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Feedback Motion Prediction for Safe Unicycle Robot Navigation

(Technical Report)

Aykut İşleyen and Nathan van de Wouw and Ömür Arslan

Abstract— As a simple and robust mobile robot base, differ-
ential drive robots that can be modelled as a kinematic unicycle
find significant applications in logistics and service robotics in
both industrial and domestic settings. Safe robot navigation
around obstacles is an essential skill for such unicycle robots to
perform diverse useful tasks in complex cluttered environments,
especially around people and other robots. Fast and accurate
safety assessment plays a key role in reactive and safe robot
motion design. In this paper, as a more accurate and still
simple alternative to the standard circular Lyapunov level sets,
we introduce novel conic feedback motion prediction methods
for bounding the close-loop motion trajectory of the kinematic
unicycle robot model under a standard unicycle motion control
approach. We present an application of unicycle feedback
motion prediction for safe robot navigation around obstacles
using reference governors, where the safety of a unicycle robot
is continuously monitored based on the predicted future robot
motion. We investigate the role of motion prediction on robot
behaviour in numerical simulations and conclude that fast and
accurate feedback motion prediction is key for fast, reactive,
and safe robot navigation around obstacles.

I. INTRODUCTION

Mobile robots play a key role in industrial (e.g., warehouse

robots in logistics [1]) and domestic (e.g., service robots

for household [2]) automation. Due to their simplicity, high

maneuverability, and ease of control and maintenance, differ-

ential drive robots that can be modelled as a simple kinematic

unicycle become a standard choice as a mobile robot base

for many such application settings [3]. Safe, smooth, and

fast navigation around obstacles is a crucial requirement for

such unicycle robots to perform various time-critical tasks in

complex environments, especially around people [4], [5] and

other mobile robots [6]. Motion prediction plays a key role

in safe and smooth mobile robot motion design [4], [7]–[9].

In this paper, we introduce a new family of conic unicycle

feedback motion prediction methods (see Fig. 1) that offers

an accurate and computationally efficient tool for bounding

the closed-loop motion trajectory of a unicycle robot under

a standard unicycle motion control approach towards a given

goal position. We show that such unicycle feedback motion

prediction methods can be effectively used for the fast and

accurate safety assessment of robot motion around obstacles

and so for fast, reactive, and safe robot navigation.

A. Motivation and Relevant Literature

Nonholonomic motion planning for mobile robots is com-

putationally hard [10]. The classical approach for safe mobile
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Fig. 1. Unicycle feedback motion prediction that bounds the close-loop
unicycle motion trajectory (blue line) towards a given goal position (red
point): Lyapunov motion ball (yellow), bounded motion cone (orange), ice-
cream motion cone (green), and truncated ice-cream motion cone (red).

robot navigation follows a two-step approach: first, construct

a collision-free reference path or trajectory, and then execute

it via path following or trajectory tracking control until

faced with a collision [11]. However, such an uncoupled

planning and control approach often suffers from significant

replanning cycles in practice due to its open-loop nature

[12]. Integrated motion planning and control by sequential

composition [13] of positively invariant (e.g., Lyapunov level

or funnel) sets [14] offers a robust and adaptive solution

for safe and smooth feedback motion planning [15]–[18].

However, such integrated planning and control approaches

are usually computationally inefficient and conservative be-

cause finding collision-free invariant sets that cover the entire

collision-free configuration space of a robotic system in an

arbitrary environment is a challenge [16]. In this paper, as an

alternative to conservative Lyapunov level sets, we construct

new analytic conic unicycle feedback motion prediction

methods that can accurately bound the closed-loop unicycle

robot motion under a standard unicycle control approach.

We apply unicycle feedback motion prediction for prov-

ably correct and safe reference motion following (without

replanning) by establishing a continuous bidirectional safety

interface between high-level motion planning and low-level

motion control based on a reference governor and the safety

assessment of predicted future robot motion [19].

Motion prediction of anticipating the future motion of an

autonomous agent plays a key role in the safety assessment,

control, and planning of autonomous robots around obsta-

cles [20]. Most existing motion prediction algorithms use

simple physical motion (e.g., constant velocity, acceleration,

and turning rate) models [21] or pre-defined/learned motion

patterns (a.k.a. motion primitives and maneuvers) [22], [23]

to estimate future system behaviour by either running the

open-loop forward system simulation or performing high-

level motion planning. To close the gap between motion
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prediction and motion control, we consider feedback motion

prediction that aims at finding a motion set that contains the

closed-loop motion trajectory of a dynamical system under a

specific control policy [19], [24]. Reachability analysis offers

advanced computational tools for estimating such motion

sets for complex dynamical control systems associated with

some admissible sets of initial/goal states and control inputs

[25], [26], but often comes with a high computational cost

which limits their applications to real-time, reactive, and safe

robot motion planning and control since mobile robot plat-

forms usually come with limited computational resources.

For globally asymptotically stable autonomous dynamical

systems (with fixed deterministic state-feedback control and

without any noise and disturbance), the notion of forward and

backward reachable sets [27] is trivial because the forward

reachable set corresponds to the system trajectory due to

the autonomous nature of the system dynamics whereas

the backward reachability set is the entire state space due

to the global stability. In this paper, we use the forward

simulation of the stable closed-loop unicycle dynamics as

the baseline ground-truth motion prediction method. In our

numerical simulations, we demonstrate the effectiveness of

the proposed conic feedback unicycle motion prediction

methods for accurately capturing the closed-loop unicycle

motion compared to the forward system simulation and

Lyapunov motion prediction.

Reference governors are add-on constrained control ap-

proaches for pre-stabilized dynamical systems to follow a

given reference motion by minimally modifying the reference

motion such that the expected closed-loop system motion

satisfies system constraints at all times [28]–[30]. The separa-

tion of stability and constraint satisfaction allows for system-

atically applying standard stabilizing robot control methods

to complex constrained application settings. In robotics,

reference governors are applied for safe robot navigation

to separately address global navigation, stability, and safety

requirements at different stages by high-level planning and

low-level control [31]. Reference governors are successfully

demonstrated for safe navigation of fully actuated higher-

order robot systems using Lyapunov invariance sets [19],

[31]–[33]. In this paper, we demonstrate the application of

reference governors for safe unicycle robot navigation around

obstacles with nonholonomic constraints by using unicycle

feedback motion prediction. We also systematically investi-

gate the role of different unicycle motion prediction methods

on the governed robot motion in numerical simulations.

B. Contributions and Organization of the Paper

This paper introduces a family of novel conic feedback

motion prediction methods for the kinematic unicycle robot

model to bound the closed-loop unicycle motion trajectory

under a standard forward motion control approach towards

a goal position in Section II. The proposed conic motion

prediction methods are more accurate than the standard

Lyapunov level sets (see Fig. 1) and are still easy to represent

and compute. In Section III, we present an application

of these unicycle feedback motion prediction methods for

safe robot navigation using a reference governor, where the

safety of the unicycle motion is continuously monitored

using the collision distance of the predicted robot motion. In

Section IV, we provide numerical simulations to demonstrate

the effectiveness of the proposed conic feedback motion

prediction methods compared to Lyapunov level sets and

forward system simulation. We conclude in Section V with

a summary of our contributions and future directions.

II. UNICYCLE DYNAMICS, CONTROL, & PREDICTION

In this section, we briefly describe the kinematic unicycle

robot model and present a unicycle forward motion controller

to navigate towards a given goal position. Then, we provide

several feedback motion prediction methods that bound the

unicycle motion trajectory under the forward motion control.

A. Kinematic Unicycle Robot Model

In the Euclidean plane R
2, we consider a kinematic

unicycle robot whose pose (a.k.a., state and configuration)

is represented by its position x P R
2 and forward orientation

angle θ P r´π, πq that is measured in radians counterclock-

wise from the horizontal axis. The equations of motion of

the kinematic unicycle robot model are given by

9x “ v

„
cos θ

sin θ


and 9θ “ ω (1)

where v P R and ω P R are the scalar control inputs,

respectively, specifying the linear and angular velocity of

the unicycle robot. Hence, by definition, the unicycle robot

model is underactuated (i.e., three state variables, but only

two control inputs) and has the nonholonomic motion con-

straint of no sideway motion, i.e.,

„
´ sin θ

cos θ

T
9x “ 0. We also

assume that the unicycle robot is only allowed to go forward

(i.e., v ě 0), because, for example, its field of sensing

might be restricted to the front direction or it might have

a manipulator arm in the front.

B. Unicycle Forward Motion Control

Based on a standard, globally asymptotically stable uni-

cycle control approach [34], [35], we construct a uni-

cycle forward motion controller, denoted by uypx, θq “
pvypx, θq, ωypx, θqq, that moves the unicycle robot in the

forward direction towards any given goal position y P R
2

by determining the linear and angular velocity inputs as

vypx, θq “ κv max

ˆ
0,

„
cos θ

sin θ

T
py ´ xq

˙
(2a)

ωypx, θq “ κω atan2

„̂
´ sin θ

cos θ

T
py ´ xq,

„
cos θ

sin θ

T
py ´ xq

˙
(2b)

where κv ą 0 and κω ą 0 are positive scalar control

gains for the linear and angular velocity, respectively, and

atan2py, xq is the 2-argument arctangent function that re-

turns the counterclockwise angle (in radians in r´π, πq) from

the horizontal axis to the ray starting from the origin to the

point px, yq in the Euclidean plane.1

As a globally asymptotically stable controller, the unicycle

forward motion control in (2) decreases both the Euclidean



distance and the perpendicular alignment distance to the goal

as well as orients the unicycle robot towards the goal in finite

time and then maintains a persistent goal alignment, which

is formally stated below and essential for unicycle feedback

motion prediction later in Section II-C.

Lemma 1 (Global Stability) The unicycle forward motion

control uy in (2) asymptotically brings all unicycle poses

px, θq in R
2 ˆ r´π, πq to any given goal position y P R

2,

i.e., the closed-loop unicycle trajectory pxptq, θptqq satisfies

lim
tÑ8

xptq “ y. (3)

Proof. See Appendix I-A. �

Lemma 2 (Euclidean Distance to Goal) Under the unicycle

forward motion control uy in (2), the Euclidean distance

}x ´ y} of any unicycle pose px, θq P R
2 ˆ r´π, πq to any

given goal position y P R
2 is decreasing over time, i.e.,

d

dt
}x ´ y}2 “ ´2κv

„̂
cos θ

sin θ

T
py ´ xq

2̇

ď 0. (4)

Proof. See Appendix I-B. �

Lemma 3 (Finite-Time Goal Alignment) The unicycle for-

ward motion control uy in (2) adjusts the unicycle orientation

towards any given goal position y P R
2 in at most 1

κω

seconds, where κω ą 0 is the angular velocity gain, that

is to say, the unicycle pose trajectory pxptq, θptqq starting at

t “ 0 from any initial pose px0, θ0q P R
2 ˆ r´π, πq away

from the goal (i.e., x0 ‰ y) satisfies

„
cos θp 1

κω

q

sin θp 1
κω

q

T
py ´ xp 1

κω

qq ą 0. (5)

Proof. See Appendix I-C. �

Lemma 4 (Persistent Goal Alignment) For any initial unicy-

cle pose px0, θ0q P R
2ˆr´π, πq at t “ 0 that points towards

a given goal position y P R
2, the unicycle forward motion

control (2) keeps the unicycle pose pxptq, θptqq aligned

towards the goal for all future time t ě 0, i.e.,
„
cos θ0
sin θ0

T
py ´ x0q ě 0 ùñ

„
cos θptq
sin θptq

T
py ´ xptqq ě 0, (6)

where the inequalities are strict for x0 ‰ y and xptq ‰ y.

Proof. See Appendix I-D. �

Lemma 5 (Perpendicular Goal Alignment Distance) For any

unicycle pose px, θq P R
2 ˆ r´π, πq that points towards

the goal position y P R
2, the perpendicular goal alignment

distance dypx, θq that is defined as

dypx, θq :“

ˇ̌
ˇ̌
„

´ sin θ

cos θ

T
py ´ xq

ˇ̌
ˇ̌ (7)

1Note that we set ω “ 0 when the robot is at the goal (i.e., x “ y)
to resolve the indeterminacy in the angular velocity since atan2p0, 0q
is undefined [34]. This naturally introduces a discontinuity in control at
the goal position as necessitated by Brockett’s theorem [36]. Otherwise,
the unicycle forward motion control in (2) is Lipschitz continuous almost
everywhere, away from the goal position for any unicycle pose px, θq P

R
2 ˆ r´π, πq that satisfies

„
cos θ

sin θ

T
py ´ xq ‰ ´}y ´ x}.

is decreasing under the unicycle forward control in (2), i.e.,
„
cos θ

sin θ

T
py ´ xq ě 0 ùñ

d

dt
dypx, θq ď 0. (8)

Proof. See Appendix I-E. �

C. Unicycle Feedback Motion Prediction

Feedback motion prediction, which plays a key role in

robot safety assessment and safe robot motion design, aims at

determining a motion range bound (e.g., a positively invariant

Lyapunov level set) on the closed-loop motion trajectory of

a robotic system starting from a known initial state towards

a given goal state under a specific control policy [19], [24].

We now present several feedback motion range prediction

methods that can be used for bounding the closed-loop

motion trajectory of the kinematic unicycle robot model in

(1) under the unicycle forward motion control2 in (2).

1) Circular Motion Range Prediction: A classical ap-

proach for feedback motion prediction design is the use of

invariant Lyapunov level sets for feedback control systems

with known Lyapunov functions [14]. Since the Euclidean

distance of the unicycle position to the goal position is a valid

Lyapunov function for the unicycle forward motion control

(Lemma 2), the closed-loop motion trajectory of the unicycle

robot can be bounded in terms of Euclidean balls [35].

Proposition 1 (Circular Unicycle Motion Prediction) Start-

ing at t “ 0 from any initial pose px0, θ0q P R
2 ˆ r´π, πq,

the unicycle robot position trajectory xptq under the unicycle

forward motion control uy in (2) towards a given goal

y P R
2 is contained for all future times in the circular motion

prediction set Muy,Bpx0, θ0q that is defined as

xptq P Muy,Bpx0, θ0q :“ Bpy, }y ´ x0}q @t ě 0, (9)

where Bpc, ρq :“
 
z P R

2
ˇ̌
}z ´ c} ď ρ

(
is the Euclidean

closed ball centered at c P R
2 with radius ρ ě 0.

Proof. The result directly follows from Lemma 2. �

In addition to being positively invariant [38], the circular

unicycle motion prediction is positively inclusive, see Fig. 2.

Proposition 2 (Positive Inclusion of Circular Motion Predic-

tion) Under the unicycle forward motion control uy towards

a goal position y P R
2, the circular motion prediction set

Muy,Bpx, θq is positively inclusive along the unicycle motion

trajectory pxptq, θptqq, i.e.,

Muy,Bpxptq, θptqq Ě Muy,Bpxpt1q, θpt1qq @t1 ě t. (10)

Proof. See Appendix I-F. �

It is important to remark that the positive inclusion of feed-

back motion prediction ensures that the safety assessment of

the predicted robot motion is consistent for all future times

since the predicted motion range shrinks over time.

2In fact, the proposed unicycle feedback motion prediction methods hold
for any (forward) unicycle control approach that decreases the Euclidean
distance and perpendicular distance to the goal as well as has the finite-
time and persistent goal alignment properties described in Lemmas 2-5. For
example, one can alternatively use the proposed unicycle feedback motion
prediction algorithms for the (forward) unicycle control policy in [37].



(a) (b) (c) (d)

Fig. 2. Positive inclusion of unicycle feedback motion predictions: (a) Circular motion prediction, (b) Bounded conic motion prediction, (c) Ice-cream
motion cone, (d) Truncated ice-cream motion cone. All motion prediction methods, except the bounded conic motion prediction, are positively inclusive.

2) Conic Motion Range Prediction: Although the circular

unicycle motion prediction Muy,Bpx, θq has a simple form

and comes with the positive invariance/inclusion property,

it only depends on the Euclidean distance of the unicycle

position x to the goal position y and it is independent of the

unicycle orientation θ. As an alternative approach, in order

to capture unicycle motion direction better, we introduce a

new conic unicycle motion prediction that bounds the closed-

loop motion trajectory of the unicycle robot model under the

forward motion control based on the goal alignment error.

Proposition 3 (Unbounded Conic Motion Prediction) Start-

ing at t “ 0 from any initial pose px0, θ0q P R
2ˆr´π, πq, the

unicycle position trajectory xptq under the forward motion

control uy in (2) is contained in the unbounded conic motion

prediction set Muy,UCpx0, θ0q, i.e., xptq P Muy,UCpx0, θ0q
for all t ě 0, that is defined as

Muy,UCpx, θq :“

$
&
%
Cpx, y, dypx, θqq, if

„
cos θ

sin θ

T
py´xqě0

Hpx, yq , otherwise
(11)

where Cpa, b, ρq :“
!
a ` αpz ´ aq

ˇ̌
ˇα ě 0, z P Bpb, ρq

)
de-

notes the cone with apex point a P R
2 , base point b P R

2,

and base-distance-to-cone-boundary ρ ě 0, and dypx, θq is

the perpendicular goal alignment distance defined as in (7),

and Hpa, bq :“
!
z P R

2
ˇ̌
pb ´ aq

T
pz ´ aq ě 0

)
is the half-

plane bounded at a P R
2 pointing towards b P R

2.

Proof. See Appendix I-G. �

Note that Cpx, y, dypx, θqq Ď Hpx, yq for any unicycle pose

px, θq P R
2 ˆ r´π, πq, and an interesting special case is that

Cpx, y, dypx, θqq “ Hpx, yq when

„
cos θ

sin θ

T
py´xq “ 0. Hence,

the unbounded motion cone Muy,UCpx, θq is continuous.

Although the unbounded conic motion prediction

Muy,UCpx, θq represents the unicycle motion direction

more accurately compared to the circular motion prediction

Muy,Bpx, θq, the potentially occupied region by the

robot motion is predicted more conservatively due to its

unboundedness (like velocity obstacles [9]). To combine the

nice feature of these motion predictions, we simply take

the intersection of circular and conic motion predictions

and define the bounded conic unicycle motion prediction set

Muy,BCpx, θq for any unicycle pose px, θqPR2 ˆ r´π, πq as

Muy,BCpx, θq :“ Muy,Bpx, θq X Muy,UCpx, θq (12)

“

$
&
%
Bpy, }y ´ x}q

Ş
Cpx, y, dypx, θqq, if

„
cos θ

sin θ

T
py´xq ě 0

Bpy, }y ´ x}q , otherwise

which, by construction, is a valid feedback motion prediction

for the unicycle forward motion control (Propositions 1&3).

The intersection of circular and conic motion predictions

results in an accurate and bounded motion prediction, but

the bounded conic motion prediction Muy,BCpx, θq does not

inherit the positive inclusion property (see Fig. 2) from

the circular motion prediction (Proposition 2), since the

unbounded conic motion prediction is positively variant,

which can be resolved by properly bounding the conic

motion prediction as described below.

3) Ice-Cream-Cone-Shaped Motion Range Prediction: As

opposed to their intersection, an elegant way of combining

circular and conic motion predictions is by bounding the

conic motion prediction Muy,UCpx, θq with the largest cir-

cular motion prediction Bpy, dypx, θqq contained in the cone

Muy,UCpx, θq, which yields a more accurate feedback motion

prediction with a positive inclusion property, see Fig. 2.

Proposition 4 (Ice-Cream-Cone-Shaped Unicycle Motion

Prediction) For any goal position y P R
2 and any initial

unicycle pose px0, θ0q P R
2 ˆ r´π, πq at t “ 0, the

unicycle position trajectory xptq under the forward motion

control uy in (2) is contained for all future times in the

ice-cream-cone-shaped motion prediction set Muy,ICpx0, θ0q,

i.e., xptq P Muy,ICpx0, θ0q for all t ě 0, that is defined as

Muy,ICpx, θq :“

$
&
%
pCpx, y, dypx, θqq, if

„
cos θ

sin θ

T
py´xq ě 0

Bpy, }y ´ x}q , otherwise

where dypx, θq is the perpendicular alignment distance in (7)

and the bounded ice-cream cone pCpa, b, ρq is defined as

pCpa, b, ρq :“
!
a ` αpz ´ aq

ˇ̌
ˇα P r0, 1s, z P Bpb, ρq

)
(13)

“ convpa,Bpb, ρqq. (14)

Here, conv denotes the convex hull operator.

Proof. See Appendix I-H �



Note that pCpx, θ, dypx, θqq Ď Bpy, }y´x}q for any unicycle

pose px, θq P R
2 ˆ r´π, πq where the equality holds for„

cos θ

sin θ

T
py´xq “ 0. Hence, the ice-cream-cone-shaped motion

prediction Muy,ICpx, θq is continuous.

Proposition 5 (Positive Inclusion of Ice-Cream Motion

Cone) For any goal position y P R
2 and any initial unicycle

pose px0, θ0q P R
2 ˆ r´π, πq, the ice-cream-cone-shaped

motion prediction Muy,ICpx, θq is positively inclusive along

the unicycle motion trajectory pxptq, θptqq of the forward

unicycle motion control uy in (2), i.e,

Muy,ICpxptq, θptqq Ě Muy,ICpxpt1q, θpt1qq @t1 ě t. (15)

Proof. See Appendix I-I. �

Finally, the decreasing perpendicular goal alignment dis-

tance (Lemma 5) implies that the signed goal alignment

distance sdypx, θq :“
„

´ sin θ

cos θ

T
py ´ xq has the same sign

under the forward unicycle motion control. Accordingly, the

ice-cream motion cone can be truncated (in half) to obtain a

tighter motion bound with the cost of losing convexity.

Proposition 6 (Truncated Ice-Cream Motion Cone) For any

goal position y P R
2 and any initial pose px0, θ0q P R

2 ˆ
r´π, πq, the forward unicycle motion control uy in (2) keeps

the unicycle position trajectory xptq for all future times t ě 0

inside the truncated ice-cream-cone-shared motion prediction

set Muy,TCpx0, θ0q, i.e., xptq P Muy,TCpx0, θ0q for all t ě 0,

that is defined as

Muy,TCpx, θq “

$
&
%
qCpx, y, θq , if

„
cos θ

sin θ

T
py´xq ě 0

Bpy, }y ´ x}q, otherwise

where the truncated ice-cream cone qCpa, b, θq associated
with apex point a P R

2, base point b P R
2 and boundary

orientation angle θ P r´π, πq is defined in terms of the goal
alignment distance dypx, θq in (7) as

qCpa,b, θq :“ conv

ˆ
a, b, a`

„
cos θ
sin θ

„
cos θ
sin θ

T
pb´aq

˙
Y Bpb, dbpa, θqq.

Proof. See Appendix I-J. �

Proposition 7 (Positive Inclusion of Truncated Ice-Cream

Motion Cone) The truncated ice-cream motion cone is

positively inclusive along the unicycle motion trajectory

pxptq, θptqq of the forward motion control uy in (2), i.e.,

Muy,TCpxptq, θptqq Ě Muy,TCpxpt1q, θpt1qq @t1 ě t. (16)

Proof. See Appendix I-K. �

As a final remark, we find it useful to highlight the

inclusion relation of the bounded unicycle feedback motion

prediction methods, as illustrated in Fig. 1

Proposition 8 For any goal position y P R
2 and any

unicycle pose px, θq P R
2 ˆ r´π, πq, the aforementioned

feedback motion prediction methods for the unicycle forward

motion control uy in (2) satisfy

Muy,TCpx, θqĎMuy,ICpx, θqĎMuy,BCpx, θqĎMuy,Bpx, θq.

Proof. See Appendix I-L. �
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Fig. 3. Safe unicycle navigation framework using feedback motion
prediction and reference governor that establishes a bidirectional safety
interface between high-level motion planning and low-level motion control
based on the predicted unicycle motion relative to the governor position.

III. SAFE UNICYCLE ROBOT NAVIGATION

In this section, we demonstrate an application of unicycle

feedback motion prediction for safe robot navigation using

a reference governor [19]. In brief, the governed feedback

motion design framework [19] allows for extending the

applicability of a reference motion planner that is designed

for the fully actuated kinematic robot model to the nonholo-

nomically constrained kinematic unicycle robot model using

unicycle feedback motion prediction and safety assessment,

as illustrated in Fig. 3.

For ease of exposition, we consider a disk-shaped unicycle

robot of body radius ρ ą 0, centered at position x P W

with orientation θ P r´π, πq, that operates in a known static

closed compact environment W Ď R
2 which is cluttered with

a collection of obstacles represented by an open set O Ă R
2.

Hence, the robot’s free space, denoted by F, of collision-free

unicycle positions is given by

F :“
 
x P W

ˇ̌
Bpx, ρq Ď WzO

(
. (17)

To ensure global navigation between any start and goal

positions in F, we assume the free space F is path-connected.

Moreover, suppose rx˚ : D Ñ R
2 is a Lipschitz continu-

ous reference motion planner for the first-order fully actuated

robot dynamics (i.e., 9x “ rx˚pxq) that asymptotically brings

all robot positions in its positively-invariant collision-free

domain D Ď F to a desired global goal position x˚ P
D while avoiding collisions along the way [31]. For the

kinematic fully-actuated robot model, one can construct such

a reference vector field using off-the-shelf motion planning

algorithms [39], [40]; for example, we use the path pursuit

vector field planner [31] in our numerical simulations in

Section IV. We below describe how to safely follow the

reference vector field planner rx˚ by a kinematic unicycle

robot using a reference governor and the safety assessment

of the predicted unicycle feedback motion.

A. Unicycle Motion Safety Assessment

The availability of a unicycle feedback motion prediction

Muy
px, θq associated with the forward motion control uy

allows one to effectively check the safety of the closed-loop

unicycle motion trajectory xptq, starting at t “ 0 from a

unicycle pose px0, θ0q P W ˆ r´π, πq, towards a give goal

position y P W in a cluttered environment W, because having



feedback motion prediction in the free space implies safe

robot motion, i.e.,

Muy
px0, θ0q Ď F ùñ xptq P F @t ě 0. (18)

Accordingly, under the forward motion control uy, we mea-

sure the safety level σ of unicycle robot motion starting at a

unicycle pose px, θq P R
2ˆr´π, πq towards a goal y P R

2 by

the minimum distance between the predicted unicycle motion

range Muy
px, θq and the free space boundary BF as

σpMuy
px, θqq :“ distpMuy

px, θq, BFq (19a)

:“

$
&
%

min
aPMuy px,θq

bPBF

}a ´ b} , if x P F

0 , otherwise.

(19b)

Here, a safety level of zero means unsafe motion; the higher

the safety level the safer the motion. Note that we consider

being exactly on the boundary of the free space to be unsafe

although it is, by definition (17), free of collisions.

A requirement of the safety measure for governed feed-

back motion design is that σpMuy
px, θqq is a locally Lipschitz

continuous function of the unicycle pose px, θq and the goal

position y [19].

Proposition 9 For any unicycle motion prediction Muy
P 

Muy,B,Muy,BC,Muy,IC,Muy,TC

(
, the safety assessment

σpMuy
px, θqq “ distpMuy

px, θq, BFq is locally Lipschitz.

Proof. See Appendix I-M. �

B. Unicycle-Governor Navigation Dynamics

The safety assessment of predicted unicycle motion allows

us to properly adapt a reference vector field planner rx˚

for safe unicycle navigation via a reference governor. A

reference governor is a first-order dynamical system (e.g.,

a virtual fully actuated robot) with position y P R
2 that

follows the reference planner rx˚ : D Ñ R
d towards the

goal x˚ P D Ď F as close as possible, based on the safety

level σpMuy
px, θqq of the predicted unicycle motion starting

from px, θq P R
2 ˆ r´π, πq towards the governor position y.

Accordingly, for any choice of bounded unicycle feedback

motion prediction Muy
associated with the forward motion

control uypx, θq “ pvypx, θq, ωypx, θqq in (2), based on a

standard form of the reference governor dynamics [19], [31],

we design the unicycle-governor navigation dynamics as:

9x “ vypx, θq
„
cos θ

sin θ


, (20a)

9θ “ ωypx, θq, (20b)

9y “ κgΠBp0,σpMuy px,θqqprx˚pyqq, (20c)

where κg ą 0 is a governor control gain, ΠApbq :“
arg minaPA }a´ b} denotes the metric projection of a point

b onto a closed set A, and Bp0, σq is the Euclidean ball

centered at the origin with radius σ ě 0. Our design ensures

that the governor is only allowed to move according to

the reference planner rx˚ if the robot’s motion relative to

the governor is predicted to be safe, i.e., σpMuy
px, θqq “

distpMuy
px, θq, BFq ą 0. Also, note that the right-hand side

of the reference governor dynamics in (20c) is Lipschitz

continuous since both the safety level σpMuy
px, θqq and the

reference planner rypyq are Lipschitz.

Proposition 10 (Safe & Stable Unicycle-Governor Naviga-

tion) Starting from any unicycle pose px, θq P R
2 ˆ r´π, πq

and any governor position y P R
2 with a strictly positive

safety level σpMuy
px, θqq ą 0, the unicycle-governor dy-

namics in (20) asymptotically bring the unicycle robot and

the governor to the global goal x˚ according to the reference

vector field rx˚ with no collisions along the way.

Proof. See Appendix I-N. �

IV. NUMERICAL SIMULATIONS

In this section, we provide numerical simulations3 to

demonstrate safe unicycle robot navigation around obstacles

using a first-order path pursuit planner as a reference motion

planner, where the safety assessment of robot motion is

performed based on unicycle feedback motion prediction. We

also systematically investigate the role of feedback motion

range prediction on governed unicycle navigation motion.

As a baseline ground-truth motion prediction, we use the

forward simulation of the closed-loop unicycle navigation

dynamics in (20) towards the governor position.

A. Path Pursuit Reference Planner

As a reference motion planner, we consider the “move-to-

projected-path-goal” navigation policy in [31] that constructs

a first-order vector field around a given navigation path based

on a safe pure pursuit path following approach [41].

Let P : r0, 1s Ñ F̊ be a continuous navigation path inside

the free space interior F̊, either generated by a standard path

planner [39] or determined by the user, that connects the

start point Pp0q to the end point Pp1q “ y. Accordingly,

the first-order “move-to-projected-path-goal” law (a.k.a. path

pursuit reference planner) rP : DP Ñ R
d is defined over its

positively invariant (Voronoi) domain DP [31], which is the

generalized Voronoi cell of P in F,

DP :“
 
q P F

ˇ̌
distpq,Pq ď distpq, BFq

(
, (21)

as

9y “ rPpyq “ ´κPpy ´ P
˚pyqq, (22)

where κP ą 0 is a constant gain and the “projected path

goal”, denoted by P˚pyq, is determined as

P
˚pyq :“P

´
max

 ́
αPr0,1s

ˇ̌
PpαqPBpy,distpy, BFqq

(̄¯
. (23)

By construction, for piecewise continuously differentiable

navigation paths, the path pursuit planner rP in (22) is locally

3 For all simulations, we set the linear and angular velocity gains κv “ 1

and κω “ 1.5, the path pursuit planner gain κP “ 1, and the governor gain
κg “ 4. All simulations are obtained by numerically solving the feedback
unicycle-governor dynamics using the ode45 function of MATLAB. Please
see the accompanying video for the animated robot motion. The open-
source code for our MATLAB and ROS implementations is available at
https://github.com/core-robotics-research/unicycle motion

control prediction.



(a) (b) (c) (d) (e)

Fig. 4. Safe unicycle robot navigation in (top) a corridor environment and (bottom) an office-like cluttered environment using a path-pursuit reference
vector field (red arrows) constructed around a piecewise linear reference path (red line) towards a goal position (red circle). The safety of the unicycle
motion (blue line) is constantly verified relative to the governor motion (green line) using (a) circular, (b) bounded conic (c) ice-cream-cone-shaped, (d)
truncated ice-cream-cone-shaped, (e) forward-simulation-based motion predictions, where the unicycle speed is indicated by bars.

Fig. 5. Unicycle speed profile during safe navigation in (left) a corridor
environment and (right) an office-like cluttered environment for different
unicycle feedback motion prediction methods: circular motion ball MB,
bounded motion cone MBC, ice-cream motion cone MIC, truncated ice-
cream motion cone MTC, forward simulation MFS.

Lipschitz continuous and inward-pointing on its domain

boundary BDP, and it is asymptotically stable at Pp1q “ y

whose domain of attraction includes the domain DP [31].

B. Safe Unicycle Navigation in a Corridor Environment

As a first example, we consider safe unicycle navigation in

a corridor environment since safe and fast robot motion con-

trol in such tight spaces is challenging [32]. In Fig. 4 (top),

we illustrate the resulting unicycle position trajectories and

speeds, where the safety of robot motion relative to the

governor is constantly monitored using forward simulation

and circular and conic motion prediction methods presented

in Section II-C. As expected, the robot can reach the desired

destination of the path pursuit reference planner irrespective

of the motion prediction method, but the resulting robot

motion significantly differs in terms of robot speed and so

travel time, see Fig. 5. As seen in Fig. 1, Lyapunov-based

circular motion prediction is more conservative in estimating

future robot motion because conic motion prediction methods

have a stronger dependency on unicycle position and orien-

tation whereas the circular motion prediction method only

depends on the unicycle position. As a result, conic motion

prediction methods always yield faster unicycle robot mo-

tion. We observe that the unicycle robot navigation with the

circular motion prediction is more cautious about sideways

collisions with corridor walls. The main difference between

the bounded motion cone and the ice-cream motion cone

is observed when the robot approaches a turn around the

end of a straight corridor, where the relatively conservative

bounded cone motion prediction slows the robot down more

than the ice-cream-shaped conic motion prediction. As seen

in Fig. 5, there is no significant difference between the ice-

cream motion cone and its truncated version since both of

them accurately predict the closed-loop unicycle motion. As

expected, forward simulation achieves the fastest navigation

time and average speed because forward simulation corre-

sponds to the exact feedback motion prediction with a high

computational cost. We observe in Fig. 5 that compared to

the Lyapunov motion prediction, the proposed conic unicycle

feedback motion prediction methods can more accurately

capture the closed-loop unicycle motion and so can signif-

icantly close the performance gap with the exact forward-

simulation-based motion prediction.

C. Safe Unicycle Navigation in a Cluttered Environment

To demonstrate how motion prediction plays a critical role

in adapting unicycle motion around complex obstacles, we

consider safe robot navigation in an office-like cluttered en-

vironment, illustrated in Fig. 4 (bottom). In such an environ-

ment, one might naturally expect that the robot slows down

while making a turn around obstacles and speeds up if there

is a large opening in front of the robot. Our numerical studies

show that feedback motion prediction significantly influences

governed robot motion. Conservative (e.g., circular) motion

prediction often tends to slow down robot motion because

the predicted robot motion cannot be accurately related to the

environment. As seen in Fig. 4, circular motion prediction is

limited in adapting robot motion around obstacles, whereas

conic motion prediction methods allow the robot to leverage

available space for faster navigation without compromising

safety since conic motion prediction methods can capture

robot motion more accurately. Naturally, the exact forward-



simulation-based motion prediction offers further improved

adaptation to obstacles at a higher computational cost. Over-

all, accurate motion prediction is crucial for generating safe

and fast robot motion around complex (potentially dynamic)

obstacles. To our knowledge and experience, the ice-cream

motion cone is currently the best analytic unicycle feedback

motion prediction method for safe and fast unicycle robot

navigation around obstacles.

V. CONCLUSIONS

In this paper, we introduce novel conic feedback motion

prediction methods for bounding the close-loop motion tra-

jectory of the kinematic unicycle robot under a standard

forward motion control policy. The proposed conic motion

prediction methods are significantly more accurate in esti-

mating unicycle motion compared to the classical Lyapunov-

based circular motion prediction because our conic motion

prediction methods depend both on the unicycle position and

orientation whereas the circular Lyapunov motion prediction

only uses the unicycle position. Using reference governors,

we apply these unicycle motion prediction methods for

the safety assessment of robot motion around obstacles for

safe robot navigation. We observe in our numerical studies

that the proposed analytic conic unicycle motion prediction

performs as well as the forward system simulation at a

significantly lower computational cost, which is essential for

fast, reactive, and safe robot navigation around obstacles.

Our current work in progress focuses on the sensor-based

application of unicycle feedback motion prediction in real

hardware experiments, especially for safe robot navigation

in unknown dynamic environments [35]. Another promising

research direction is the use of unicycle feedback motion pre-

diction in multi-robot navigation and crowd simulation [42].

We actively work on the design of new feedback motion

prediction methods for nonholonomically constrained robotic

systems such as autonomous vehicles and drones.
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APPENDIX I

PROOFS

A. Proof of Lemma 1

Proof. The result follows from the fact that the unicycle

forward motion control turns the robot towards the goal

in finite time (Lemma 3) and maintains its goal alignment

(Lemma 4) so that the Euclidean distance to the goal strictly

decreases until the robot reaches the goal (Lemma 2). �

B. Proof of Lemma 2

Proof. The result can be verified using the unicycle dynamics

in (1) and the unicycle forward motion control in (2) as

d

dt
}x ´ y}2 “ 2v

„
cos θ

sin θ

T
px ´ yq

“ 2κv max

ˆ
0,

„
cos θ

sin θ

T
py ´ xq

˙„
cos θ

sin θ

T
px ´ yq

“ ´2κv max

˜
0,

„̂
cos θ

sin θ

T
py ´ xq

2̇
¸

“ ´2κv

„̂
cos θ

sin θ

T
py ´ xq

2̇

ď 0. �

C. Proof of Lemma 3

Proof. For any unicycle pose px, θq P R
2 ˆ r´π, πq with„

cos θ

sin θ

T
py ´ xq ď 0 and x ‰ y, the linear velocity input

is zero, i.e., vypx, θq “ 0, and the angular velocity input

satisfies |ωypx, θq| ě κω
π
2

. Moreover, since the unicycle

forward motion control changes the unicycle orientation

along the geodesic (i.e., shortest) angular path towards the

goal, the maximum required angular rotation is π
2

in order

to align the unicycle forward direction towards the goal such

that

„
cos θ

sin θ

T
py ´ xq ą 0. Hence, the result holds. �

D. Proof of Lemma 4

Proof. If the unicycle orientation is perpendicular to the

goal direction, i.e.,

„
cos θ

sin θ

T
py ´ xq “ 0, then the time rate

of change of the goal alignment is nonnegative under the

unicycle forward motion control, i.e.,

d

dt

„
cos θ

sin θ

T
py ´ xq “ ω

„
´ sin θ

cos θ

T
py ´ xq ´ v

“ κω

π

2
}y ´ x} ě 0

since the linear and angular velocity satisfies v “ 0 and

ω “ sgn
„̂

´ sin θ

cos θ

T
py ´ xq

˙
κω

π
2

for

„
cos θ

sin θ

T
py´xq “ 0, where

sgn denotes the sign function. Therefore, away from the

goal position, the unicycle forward motion control strictly

maintains the robot’s goal alignment once it strictly points

towards the goal, which completes the proof. �

E. Proof of Lemma 5

Proof. The time rate of change of the squared perpendicular

goal alignment distance d2ypx, θq w.r.t. the unicycle dynamics

in (1) under the unicycle forward control in (2) is given by

d

dt
d2ypx, θq “ ´2ω

„
´ sin θ

cos θ

T
py ´ xq

„
cos θ

sin θ

T
py ´ xq

“ ´2κωφ sinφ cosφ}y ´ x}2

where the angular goal alignment error φ is defined as

φ :“ atan2

„̂
´ sin θ

cos θ

T
py ´ xq,

„
cos θ

sin θ

T
py ´ xq

˙

and, by definition, it satisfies for x ‰ y that

cosφ “
„
cos θ

sin θ

T y ´ x

}y ´ x}
and sinφ “

„
´ sin θ

cos θ

T y ´ x

}y ´ x}
.

Moreover, φ sinφ ě 0 and cosφ ě 0 for

„
cos θ

sin θ

T
py´xqě0,

because it follows by definition of atan2 that φ P
“
´π

2
, π
2

‰

when

„
cos θ

sin θ

T
py ´ xq ě 0. Thus, the result holds. �

F. Proof of Proposition 2

Proof. The result directly follows from Lemma 2 since the

Euclidean distance to the goal is decreasing, i.e., }y´xptq} ě
}y ´ xpt1q}, and so

Muy,Bpxptq, θptqq “ Bpy, }y ´ xptq}q

Ě Bpy, }y ´ xpt1q}q “ Muy,Bpxpt1q, θpt1qq.�

G. Proof of Proposition 3

Proof. Since Bpy, }y ´ x0}q Ď Hpx0, yq, it follows from

Proposition 1 that xptq P Hpx0, yq for all t ě 0. Hence, in

the rest of the proof, we consider the case

„
cos θ0
sin θ0

T
py´x0qě0.

If

„
cos θ0
sin θ0

T
py ´ x0q ě 0, then

„
cos θptq
sin θptq

T
py ´ xptqq ě 0 for

all t ě 0 because the unicycle forward motion control main-

tains a persistent goal alignment (Lemma 4). Moreover, the

unicycle forward motion control decreases the perpendicular

goal alignment distance at any goal-oriented unicycle pose,

i.e., d
dt
dypx, θq ď 0 when

„
cos θ

sin θ

T
py ´ xq ě 0 (Lemma 5).

Hence, by the definition of the cone, we have

Cpxptq, y, dypxptq, θptqqq Ď Cpxptq, y, dypx0, θ0qq. (24)



because Cpa, b, ρq Ď Cpa, b, ρ1q for any ρ ď ρ1.

When

„
cos θptq
sin θptq

T
py´xptqq ě 0, by the cone definition, the

unicycle velocity 9xptq “ vypxptq, θptqq
„
cos θptq
sin θptq


satisfies

xptq ` 9xptq P Cpxptq, y, dypxptq, θptqqq (25)

because the linear velocity input vypxptq, θptqq in (2) is

nonegative. Therefore, we have from (24) that

xptq ` 9xptq P Cpxptq, y, dypx0, θ0qq (26)

which is to say, the unicycle velocity 9xptq at position

xptq points towards the ball Bpy, dypx0, θ0qq that is con-

tained inside the convex cone Cpx0, y, dypx0, θ0qq. Hence,

if the unicycle position trajectory xptq reaches the bound-

ary of the cone Cpx0, y, dypx0, θ0qq, the unicycle velocity

9xptq points inside the cone Cpx0, y, dypx0, θ0qq and so the

unicycle position xptq stays in Cpx0, y, dypx0, θ0qq for all

t ě 0 since Bpy, dypx0, θ0qq Ď Cpx0, y, dypx0, θ0qq and

Cpx0, y, dypx0, θ0qq is convex. �

H. Proof of Proposition 4

Proof. For any initial unicycle pose px0, θ0q P R
2 ˆr´π, πq,

we have from Proposition 1 that xptq P Bpy, }y ´ x0}q.

For any initial unicycle pose px0, θ0q P R
2 ˆ r´π, πq

with

„
cos θ0
sin θ0

T
py ´ x0q ě 0, we have from Proposi-

tion 3 that the unicycle position trajectory xptq is con-

tained in the unbounded cone Cpx0, y, dypx0, θ0qq. Note

that Bpy, dypx0, θ0qq is the largest ball centered at the

goal position y and contained in Cpx0, y, dypx0, θ0qq. The

removal of Bpy, dypx0, θ0qq divides Cpx0, y, dypx0, θ0qq into

a bounded and an unbounded part which are disconnected.

Hence, since the unicycle forward motion control is globally

asymptotically stable at the goal position y (Lemma 1),

the unicycle position trajectory xptq (starting at x0 in the

bounded part) eventually enters and stays in Bpy, dypx0, θ0qq
(Lemma 2), without crossing to the other unbounded side

of the cone Cpx0, y, dypx0, θ0qq. Therefore, the unicycle

position trajectory xptq is contained in the bounded cone
pCpx0, y, dypx0, θ0qq “ convpx0,Bpy, dypx0, θ0qqq for all t ě
0, which completes the proof. �

I. Proof of Proposition 5

Proof. Since the unicycle forward motion control ensures

a persistent goal alignment (Lemma 4), the unicycle motion

trajectory pxptq, θptqq starting at t “ 0 might violate the goal

alignment until a finite time t̂ (Lemma 3) such that
„
cos θptq
sin θptq

T
py ´ xptqq ă 0 @t ă t̂ (27)

„
cos θptq
sin θptq

T
py ´ xptqq ě 0 @t ě t̂ (28)

For 0 ď t ď t1 ă t̂, it inherits the positive inclusion property

from the circular motion prediction (Proposition 2), i.e.,

Muy,ICpxptq, θptqq “ Bpy, }y ´ xptq}q

Ě Bpy, }y ´ xpt1q}q “ Muy,ICpxpt1q, θpt1qq

since the distance to the goal is decreasing (Lemma 2).

For t̂ ď t ď t1, the positive inclusion property can be

observed using Proposition 4 as

Muy,ICpxptq, θptqq “ pCpxptq, y, dypxptq, θptqqq (29)

Ě pCpxpt1q, y, dypxptq, θptqqq (30)

Ě pCpxpt1q, y, dypxpt1q, θpt1qqq (31)

“ Muy,ICpxpt1q, θpt1qq (32)

because xpt1q P Muy,ICpxptq, θptqq and the perpendicular

goal alignment distance is decreasing (Lemma 5).

Therefore, the results follows since pCpx, θ, dypx, θqq “

Bpy, }y ´ x}q when

„
cos θ

sin θ

T
py ´ xq “ 0. �

J. Proof of Proposition 6

Proof. We provide a sketch of the proof. For any initial

condition px0, θ0q P R
2ˆr´π, πq with

„
cos θ0
sin θ0

T
py´x0q ă 0,

the result directly follows from Proposition 1. For any initial

pose px0, θ0q P R
2 ˆ r´π, πq with

„
cos θ0
sin θ0

T
py ´ x0q ě 0,

the unicycle forward motion control maintains the goal

alignment along the unicycle motion trajectory pxptq, θptqq
for all future times t ě 0 (Lemma 4). Since the perpendicular

alignment distance dypxptq, θptqq is decreasing (Lemma 5),

the signed perpendicular alignment distance dypxptq, θptqq
has the same sign for all t ě 0. Hence, if the unicycle

position trajectory xptq crosses the boundary of qCpx0, y, θ0q
outside Bpy, dypx0,θ0qq, then the unicycle velocity 9xptq

points inside qCpx0, y, θ0q since sdypxptq, θptqq has the same

sign with sdypx0, θ0q and 9xptq points in the direction of

Bpy, dypx0, θ0qq as discussed in the proof of Proposition

3. Therefore, due to the global asymptotic stability of the

forward motion control (Lemma 1) and the definition of
qCpx0, y, θ0q, the unicycle position trajectory xptq enters and

stays in the positively invariant Bpy, dypx0, θ0qq for all future

times (Proposition 1). Thus, the result follows. �

K. Proof of Proposition 7

Proof. The proof follows the same line of reasoning as the

proof of Proposition 5 where one needs to use the truncated

ice-cream cone qCpx, y, θq instead of the ice-cream cone
pCpx, y, dypx, θqq. �

L. Proof of Proposition 8

Proof. For

„
cos θ

sin θ

T
py ´ xq ă 0, the result simply holds

because all motion prediction methods returns Bpy, }y´x}q.

Otherwise, by definition, one has for

„
cos θ

sin θ

T
py´xq ě 0 that

qCpx, y, θq Ď pCpx, y, dypx, θqq

Ď Cpx, y, dypx, θqq X Bpy, }y ´ x}q

Ď Bpy, }y ´ x}q. �



M. Proof of Proposition 9

Proof. The unicycle feedback motion predictions

Muy,B,Muy,BC,Muy,IC,Muy,TC can be described as

a finite collection of circles and triangles whose parameters

(e.g., center, radius, and vertices) are a smooth function

of the unicycle pose px, θq and the goal y. Hence, these

feedback motion prediction sets can be expressed as a finite

collection of an affine transformation of some fixed sets

(e.g., the unit ball/ simplex) based on a smooth function

of the unicycle pose px, θq and the goal y. Therefore,

the associated safety level measures are locally Lipschitz

continuous since the minimum set distance is Lipschitz

continuous under affine transformations (see Lemma 1 in

[19]). �

N. Proof of Proposition 10

Proof. The result directly follows from the safety and stabil-

ity of the governor feedback motion design framework [19]

since i) the unicycle forward motion control uy is Lipschitz

continuous almost everywhere and globally asymptotically

stable at y (Lemma 1), ii) the feedback motion predic-

tion Muy
pθ, xq is radially bounded relative to the governor

position y (Proposition 8), and iii) it induces a Lipschitz

continuous safety level σpMuy
pθ, xqq (Proposition 9). �
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