D detector for multi-modal fusion.

an impressive inference speed. Our method can be easily
combined with multiple detectors, and we envision it serving
as a general baseline for future 3D MOT methods.
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