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Abstract— Multi-Agent Reinforcement Learning (MARL)
has become a promising solution for constructing a multi-
agent autonomous driving system (MADS) in complex and
dense scenarios. But most methods consider agents acting
selfishly, which leads to conflict behaviors. Some existing works
incorporate the concept of social value orientation (SVO) to
promote coordination, but they lack the knowledge of other
agents’ SVOs, resulting in conservative maneuvers. In this
paper, we aim to tackle the mentioned problem by enabling the
agents to understand other agents’ SVOs. To accomplish this,
we propose a two-stage system framework. Firstly, we train a
policy by allowing the agents to share their ground truth SVOs
to establish a coordinated traffic flow. Secondly, we develop a
recognition network that estimates agents’ SVOs and integrates
it with the policy trained in the first stage. Experiments
demonstrate that our developed method significantly improves
the performance of the driving policy in MADS compared to
two state-of-the-art MARL algorithms.

I. INTRODUCTION

The self-driving technology is widely regarded as a
means to improve the safety and efficiency of transportation,
leading to an increasing number of autonomous vehicles
undergoing tests in the context of multi-agent autonomous
driving systems (MADSs) [1]. However, current MADSs
encounter difficulties operating in complex environments,
including highway merging and bottleneck situations. In
these scenarios, road users’ actions affect others’ behaviors,
and a tiny conflict could lead to the decay of traffic efficiency.
We aim to address the challenge and design an efficient and
safe MADS in these traffic environments.

To this end, we summarize several learning paradigms.
The rule-based approaches use manual rules or classical
traffic models [2], [3] but have limitations in complex traffic
scenarios. Multi-Agent Reinforcement Learning (MARL)
holds great potential and demonstrates positive outcomes
[4], [1], [5]. As depicted in Fig. 1, most MARL-based
MADSs consider agents acting selfishly, producing egoistic
behaviors that harm the whole efficiency. To address this
issue, several works [6], [7] introduce the concept of Social
Value Orientation (SVO) [8], which measures the degree
of selfishness or altruism of the agent by weighting its
rewards with those of others, to promote socially compatible
behavior. However, these methods do not know SVOs
of other agents and produce conservative behaviors. It is
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Fig. 1: Illustration comparing (a) Classical MARL-based
approach, (b) MARL with SVO, and (c) our recognition-
based policy to have knowledge of other agents’ SVOs, thus
letting agents make SVO-informed decisions.

important to note that social preferences, referred to as
SVOs, can vary among individuals and significantly affect
the interactions between agents [9], and neglecting to account
for the SVO can negatively impact the safety and efficiency
of traffic flow [8].

Due to this limitation, in our method, agents are able
to understand surrounding agents’ SVOs, thereby enabling
themselves to make SVO-informed driving, as shown in
Fig. 1 (c). We start by adopting the MARL approach
and incorporating SVO to model MADS. Specifically,
we introduce a two-stage training framework. Firstly, we
train a policy of actual SVOs, which are the inner
parameters of agents to build up a coordinated traffic
flow. However, obtaining SVOs from other agents poses
a challenge as they are generally considered private
information. Additionally, this paper considers the scenario
of communication breakdown. Hence, in the second stage,
we train a recognition policy that can recognize other agents’
SVOs and integrate the recognition policy with the policy
learned in the first stage. The performance of the two-
stage policy is close to that of directly knowing the true
SVOs. Our experiments explore the effect of varying levels
of knowledge among agents on system-level performance
metrics, revealing that knowing SVOs leads to more effective
and coordinated driving among agents.

To summarize, the main contributions of this paper include
the following:
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• A two-stage training procedure by knowing the SVOs
of agents in advance to build up a first-stage MADS,
then estimating the SVOs to build up the final MADS.

• A SVO recognition framework that leverages the power
of self-attention models to tackle complex driving
environments. This framework seamlessly integrates
multiple sources of information to obtain accurate
estimations.

• Our proposed approach for MADS is validated on
a simulation environment and compared against two
state-of-the-art MARL-based methods. The evaluation
results demonstrate that our method outperforms others
in terms of performance.

II. RELATED WORKS

In this section, we review relevant MARL approaches in
the context of MADS. We also discuss recent techniques
used to generate heterogeneous driving behavior and online
parameter estimation approaches for navigation.

A. Deep Reinforcement Learning in MADS

The application of Multi-Agent Reinforcement Learning
(MARL) produces promising outcomes in MADS. Authors
of [4] apply the DRL method to the problem of forming long-
term driving strategies while ensuring functional safety, and
a hierarchical temporal abstraction is introduced to reduce
the variance of the gradient estimation. Palanisamy et al.
[5] provide a simulation platform and a taxonomy of multi-
agent learning environments to help further research. Wang
et al. [10] utilize graph attention networks in the navigation
setting of MARL for mixed-autonomy cooperation. Liu
et al. [11] propose a distributed training framework for
deep Q-networks to deal with the multi-vehicle platooning
problem. [12], [13], [7] incorporate SVO to acquire socially
compliant behavior, and the third paper obtains better results
using a multi-agent actor-critic algorithm. Dai et al. [14]
dynamic change SVOs for interacting agents in each episode.
Peng et al. [6] use the coordination factor to facilitate
the coordination of agents at both local and global levels
in fully autonomous traffic flow. We follow this approach
by incorporating SVO. However, we design a recognition
framework to know other agents’ SVOs.

B. Heterogeneity of Vehicle Agents

Considerable methods design heterogeneous agents having
diverse driving styles to reflect real-world driving scenes.
The intelligent driver model (IDM) [2] and the MOBIL
lane-changing model are often combined as a model of
human drivers [3]. Furthermore, some approaches adjust the
IDM-MOBIL model’s parameters (e.g., politeness factor)
to get different levels of aggressiveness. Saxena et al.
[15] modify IDM to include a stop-and-go behavior
and diverse cooperativeness. Mavrogiannis et al. [16]
present an algorithm to conduct behavior-rich simulation
consisting of egoistic and conservative agents. [17], [18],
[8], [19] follow a weighted cost function, and varied weight
metrics characterizes the difference between individuals,

and the weights can be manually tuned or apply Inverse
Reinforcement Learning (IRL) to learn from real-human
data. Schwarting et al. [8] also preferably employ SVO in
autonomous driving, determining the degree of competitive
and prosocial. And many researchers integrate the concept
of SVO into their works [6], [7], [17], [20], [21], [22], [23].

C. Online Parameter Estimation
Several works estimate social preferences in driving. [24],

[25] use online filtering techniques to estimate parameters
in IDM. Authors of [26] use an unscented Kalman filter
to iteratively update a Bayesian estimate of other agents’
cost function parameters. Li et al. [22] identify other
drivers’ driving preferences by estimating the SVOs. [8], [21]
estimate the SVO of the agent to improve predictions and
prove essential assets for interactive driving. Wang et al.
[17] allow agents to infer other road users’ characteristics
include egoism, courtesy, and confidence. However, these
model-based methods assume that the agent fully knows the
state transition function or other agents’ objective functions.
But what if the function is a black box, or more precisely, the
internals of the environment will be unknown to an agent?
For example, give random discrete estimation values of one
objective, and each value needs to go through the black
box and get the outcome, which means running a significant
number of parallel processes to get the running results, which
is costly to call. However, our policy can handle the black-
box environment with dense agents as we do not need the
objective or transition function.

III. METHOD

Based on the discussion above, we propose a two-stage
strategy to solve MADS problem using MARL: (i) train
a policy to coordinate traffic flow by knowing true SVOs,
(ii) adopt a policy to estimate agents’ SVOs. For ease of
reference, we denote these two policies as the “decision
policy” and the “recognition policy”. First, we provide
problem definitions of the two policies. We then describe
the reward function and state representation used in the
environment, then followed by an introduction to the overall
network architecture.

A. Decision Policy Training
1) Partially Observable Stochastic Game (POSG):

We formulate the decision-making processes in MADS
using a stochastic game [27] by the tuple G =
⟨I,S,A,O, P,R, n, ρ0, γ, T ⟩. I represents a finite set of
n agents, S represents the state-space of all agents, while
A = A1 ×A2 · · · ×An, and O = O1 ×O2 · · · ×On denote
the joint action, and observation spaces, respectively. At a
time agent i ∈ I receive the observation oi : S → Oi and
take action based on the shared policy π : Oi ×Ai → [0, 1].
Consequently, the full state changes from s to s’ after all
agents take their actions w.r.t the state transition function P :
S×A×S → [0, 1]. The rewards denoted by an agent-specific
reward functions Ri ∈ R where R = {R0, R1, . . . , Rn−1}.
ρ0 is the initial state distribution, γ ∈ (0, 1] is the discount
factor, and T is the time horizon.



Encoders

MLP

Linear

MHA

Q

K

V

Concat

Concat

1×160

N×160

(1+M+N)×160

M×160

1×128

M×128

Trajectory

Route

Lanes

Vectorized

1×32

M×32

Step 1 : Recognition

M×1

1×160

MLP

Action

MHA

Q

K

V

Step 2 : Action

M×160

Ego features Other agents’ features Static features Type embedding Ego SVO Other agents’ SVO

M SVOs

Fig. 2: The architecture of our policy consists of encoders that embed the input vectorized information into different features.
These features then go through the first multi-head attention (MHA) layer on the upper right, which outputs information
about M surrounding agents’ SVOs. The resulting features then pass through the second MHA to produce the final output.

2) Decentralized reward function: Our approach
leverages the SVO concept from prior research [8], [28],
[6] and integrates it into our framework. By doing so,
each agent is able to exhibit varying behaviors, such as
aggressive or cooperative, depending on the extent to which
they consider other agents’ rewards:

Ri = cos(
π

2
· ϕi)ri + sin(

π

2
· ϕi)r

s
i ,

rsi =

∑
j∈D rj

|D|
, D = {j : ||Pos(i)− Pos(j)|| ≤ d},

(1)

the reward ri represents the individual driving performance,
which contains metrics such as average speed and a negative
reward in case of collision. rsi is the average of surrounding
agents’ utilities, and the d means each agent only perceives
information from other agents within a certain Euclidean
distance. ϕi ∈ [0, 1] is the SVO of agent i and remains
constant throughout each episode.

3) Objective Function: We adopt the decentralized
learning method to solve the optimization objective of POSG:

π∗ = argmax
π

Eπ[

T∑
t=0

γtRi(st, at)], i ∈ I, (2)

where π : Oi × Ai → [0, 1], which uses experiences
of all agents to learn a strategy with sharing of policy
network parameters. Due to unique observations and indices
by agents, diverse behaviors emerge, aligning with concepts
presented in [29].

B. Recognition Policy Training

According to III-A, we can train a decision policy under
the assumption of knowing other SVOs. However, it is

more reasonable to consider SVO as an inner parameter
that can not be directly observed. This section presents a
policy to recognize surrounding agents’ SVOs, coupled with
the trained decision policy. Our training approach involves
directly fitting the actual and the predicted value of SVOs.
Given a set of observations, including static and vehicular
features, our task is to predict the values of SVOs for
surrounding agents. To generate training data, we run the
POSG with the trained decision policy and store the resulting
observations. We denote SVO as ϕ and define the mean
square error (MSE) loss function as the average of squared
differences between the actual and the predicted values of
SVOs:

Lreg =
1

N
∑N

i=0 Mi

N∑
i=0

Mi∑
j=0

(ϕij − ϕ̂ij)
2. (3)

Given N agent’s observations, each agent needs to estimate
the values of ϕ for its neighboring agents. Mi denote the
number of surrounding agents for the i-th agent, and ϕ̂ij

represent the estimated value of the j-th agent’s ϕ by the
i-th agent.

C. State Space Representation

1) State Space for decision policy: To improve
computational and memory efficiency, we implement a
vectorized representation strategy known as VectorNet
[30]. The state space contains static and vehicular set
χ = {χs, χv}, and elements in χs and χv are sets of
points containing corresponding features. For the static
set containing road centerlines, sidelines, and routes,
χs = {centerline, sideline, route} = {es0, es1, . . . , esi , . . . },
where esi = {ξ0, ξ1, . . . , ξj , . . . } , i ∈ χs. ξj = [pj , ϕi, i, j],



in which pj = (x, y, heading) is the pose of point
j in element i and ϕi is the lane width of element
i. For the vehicular set cover poses and velocities
of n agents, χv =

{
ev0, e

v
1, . . . , e

v
n−1

}
, in which

evi = {ξ0, ξ1, . . . , ξhorizon}, i ∈ χv , and ξj = [pj , ϕi, i, j],
j ∈ evi , where pj = (x, y, heading, speed) and ϕi denotes
the SVO of agent i. In practice, setting the agent’s trajectory
horizon to 10 achieves good driving performance without
exceeding computational resources.

2) State space for recognition policy: Almost the same
as mentioned in III-C.1, the state space for recognition
comprises static and vehicular elements. However, the
recognition policy does not require knowledge of the true
SVOs, hence ξj = [pj , i, j], where j ∈ evi .

D. Reward Function Design

The driving task involves multiple attributes when defining
the reward function. These attributes include factors such as
comfort and compliance with traffic regulations. To address
this, we design a reward function that provides continuous
incentives for driving fast while imposing penalties for
catastrophic failures. These failures encompass collisions
with other agents, deviations from the designated driving
zone, and excessive deviation from the global path.

E. Policy Architecture

The entire network architecture is depicted in Figure 2,
including encoders, recognition, and decision components.
The process starts with encoding observations of the ego
agent into high-level features and embedding diverse features
into a uniform dimensional space as described in III-E.1. The
recognition policy then focuses on M surrounding agents
and receives their driving behavior information, which is
embedded into M SVOs as outlined in III-E.2. Finally, the
decision policy receives SVOs, including the ground truth of
the ego agent, and outputs the final action detailed in III-E.3.

1) DeepSet Encoder: Based on theorem 2 in [31], the
representation element e ⊂ χ, where χ = {χs, χv}, requires
a function that preserves the adjacency between elements
and is permutation-invariant to the order of objects in the
element. Hence, the propagation function f is defined as
follows:

f(e) = ρ

∑
ξ∈e

φ(ξ)

 . (4)

We obtain features at the element level by transforming
the nodes ξ ∈ e into a representation φ(ξ). The sum of
representations is processed using the ρ network defined
by Multi-Layer Perception (MLP) network. The DeepSet
architecture enables us to extract features at the polyline level
while keeping the number of parameters relatively small.

2) Recognition Policy Architecture: Through DeepSet, the
input features are embedded into a 160-dimensional space
and categorized into three groups: ego, other agents, and
static elements. The multi-head attention (MHA) layer is then
applied, with features of M surrounding agents serving as
queries Qr = [q1r , q

2
r , . . . , q

M
r ] ∈ RM×dk , where dk is the

dimension of the key vectors, set to 160. All features are
keys Kr or values Vr. Following the work in [32], [33], we
incorporate an additional type embedding into the keys to
allow the model to attend to values based on object types.
Depicting the complete computation process as follows:

Φr = tanh(Decoder(MultiHead(Qr,Kr, Vr))), (5)

where MultiHead composes several Attention operations,
which calculate the weighted sum of the values using the
dot-product of queries and keys. The outputs of Attention
are concatenated and then transformed using a linear layer
to obtain the final representation. Attention is defined as:

Attention(Qr,Kr, Vr) = softmax

(
QrK

T
r√

dk

)
Vr. (6)

For simplicity, we use an MLP as the decoder function.
Via the decoder and tanh, the output of the MHA layer
is projected to a single-dimensional space and gets the final
recognition result, Φr = [ϕ1

r, ϕ
2
r, . . . , ϕ

M
r ] ∈ RM×1.

3) Decision Policy Architecture: As mentioned in III-
C, the decision policy’s definition of vehicular elements ξv

differs from that of the recognition policy. Hence, another
DeepSet-based encoder embeds the vehicular elements into
a 128-dimensional feature space. Next, we project the
self-true SVO and the estimated SVOs of M surrounding
agents into a 32-dimensional space using a linear layer,
and the resulting features are concatenated with vehicular
element features and passed through another MHA network,
MultiHead(Qa,Ka, Va). Unlike the recognition policy, we
only use a single query Qa = [qa] ∈ R1×160 by features of
ego agent. Finally, the output of MHA is decoded into the
action a ∈ A.

IV. EXPERIMENTS

In this section, we pursue to answer several questions. (1)
Can our recognition-based method achieve superior system-
level performance? (2) Can our recognition framework
successfully estimate agents’ SVOs? Additionally, we
investigate the factors that affect the accuracy of recognition.

A. Experimental Setup

We utilize the Universe simulator [34] to simulate
bottleneck and merging scenarios. To model the motion of
the vehicles in the simulator, we employ the Kinematic
Bicycle Model and utilize a closed-loop proportional-
integral-derivative (PID) controller to translate the actions
into low-level steering and acceleration control signals. To
allow for a continuous representation of action, we use the
a = [speed, heading] ∈ R2 notation, with values bounded
by the range of [−1, 1], then mapped to the speed range
of [0, 6m/s] and the steering angle range of [−π/4, π/4],
respectively. During the training phase, in each episode, the
agents are randomly spawned within a range of 8 to 20, and
we randomly initialize their spawn points, global paths, and
SVOs. We assumed vehicles have optimal conditions for map
information, perception, localization, and control to focus on



planning during the simulation. In the testing phase, we fix
the number of agents at 20. All experiments are performed
on a computer with an Intel i9-12900KF CPU and NVIDIA
GeForce RTX 3090.

B. Training

We use Independent Policy Learning (IPL) [35] for
training the decision policy. To train the IPL within single-
agent reinforcement learning, we utilize Soft-Actor-Critic
(SAC) [36]. We train our recognition policy using the
supervised learning approach. In particular, we execute the
decision policy trained from the first stage in the environment
by acquiring the true value of SVOs and subsequently use
generated offline data to train the recognition policy. We use
the Adam optimizer [37] to optimize both policies.

C. Metrics

Our experiments are evaluated based on measures of both
efficiency and safety. We evaluate safety by calculating the
percentage of an episode resulting in accidents, including the
frequency of departures from the designated driving zone,
collisions into the wrong lane, and driving too far from
the global path. For brevity, we denote the above three
types of accidents as “Crash”. To measure the recognition
accuracy at the system level, we consider the mean deviation
error between the multi-agent recognition values and the
corresponding true values.

TABLE I: The table presents the percentage of various
metrics (defined in section IV-C) for the bottleneck and
merge scenarios, along with the performance of our proposed
method indicated by a “†".

Methods
Bottleneck

Success (↑) Crash (↓) Speed (↑)

MACAD [5] 76.1 ± 0.3 24.1 ± 0.6 75.1 ± 0.2
CoPO [6] 80.3 ± 0.6 20.7 ± 1.1 74.5 ± 0.3
TrueSVO 83.1 ± 0.4 16.9 ± 1.0 76.3 ± 0.2
Recog† 82.3 ± 0.3 17.3 ± 1.0 76.0 ± 0.1

Methods
Merge

Success (↑) Crash (↓) Speed (↑)

MACAD [5] 66.1 ± 0.6 34.0 ± 0.9 55.0 ± 0.2
CoPO [6] 69.3 ± 0.5 30.7 ± 0.9 54.9 ± 0.2
TrueSVO 82.9 ± 0.4 17.2 ± 0.6 60.0 ± 0.1
Recog† 81.8 ± 0.3 18.4 ± 0.7 59.6 ± 0.1

D. Performance of Multi-agent Driving System

We compare our proposed approach with two MARL-
based baselines, MACAD [5] and CoPO [6]. MACAD is
an approach that considers each agent aiming to maximize
its reward. While CoPO incorporates SVO to promote
coordination among agents at both local and global levels
but does not know other agents’ SVO. Our approach, where
the recognition policy estimates the SVOs and passes them
to the decision policy referred to as Recog. We also take our
decision policy as a comparison method denoting TrueSVO,
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Fig. 3: Success rates. The figure shows the percentage of
success rates in the bottleneck and merge. We assign a fixed
SVO from 0 to 1 at regular intervals. All agents in traffic
flows are given the same SVO. Each is evaluated for 200
episodes. MACAD actually does not have the concept of
SVO, it is used here as a reference line.

where the TrueSVO receives true value of SVOs directly.
Evaluation results shown in Table. I and Fig. 3, The MACAD
approach produces individual egoistic behaviors, results in
lower performance. While CoPO achieves better coordination
and higher success rates in MADS with random SVOs
but has lower average speeds across two scenarios. The
Recog approach offers insights into other agents’ driving
styles and performs better than MACAD and CoPO, but
due to estimation errors, its performance is lower compared
to TrueSVO. TrueSVO outperforms other approaches in all
metrics, indicating that sharing driving attitude information
leads to more effective and coordinated MADS.

E. Recognition Accuracy

1) Impact of Agents Number: As depicted in Figure 4, it
can be observed that our policy demonstrates better precision
convergence as the number of agents increases. When the
number of agents decreases, the influence of individual
driving behaviors on other agents reduces, and the demand
for coordinated behaviors among agents is lower, making it
more difficult for our strategy to identify the characters of the
agents from the interaction. While the number increase, more
interactions exist, thus the policy shows a rising performance
of estimation of SVOs.

2) Highly Interactive Period: Fig. 5 presents a
visualization of the scenes and the roll-out trajectories
of one agent, with time period markings of high-interaction
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Fig. 5: Visualization of scenarios and one vehicle’s
trajectories.

environments. The result shows our policy achieves better
accuracy in the highly interactive period. In the bottleneck,
the recognition error rises at the beginning, as the agents
exhibit little driving information. Furthermore, during times
15 and 70, the agents navigate through a highly interactive
environment as each agent slows down into a narrow lane
and interacts with others, exhibiting diverse behaviors,
allowing the policy to estimate more accurately. In the
merge scenario, the error declines from steps 0 to 30
because agents going straight need to avoid merging agents,
providing more information for the recognition policy.
However, the time steps around 18 are with high incidences
of crashes, which causes increasing estimation error. In
the second half of the time, the agents experience a less
competitive road structure and exhibit more homogeneous

behaviors, leading to an increase in recognition error.

TABLE II: Label Interpretation.

trajectories road
structures

attention
network

Without attention ✓
Without map (with attention) ✓ ✓

With attention and map (Ours) ✓ ✓ ✓

3) Importance of Attention-based Model: Fig. 4 (b) and
(c) show how the map information, such as lane and
boundary data, impacts the recognition accuracy of SVOs.
Table II explains the labels used in these figures. Though
performing well in the merge, the recognition policy without
map information performs badly in the bottleneck, due to the
fact that the bottleneck has a more complex road structure
that lasts for a longer time period, and the lack of map
information makes it difficult for the policy to estimate the
SVOs of the surrounding agents accurately. As for the policy
without attention, it only knows the agents’ trajectories and
performs worst in both scenarios. Our method utilizes the
attention model that combines map information with agents’
trajectories to help to know the surrounding environments
better and get the best performance. Although our method’s
accuracy decreases in the bottleneck during the last thirty
time steps, this can be attributed to the fact that agents are
in a less interactive environment, making it more challenging
to estimate their characteristics accurately. These findings
suggest that combining multiple sources of information can
lead to more accurate SVOs recognition and enhance the
effectiveness of autonomous driving systems.

V. CONCLUSIONS

This paper focuses on the challenge of designing a
safe and efficient MADS and introduces a novel social
preference recognition framework to handle complex driving
environments. The framework can integrate multiple sources
of information to achieve more accurate social preference
recognition. We propose a two-stage method for MADS,
which comprises a recognition policy and a decision policy
that are seamlessly integrated. We evaluate our method on



two complex scenarios, namely bottleneck and merge, and
compare its performance with other MARL-based methods.
The results demonstrate that sharing SVOs can lead to better
performance of MADS, highlighting the effectiveness of our
approach.
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