
Efficient Object Manipulation Planning with Monte Carlo Tree Search

Huaijiang Zhu1, Avadesh Meduri1, Ludovic Righetti1

Abstract— This paper presents an efficient approach to ob-
ject manipulation planning using Monte Carlo Tree Search
(MCTS) to find contact sequences and an efficient ADMM-
based trajectory optimization algorithm to evaluate the dy-
namic feasibility of candidate contact sequences. To accelerate
MCTS, we propose a methodology to learn a goal-conditioned
policy-value network and a feasibility classifier to direct the
search towards promising nodes. Further, manipulation-specific
heuristics enable to drastically reduce the search space. Sys-
tematic object manipulation experiments in a physics sim-
ulator and on real hardware demonstrate the efficiency of
our approach. In particular, our approach scales favorably
for long manipulation sequences thanks to the learned policy-
value network, significantly improving planning success rate.
All source code including the baseline can be found at https:
//hzhu.io/contact-mcts.

I. INTRODUCTION

The ability to plan sequences of contacts and movements
to manipulate objects is central to endow robots with suf-
ficient autonomy to perform complex tasks. This remains,
however, particularly challenging. Indeed, finding dynami-
cally feasible sequences of contacts between the manipulator
and an object typically leads to intractable combinatorial and
nonlinear problems. Consider a simple task of reorienting an
object resting on a table with a two-fingered hand. To plan
suitable contacts, it is necessary to reason about interaction
forces. For example, a cube can be rotated by applying forces
from the sides; however, if the object is a thin plate, the
fingers must “press down” the object to create friction to
achieve the same task. More importantly, as the fingers reach
their respective kinematic limits, they need to break and
re-establish contacts to rotate the object further. These two
aspects, interaction forces and contact switches, have been
the main challenges of object manipulation planning.

Over the past decade, trajectory optimization has been
favored for multi-contact motion planning as this leads to
efficient formulations to reason about interaction forces [1]–
[4]. Yet, it remains unclear how the planning of contact
modes should be efficiently incorporated, primarily due to its
discrete nature that results in discontinuity in the dynamics
at contact switch. To handle this discontinuity under the
trajectory optimization framework, two main streams of
methodologies have emerged:

1) the contact-invariant or contact-implicit approach en-
forces contact complementarity either as hard con-
straints [5], [6], penalty terms in the cost function [7]–
[9], or with differentiable contact models [10], [11], and

1Tandon School of Engineering, New York University, USA
This work was in part supported by the National Science Foundation

(grants 1932187, 1925079, 2026479 and 2222815) and Meta Platforms, Inc.

2) the hybrid approach treats contact switches as discrete
decisions and incorporates them in the continuous tra-
jectory optimization problem [12]–[16].

In the context of robot manipulation, one representative
work is Contact-Trajectory Optimization proposed in [13],
where contact scheduling is modeled as binary decision
variables and the non-convexity of the dynamics due to
cross products is relaxed using McCormick envelopes [17].
The problem can then be formulated as Mixed-Integer
Quadratic Programming (MIQP) [18]. However, the usage
of the McCormick envelopes leads to a relaxed problem
instead of the original one. As a result, applying the planned
contact forces and locations may incur undesired torques.
To date, the approach has only been demonstrated on 2D
object manipulation with very short manipulation sequences,
probably because its complexity grows exponentially with
respect to the number of discrete variables due to the mixed-
integer formulation.

Recent research has made progress towards speeding
up Mixed-Integer Programming (MIP) [19] by leveraging
machine learning techniques. For example, Nair et al. use
neural networks to learn branch-and-bound heuristics and
partial assignment for the discrete variables [20]; CoCo [21]
finds feasible solution to MIP by learning to assign discrete
variables and solving the resulted convex optimization prob-
lem. While such methodology greatly improves the solution
speed at inference time, it assumes that the original MIP
can be solved in a reasonable amount of time to construct
the training set. If the original problem is prohibitive to
solve, collecting a large dataset for this problem may not
be practical without abundant computational resources or
additional learning of a problem reduction [22].

In this work, we approach the problem from a different
angle. Instead of modeling and solving it as a MIP, we
formulate a tree search problem to find dynamically consis-
tent contact sequences. Specifically, we use learning-based
Monte Carlo Tree Search (MCTS) [23] which has recently
been shown to outperform MIQP in gait discovery [24];
then we formulate the underlying continuous optimization
problem as a Biconvex Program [25] to allow efficient
solution via the Alternating Direction Method of Multipliers
(ADMM) [26] which has been adopted in online whole-
body motion planning due to its guaranteed sublinear rate
of convergence [27]. This leads to a formulation in which
the discrete search space can be significantly reduced by
introducing domain-specific heuristics for robot manipulation
and the continuous problem can be solved efficiently without
relaxation. More importantly, we show that learning-based
MCTS trained on short-horizon tasks generalizes directly to
long-horizon tasks. This removes the need for collecting data

ar
X

iv
:2

20
6.

09
02

3v
3

 [
cs

.R
O

]
 1

9
M

ar
 2

02
3

https://hzhu.io/contact-mcts
https://hzhu.io/contact-mcts

on large-scale problems, which can be time consuming. The
contributions of the paper are as follows:

1) formulation of dynamically consistent contact planning
for manipulation using learning-based MCTS,

2) efficient resolution of the underlying continuous opti-
mization problem as a Biconvex Program with ADMM,
and

3) extensive simulation including comparisons with MIQP
approaches as well as real robot experiments to demon-
strate the capabilities of our approach.

To our best knowledge, this is the first application of
learning-based MCTS to dynamically consistent contact
planning for manipulation.

II. PROBLEM STATEMENT

A. Inputs

We aim to solve an object manipulation task similar to the
Contact-Trajectory Optimization problem proposed in [13]
where the following quantities are given:

1) a rigid object with known geometry, friction coefficient
µ, mass m, moment of inertia I, and NΩ pre-defined
contact surfaces, each of which can be described as the
convex span of its vertices vΩ,i,

2) a trajectory with discretization step ∆t of length T
that consists of the desired object pose, velocity, and
acceleration ξ = [q(t), q̇(t), q̈(t)]Tt=1, where q(t) =
[p(t), R(t)] ∈ SE(3) consists of the position and ori-
entation, q̇(t) = [v(t), ω(t)] ∈ se(3) consists of the
linear and angular velocity, and q̈(t) = [v̇(t), ω̇(t)] is
the acceleration,

3) an environment with known geometry and friction co-
efficient µe, and

4) a robot with Nc end-effectors that are able to make point
contact with the object.

At the t-th time step, given the object motion and the
object dynamics, we can compute the desired total force
fdes(t) and torque τdes(t) to be applied to the object[

fdes(t)
τdes(t)

]
=

[
m(v̇(t) + ω(t)× v(t)− g(t))
Iω̇(t) + ω(t)× Iω(t)

]
, (1)

where all quantities, including the gravity term g(t) are
expressed in the object frame.

In addition, as the geometry of the object and the envi-
ronment as well as the object motion are known, we can
obtain Ne(t) environment contact locations re(t) for e ∈
{Nc+1, . . . , Nc+Ne(t)} at each time step t by checking the
collisions between the object and the environment, assuming
uniform pressure distribution.

B. Outputs

We aim to find the following:
1) the contact surface Ωc(t) ∈ {0, 1, . . . , NΩ}, the contact

force fc(t) and the contact location rc(t) for each end-
effector c of the robot; Ωc(t) = 0 indicates that the c-th
end-effector is not in contact, and

2) the environment contact force fe(t)

f3(t)

f1(t)
r1(t)

Ω1(t)
f2(t)

r2(t)
Ω2(t)

Fig. 1: Illustration of the outputs of the method. f1(t), f2(t)
are the manipulator contact forces and r1(t), r2(t) are the
respective contact locations (marked by the pink dots.) f3(t)
is the environment reaction force while the environment
contact location is known beforehand. The thick lines on
the object depict pre-defined contact surfaces and the green
ones are the selected contact surfaces Ω1(t),Ω2(t) at time t.

such that the forces and torques sum to the desired ones.
Fig. 1 illustrates the outputs of our method for a double-
finger manipulator pivoting a 2D square. Note that this is
only for illustrative purpose and our method is applicable to
and tested on 3D objects and SE(3) poses as we will show
in the experiments.

III. METHOD

The problem described above is difficult even though the
desired object motion is provided, as the solver needs to
decide not only the contact force and location, but also
the timing of contact switches. To address this challenge,
we use learning-based MCTS to discover promising contact
sequences and then evaluate their dynamical feasibility using
an ADMM-based trajectory optimization algorithm. Fig. 2
provides an overview of our approach.

A. Continuous Contact Optimization via ADMM

First, let us consider a simpler sub-problem where
we already obtained a sequence of contact surfaces
[Ω1(t), . . . ,ΩNc(t)]Tt=1 for each end-effector c. We can find
the exact contact forces and locations by solving a non-
convex continuous optimization problem. However, this non-
convex problem, as we will show, can be formulated as a
Biconvex Program and solved efficiently with ADMM. In
contrast to [13], our formulation does not require piecewise
linear approximation of the cross product and solves the
exact original non-convex problem instead of a relaxed one.
The optimization problem can be described by the following
constraints and cost function:

ADMM

Inputs

MCTS

contact sequences

desired total  
force and torque

Outputs

feasibleinfeasible

Fig. 2: An overview of the proposed method. First, candi-
date contact sequences are proposed by MCTS. Then, they
are evaluated by an ADMM-based trajectory optimization
algorithm to find dynamically feasible contact forces and
locations to realize the desired object motion. At inference
time, this repeats until the first feasible solution is found; at
training time, we let the algorithm discover multiple solutions
and collect both feasible and infeasible contact sequences to
construct a diverse training set.

1) Dynamics: The contact forces and torques must sum
to the desired ones

Nc∑
c=1

fc(t) +

Nc+Ne(t)∑
e=Nc+1

fe(t) = fdes(t) (2a)

Nc∑
c=1

rc(t)× fc(t) +

Nc+Ne(t)∑
e=Nc+1

re(t)× fe(t) = τdes(t) . (2b)

2) Contact location: The contact location must be inside
the given contact surface Ωc(t) for Ωc(t) 6= 0

∀c ∈ {c|Ωc(t) 6= 0} ,
Nv,Ωc(t)∑
i=1

αc,i(t)vΩc(t),i = rc(t) , (3a)

Nv,Ωc(t)∑
i=1

αc,i(t) = 1 , (3b)

Nv,Ωc(t)∑
i=1

αc,i(t) ≥ 0 , (3c)

where vΩc(t),i is the i-th vertex and Nv,Ωc(t) the number of
vertices of the contact surface Ωc(t) for the end-effector c.

3) Contact force: If the c-th end-effector is not in contact
with any contact surface, hence Ωc(t) = 0, the contact force
is set to zero

∀c ∈ {c|Ωc(t) = 0} , fc(t) = 0 . (4)

Note that this is not a complementarity constraint as Ωc(t)
is already given by MCTS.

4) Sticking contact: To prevent the end-effector from
sliding on the object, we impose that if the end-effector is
in contact at time step t, it must remain sticking at time step
t+ 1

∀c ∈ {c|Ωc(t) 6= 0} , rc(t+ 1) = rc(t). (5)

Note that this constraint also implies that the end-effector
cannot change its contact surface in one step; it has to break
the current contact before switching to a new surface.

5) Coulomb friction: We assume all contact forces satisfy
the Coulomb friction model. Hence, the sticking contact
should stay inside the linearized friction cone of the given
contact surface. The sliding contact (only environment con-
tacts can slide) should satisfy f

‖
e (t) = −µe

∥∥f⊥e (t)
∥∥ ˆ̇r
‖
e(t),

where f‖e (t) is the tangential force, f⊥e (t) the normal force,
and ˆ̇r

‖
e(t) the unit direction of the contact point velocity

projected onto the contact surface, which can be obtained
from the given object motion. For notational simplicity, we
denote these constraints by the respective feasible set, hence

fc(t) ∈ Fc(t) , fe(t) ∈ Fe(t) (6)

6) Cost function: Finally, we minimize a quadratic ob-
jective function that avoids applying large forces at the
boundary of the contact surface

J =

T∑
t=1

Nc∑
c=1

‖fc(t)‖2 + ‖rc(t)‖2 (7)

7) Biconvex Decomposition: The optimization problem
described above has an interesting feature that the only non-
convex constraint (2b) due to the cross product rc(t)×fc(t) is
in fact biconvex. That is, when rc(t) is fixed, this constraint
is convex with respect to fc(t); when fc(t) is fixed, this
constraint is convex with respect to rc(t). Note that in both
cases, the environment contact location re(t) is known and
thus the cross product re(t)× fe(t) does not pose any non-
convexity. In fact, when we group the decision variables into
two sets x = [rc(t), αc(t)]

T
t=1 and z = [fc(t), fe(t)]

T
t=1, we

can re-write the original problem into the standard ADMM
form with the constraint

G(x, z) =

Nc∑
c=1

rc(t)× fc(t) +

Nc+Ne(t)∑
e=Nc+1

re(t)× fe(t)− τdes(t)

= 0 ,

and the iteration

xk+1 = arg min
x

T∑
t=1

Nc∑
c=1

‖rc(t)‖2 +
ρ

2

∥∥G(x, zk) + yk
∥∥
(8a)

s.t. (3), (5)

zk+1 = arg min
z

T∑
t=1

Nc∑
c=1

‖fc(t)‖2 +
ρ

2

∥∥G(xk+1, z) + yk
∥∥

(8b)
s.t. (2a), (4), (6)

yk+1 = yk +G(xk+1, zk+1) , (8c)

where y is the scaled dual variable and ρ > 0 is a penalty
parameter that is tuned to 2 × 106 in the experiments.
The ADMM iteration initializes with α0

c,i(t) = 1/Nv,Ωc(t),
r0
c (t) =

∑Nv,Ωc(t)

i=1 α0
c,i(t)vΩc(t),i, f0

c (t) = 0, f0
e (t) = 0

and y0 = 0. Note that both the optimization problems (8a)
and (8b) are just Quadratic Programs (QPs) [28] which are
simple to solve. Throughout our experiments, we only run
one ADMM iteration as we observe satisfactory convergence
in this setting. Hence, solving this non-convex optimization
problem only requires solving two QPs.

B. Discrete Contact Planning via MCTS
Now that we have shown the contact locations and forces

can be found efficiently if the contact surfaces are known, we
focus on the missing piece: finding these contact surfaces.
To do this, we adopt MCTS that was behind many recent
advances in reinforcement learning for game-play [23], [29].
To solve the contact sequence discovery problem via MCTS,
we first model it as a Markov-decision Process (MDP) with
states s ∈ S and actions a ∈ A(s), where S is the set
of states and A(s) is the set of legal actions at the state
s. At time step k, the action ak = [Ω1(k), . . . ,ΩNc(k)]
represents which object surface each end-effector needs to
be in contact with (or not) and the state sk contains the
current desired object pose q(k) and the history of the
object surfaces that were in contact with each end-effector
[Ω1(t), . . . ,ΩNc

(t)]kt=1. Note that the state transition sk+1 =
NEXTSTATE(sk, ak) in this MDP is deterministic as the
desired pose is known a priori and thus fixed. With this
formulation, we modify the MCTS algorithm by utilizing
both domain-specific heuristics and neural networks trained
from past experience to improve search efficiency. As the
search reaches the end, an optimization problem is con-
structed and solved by ADMM to provide a terminal reward.
Fig. 3 previews these modifications that will be elaborated
in the remainder of this section.

Let us first recall the standard learning-based MCTS
algorithm as summarized in Algorithm 1. It constructs a
search tree T = (V, E) where the set of vertices V contains
the visited states and the set of edges E contains the visited
transitions (s

a→ s′). For each transition, it maintains the
state-action value Q(s, a) that estimates future rewards to be
accumulated and the number of occurrences N(s, a) of this
state-action pair during the search. To update the state-action
value Q(s, a), learning-based MCTS uses a policy-value net-
work (parameterized by θ) to provide a value estimate vθ(s′)
for the possible next states s′ ∈ {NEXTSTATE(s, a)|a ∈
A(s)}

Q(s, a)← N(s, a)Q(s, a) + vθ(s
′)

N(s, a) + 1
. (9)

The same network also outputs an action probability pθ(s, a)
to calculate a heuristic score for the state-action pair

U(s, a) = Q(s, a) + γpθ(s, a)

√∑
bN(s, b)

1 +N(s, a)
, (10)

where γ > 0 is a hyper-parameter controlling the degree
of exploration; in our experiments, it is manually tuned to

feasibility classifier
(Sec.III-B 2.)

policy-value net
(Sec.III-B 3.)

infeasible
feasible

State

heuristics
(Sec.III-B 1.)

a ∈ "(s)

vθ(s′) = 0
pθ(s, a) = 1/"(s)

update
(Eq. 9, Eq.10)

Q(s, a), U(s, a)

s

Action a = argmaxa∈"(s)U(s, a)

ADMM

r(s′)

legal actions

next states s′ ∈ {NextState(s, a)}

terminal states
s′ ∈ $∞

Fig. 3: Action selection in the MCTS search process. The
actions are evaluated by both domain-specific heuristics and
trained neural networks to enable efficient search. As the
search reaches a terminal state, the reward is computed by
ADMM. For readability, recursions are omitted.

0.1. This score is used by MCTS to select promising actions
a = arg maxa∈A(s) U(s, a) while balancing exploration
with exploitation. Once the search reaches a terminal state
s ∈ S∞, the contact surfaces found by MCTS are used to
construct the optimization problem described in Sec. III-A.
Its solution will then be evaluated to return a reward r to
update the state-action value and guide future search.

To calculate the reward, we integrate the solution to obtain
the final object pose q̂(T) = [p̂(T), R̂(T)] with the semi-
implicit Euler method. We then compare it with the desired
final pose q(T) = [p(T), R(T)] to compute a weighted
distance

D(q, q̂) = ‖p− p̂‖+ β
∥∥∥log(R̂TR)

∥∥∥ , (11)

where β > 0 scales the angular distance; in the experiments,
it is set to 0.1. Note that this distance does not always
equal zero as we terminate ADMM only one iteration. The
weighted distance within a threshold D ≤ Dth is then
normalized to [0, 1] to obtain the reward. In our experiments,
the threshold Dth is set to 0.03 which allows a maximal
object position error of 3 cm or an orientation error of
0.3 rad. Note that we set a relatively high threshold in order
to collect diverse training data; after training, the MCTS
almost always discovers solutions with near zero error as will
be shown in the experiments. If the contact sequence found
by MCTS does not lead to a dynamically feasible solution
or has a higher error above the threshold, the reward will
be set to zero. Hence, the EVALUATE(s) function in MCTS
entails the ADMM iteration (8) and computing the reward.

At inference time, the procedure MCTS(s; θ) is repeated

Algorithm 1 Learning-Based Monte Carlo Tree Search
1: procedure MCTS(s; θ)
2: if s ∈ S∞ then
3: r ← EVALUATE(s)
4: return r
5: else if s /∈ V then
6: V ← V ∪ {s}
7: for a ∈ A(s) do
8: Q(s, a)← 0
9: N(s, a)← 0

10: end for
11: return vθ(s)
12: else
13: a← argmaxa∈A(s) U(s, a)
14: s′ ← NEXTSTATE(s, a)
15: v ← MCTS(s′; θ)
16: Q(s, a)← N(s,a)Q(s,a)+v

N(s,a)+1
17: N(s, a)← N(s, a) + 1

18: E ← E ∪ {(s a→ s′)}
19: return v
20: end if
21: end procedure

until the first feasible solution is found; at training time, we
let it discover multiple solutions and collect both feasible and
infeasible contact sequences to construct a diverse training
set D = {(v̄(s), p̄(s, a))|s ∈ V} for all visited states, where
p̄(s, a) = N(s, a)/

∑
bN(s, b) is the empirical action prob-

ability and v̄(s) =
∑
a∈A(s) p̄(s, a)Q(s, a) is the expected

state value. The network is then updated using the sum of a
mean-square loss lv for the value head and a cross-entropy
loss lp for the policy head

l(D) =
1

|D|
∑
s∈V

(
lv(s) + lp(s)

)
, (12)

where

lv(s) =
(
vθ(s)− v̄(s)

)2
(13a)

lp(s) = −
∑

a∈A(s)

p̄(s, a) log pθ(s, a) . (13b)

1) Assumptions and Heuristics: One major advantage of
using MCTS over MIQP is that it is straightforward to
incorporate domain-specific assumptions and heuristics to
reduce the search space. In this work, we apply the following
assumptions and heuristics:
• Contact surface: Each contact surface can only be

touched by at most one end-effector and each end-
effector can touch at most one contact surface.

• Persistent contact: While the downstream continuous
optimization problem may have a small discretization
step, for example ∆t = 0.1 s, most manipulation tasks
do not require decisions of contact switch at such a
high resolution. Thus, we assume that an end-effector
must remain on the same surface for d time steps, which
means a trajectory of length T can admit at most T/d−1
contact switches.

• Kinematic feasibility: For each end-effector c, a con-
tact surface will only be considered if inverse kinematics
can find a robot configuration that reaches the center of
this surface within an error threshold of 2 cm and does

not result in any undesired collision (e.g. between non-
end-effector links and the object). Note that this cannot
be imposed in a MIQP formulation as it introduces
nonlinear constraints.

• Contact switch: We allow at most one end-effector to
make or break the contact at each time step. Moreover,
the end-effector can only break the contact if the desired
object velocity and acceleration is zero.

2) Feasibility classifier: One key difference between our
task and generic game-play is that our dataset is highly
imbalanced—many contact sequences explored by the MCTS
are dynamically infeasible, resulting in zero reward. Directly
training on such a dataset leads to underestimation of the
value function. Instead, we first train on the dataset D a
binary classifier Cφ(s) with logistic regression where dynam-
ically feasible samples are given more weights. At inference
time, a state is only fed into the policy-value network if
the classifier labels it as dynamically feasible; otherwise, we
output zero value vθ(s) = 0 and uniformly distributed action
probability pθ(s, a) = 1/|A(s)|. This feasibility classifier
screens out dynamically infeasible contact sequences before
the MCTS completes the search, thus greatly improves search
efficiency.

3) Goal-conditioned policy-value network: Note that each
MCTS instance only searches for the contact sequence for a
given object motion ξ, thus the rewards are motion-specific.
If we were to learn from the data collected for this object
motion only, it is unlikely that the network would generalize
to other motions. Thus, we generate multiple object motions
in the training phase and additionally input an intermediate
goal variable to the network. It is defined as the difference
between the current desired pose and the one h steps in the
future λ(t) = q(t+h)	q(t), where 	 denotes subtraction in
SE(3). Fig. 4 depicts the policy-value network architecture:
it takes as inputs the state s and the goal λ, and outputs
the goal-conditioned value vθ(s, λ) and action probabilities
pθ(s, λ). Since the sequence of contact surfaces has varying
lengths, we use a Recurrent Neural Network (RNN) to
encode this information and concatenate it with the pose and
the goal processed by a Multilayer Perceptron (MLP). Due
to the usage of the feasibility classifier mentioned above, we
only train our policy-value network on a subset D+ ⊆ D
with positive samples V+ = {s ∈ V|v̄(s) > 0} to avoid
underestimating the value function.

IV. EXPERIMENTS

We conduct experiments in simulation and on real hard-
ware to show that our method 1) is capable of finding high
quality dynamically feasible solutions much faster than a
MIQP baseline. 2) scales to long-horizon tasks even when
trained only on data collected from shorter-horizon tasks.

A. Experiment Setup

1) Tasks: Throughout all experiments, we consider a
manipulator composed of two modular robot fingers similar
to the ones used in [30] and a 10 cm × 10 cm × 10 cm
cube with mass m = 0.5 kg on an infinitely large plane.
The cube and the plane have the same friction coefficient

M
L
P

Concatenation

State s

Goal λ

M
L
P

Value vθ(s, λ)
Policy pθ(s, λ)RNN

Pose

Contact 
history

Fig. 4: Schematic diagram of the policy-value network
architecture. Activation functions and regularization layers
such as Dropout and BatchNorm are omitted.

µ = µe = 0.8. We consider one contact surface for each
face of the cube except for the bottom one; each contact
surface is a 8 cm × 8 cm square to avoid contact locations
at the corner. The object motion trajectory is generated with
spline interpolation in SE(3) between the initial object pose
and a desired pose parameterized as the following primitives:
1) sliding (S) on the xy-plane by −10 cm to 10 cm 2) sliding
with curvature (SC) on the xy-plane by −5 cm to 5 cm with
a rotation about the z-axis by −45° to 45° 3) rotating (R)
about the z-axis by −90° to 90° 4) lifting (L) along the z-axis
by 0 cm to 10 cm, and 5) pivoting (P) about the y-axis by 0°
to 45°. The xy-axes span the plane that the object is placed
on and the z-axis points to the opposite gravity direction.
Finally, the initial object position is randomly sampled on
the xy-plane within a [−5 cm, 5 cm]2 area centered at the
origin and the initial orientation about the z-axis by −90° to
90°.

2) Baselines: We compare our method (MCTS) with two
baselines:
• the MIQP baseline is implemented following [13]. We

did not use the authors’ open-source implementation
as it was only implemented for 2D objects. But the
same formulation can be directly extended to 3D. To
facilitate a fair comparison, we also implemented all
heuristics described in Sec III-B.1 except the kinematic
feasibility check. For the McCormick envelope relax-
ation of the cross product, we partition the contact
location into 4 intervals and the contact force into 2
intervals. In all experiments, we terminate the MIQP
solver at the first feasible solution instead of waiting
for the global optimum which may take extremely long
time. In addition, we implement the constraint (2a) as
a penalty term in the cost function. This accelerates the
MIQP solver significantly from our observation during
the experiments. We note that our implementation has
comparable computation time as reported in [13].

• the MCTSU baseline represents an untrained model and
constantly outputs zero values vθ(s) = 0 and uniform
action probability pθ(s, a) = 1/|A(s)|.

3) Software and hardware: We conduct all experiments
on a single GeForce RTX 2080 TI GPU and an Intel Xeon
CPU at 3.7 GHz using Python and PyTorch. We model and
solve the QPs with CVXPY [31] and OSQP [32] and use

Gurobi [33] for MIQP. All source code including the baseline
can be found at https://hzhu.io/contact-mcts.

B. Evaluation metrics

We examine two metrics to evaluate the effectiveness and
efficiency of our method: 1) the force and torque error
between the desired and the solution. The error is averaged
over the horizon T and scaled by the object mass and inertia
respectively. The smaller this error is, the better the solution
tracks the desired object motion. 2) The computation time
needed to find the first dynamically feasible solution.

C. Training procedure

We generate 300 object motion trajectories, each compris-
ing two primitives with randomly sampled parameters. In
particular, 200 trajectories are composed of two SC primi-
tives; 50 trajectories of one SC and one L; 50 trajectories of
one SC and one P. For the i-th trajectory, we let an untrained
MCTS run until it evaluates 200 candidate contact sequences;
then we construct the dataset D = D∪{(v̄(s), p̄(s))|s ∈ Vi}
where Vi contains all the states the MCTS visited for the i-th
trajectory. The policy-value network and the value classifier
are then trained via Adam [34] for 300 epochs.

D. Single motion primitives

In this experiment, we consider object motion trajectories
that consist of one single primitive. Each primitive has a
desired pose uniformly randomly sampled from its respective
parameter range described in Sec. IV-A.1. Each trajectory
consists of T = 10 time steps with step size ∆t = 0.1 s;
each contact persists as well at least 0.1 s, hence a trajectory
can admit at most 9 contact switches. We run 50 trials for
each primitive to collect the performance statistics.

Table I shows that our method is capable of finding
dynamically feasible solutions consistently faster than the
MIQP baseline thanks to the MCTS formulation. Especially
for primitives that require non-zero torques (R, SC, P), the
MIQP baseline is not only an order of magnitude slower,
but also produces solutions with large errors. We note
that the force error can be reduced by letting the MIQP
solver explore more feasible solutions, while the torque
error remains high nonetheless. This might be due to its
usage of the McCormick envelopes to approximate cross
products, which not only introduces approximation error but
also adds additional discrete variables. In contrast, thanks
to the ADMM formulation, our method solves the original
problem instead of a relaxed one and has thus near-zero
average force and torque error.

We also note that while the solutions found by the MIQP
baseline are dynamically feasible, they are not necessarily
kinematically feasible or collision-free since these conditions
cannot be incorporated as linear constraints. While it is
possible to collect multiple dynamically feasible solutions
and pick the kinematically feasible one from them, it may
further increase the computation time.

https://github.com/baceituno/QuasiDynamics
https://hzhu.io/contact-mcts

TABLE I: Task performance for object motion primitives.
Values ≤ 0.005 are rounded to zero.

Method Time [s] Error [N, N ·m]
Mean Worst Mean Worst

S
MIQP 0.65 0.79 0.66, 0.00 2.90, 0.00
MCTS 0.10 0.18 0.00, 0.00 0.00, 0.00

MCTSU 0.24 1.23 0.00, 0.03 0.06, 1.14

L
MIQP 0.25 0.51 6.29, 0.00 6.87, 0.00
MCTS 0.15 0.23 0.24, 0.05 0.86, 0.18

MCTSU 0.53 2.23 0.53, 0.11 0.88, 0.35

R
MIQP 4.83 29.46 8.36, 16.64 30.72, 45.57
MCTS 0.12 0.27 0.00, 0.00 0.00, 0.00

MCTSU 0.41 1.22 0.00, 0.00 0.00, 0.00

SC
MIQP 2.19 4.41 11.73, 22.39 49.61, 88.27
MCTS 0.11 0.24 0.00, 0.00 0.00, 0.00

MCTSU 0.20 0.81 0.00, 0.00 0.03, 0.07

P
MIQP 6.69 50.41 7.65, 15.31 26.85, 53.65
MCTS 0.15 0.34 0.01, 1.23 0.23, 14.01

MCTSU 0.17 0.45 0.01, 1.46 0.33, 19.55

E. Long-horizon tasks

In the previous experiments, we have shown the effec-
tiveness of our method for short motion primitives. Let us
now consider tasks that last a longer period of time. First,
we extend the primitive to T = 30 time steps by stipulating
each contact persists for d = 3 steps. Note that there are still
at most 9 contact switches for a single primitive. However,
such extended primitives may be useful for tasks that require
longer execution time but not necessarily more contact
switches; for instance, sliding a cube for a long distance
or rotating it very slowly. In the following experiments, we
concatenate such extended primitives to form a even longer
trajectory. In particular, we consider the primitive SC as it
represents typical planar repositioning/reorienting tasks.

Table II reports the performance metrics for each method.
A task is considered failed if no dynamically feasible solution
is found within 60 s. We can immediately see that the
trained MCTS efficiently solves all the tasks regardless of the
trajectory length, while the MIQP baseline and the untrained
MCTS struggle in long-horizon tasks (the errors decrease
because they are computed only on successful trials). Indeed,
the MIQP baseline cannot solve any tasks containing more
than two primitives in 60 s. Interestingly, even for the task
with a single extended primitive, where the number of
possible contact switches does not change compared to the
previous tasks in Sec. IV-D, the MIQP baseline still need
significantly more time to find a feasible solution. This could
again be attributed to the McCormick envelopes as they add
additional discrete variables to each time step regardless of
the underlying number of contact switches.

Finally, we highlight that the MCTS training dataset only
contains object motion trajectories consisting of at most
two primitives. However, Table II shows that our method
is able to efficiently solve the longer-horizon tasks without
being explicitly trained on them as our MCTS formulation
exploits the intrinsic compositionality of the task by learning
a goal-conditioned policy-value network. Hence, we do not
need to collect training data on large-scale, time-consuming
problems as opposed to the learning-based MIP method
proposed in [20].

TABLE II: Task performance for object motions composed
of SC primitives. Errors are computed only on successful
trials. Values ≤ 0.005 are rounded to zero.

Method Success Time [s] Error [N, N ·m]
SC rate Mean Worst Mean Worst

1
MIQP 94% 10.15 60.00 3.40, 11.72 19.93, 41.68
MCTS 100% 0.21 0.41 0.00, 0.00 0.00, 0.00

MCTSU 100% 0.91 3.67 0.00, 0.00 0.03, 0.07

2
MIQP 42% 40.93 60.00 4.96, 4.38 16.61, 22.54
MCTS 100% 0.47 1.56 0.00, 0.00 0.01, 0.03

MCTSU 100% 3.08 12.84 0.00, 0.00 0.03, 0.07

3
MIQP 0% − − − −
MCTS 100% 1.35 8.84 0.00, 0.00 0.01, 0.03

MCTSU 90% 20.87 60.00 0.00, 0.00 0.01, 0.04

F. Executing the contact plan

To validate the contact plans found by our method, we ex-
ecute them in an open-loop fashion with a simple impedance
controller in the PyBullet simulator [35] and on a real robot

τ = JT
(
K(rw

c − rw) +D(ṙw
c − ṙw) + fw

c

)
, (14)

where J is the end-effector Jacobian; K,D are manually
tuned gain matrices; rw, ṙw are the position and velocity of
the end-effector and fw

c , r
w
c , ṙ

w
c are the planed contact force,

location and velocity, all expressed in the world frame.
Fig. 5 shows an example of the contact plan execution

of rotating a cube by 90°. The robot is able to move the
object towards the target pose if the object is placed at the
desired initial position. We note that the same impedance
is used for all tasks with different primitives. This would
not be possible for us without applying the planed contact
forces; for example, the fingers would drop the cube if they
were to lift it with purely position commands and too low
of a position gain. This shows the benefits and importance
of planning accurate forces and torques. However, we do
observe failure cases when the reality differs too much from
the model, especially for the pivoting primitive P which is
sensitive to the discrepancy between the modeled and actual
friction. We show this in the supplementary materials and
point out the necessity of incorporating sensory feedback
for online re-planning, which we leave for future work.

V. CONCLUSION

In this work, we proposed a framework that combines
data-driven MCTS and efficient non-convex optimization
via ADMM to find dynamically feasible contact forces and
locations to realize a given object motion. We show that the
capability of learning from data allows our method to achieve
great scalability for long-horizon tasks even when the dataset
only contains short-horizon data.

The most limited aspect of our approach is that the object
motion must be provided. True dexterity requires automatic
discovery of object motion together with the contact plan.
One potential way to achieve this is to jointly enumerate
manipulator and environment contacts [15]. Another problem
is that we represent contact surfaces as integers. While this
is natural with the MCTS formulation, it makes the learned
networks object-specific. To address this issue, it might be
helpful to map the integer-valued surfaces to its geometric

① ②

③ ④

Fig. 5: Exemplary execution of rotating the cube by 90°.
For a video compilation of various tasks, please refer to the
supplemental materials.

center before feeding them into the neural networks. Finally,
our approach assumes perfect knowledge of the object and
the environment, which is not possible in the real world.
Thus, it is necessary to explore ways of integrating percep-
tion, for example, as done in [36].

REFERENCES

[1] A. Escande and A. Kheddar, “Contact planning for acyclic motion with
tasks constraints,” IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2009. IROS 2009., p. 435–440, Oct 2009.

[2] Y.-C. Lin, L. Righetti, and D. Berenson, “Robust humanoid contact
planning with learned zero- and one-step capturability prediction,”
IEEE Robotics and Automation Letters, vol. 5, no. 2, 2020.

[3] B. Ponton, M. Khadiv, A. Meduri, and L. Righetti, “Efficient multi-
contact pattern generation with sequential convex approximations of
the centroidal dynamics,” IEEE Transactions on Robotics, vol. 37,
no. 5, p. 1661–1679, 2021.

[4] J. Carpentier, S. Tonneau, M. Naveau, O. Stasse, and N. Mansard,
“A versatile and efficient pattern generator for generalized legged
locomotion,” in IEEE-RAS International Conference on Robotics and
Automation, 2016.

[5] D. Stewart and J. C. Trinkle, “An implicit time-stepping scheme for
rigid body dynamics with coulomb friction,” in IEEE International
Conference on Robotics and Automation, 2000, pp. 162–169.

[6] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory
optimization of rigid bodies through contact,” The Int J of Robotics
Research, vol. 33, no. 1, pp. 69–81, 2014.

[7] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Transactions
on Graphics (TOG), vol. 31, no. 4, pp. 1–8, 2012.

[8] I. Mordatch, J. M. Wang, E. Todorov, and V. Koltun, “Animating
human lower limbs using contact-invariant optimization,” ACM Trans-
actions on Graphics (TOG), vol. 32, no. 6, pp. 1–8, 2013.

[9] I. Mordatch, Z. Popović, and E. Todorov, “Contact-invariant opti-
mization for hand manipulation,” in ACM SIGGRAPH/Eurographics
symposium on computer animation, 2012, pp. 137–144.

[10] M. Neunert et al., “Whole-body nonlinear model predictive control
through contacts for quadrupeds,” IEEE Robotics and Automation
Letters, vol. 3, no. 3, pp. 1458–1465, 2018.

[11] T. Pang, H. Suh, L. Yang, and R. Tedrake, “Global planning for
contact-rich manipulation via local smoothing of quasi-dynamic con-
tact models,” arXiv preprint arXiv:2206.10787, 2022.

[12] M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning,” in Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015.

[13] B. Aceituno-Cabezas and A. Rodriguez, “A global quasi-dynamic
model for contact-trajectory optimization,” in Robotics: Science and
Systems (RSS), 2020.

[14] N. Doshi, F. R. Hogan, and A. Rodriguez, “Hybrid differential
dynamic programming for planar manipulation primitives,” in 2020
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 6759–6765.

[15] X. Cheng, E. Huang, Y. Hou, and M. T. Mason, “Contact mode guided
motion planning for quasidynamic dexterous manipulation in 3d,” in
2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 2730–2736.

[16] C. Chen, P. Culbertson, M. Lepert, M. Schwager, and J. Bohg,
“Trajectotree: Trajectory optimization meets tree search for planning
multi-contact dexterous manipulation,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2021, pp. 8262–8268.

[17] G. P. McCormick, “Computability of global solutions to factorable
nonconvex programs: Part i—convex underestimating problems,”
Mathematical programming, vol. 10, no. 1, pp. 147–175, 1976.

[18] R. Lazimy, “Mixed-integer quadratic programming,” Mathematical
Programming, vol. 22, pp. 332–349, 1982.

[19] C. A. Floudas, Nonlinear and mixed-integer optimization: fundamen-
tals and applications. Oxford University Press, 1995.

[20] V. Nair, S. Bartunov, F. Gimeno, I. von Glehn, P. Lichocki, I. Lobov,
B. O’Donoghue, N. Sonnerat, C. Tjandraatmadja, P. Wang, et al.,
“Solving mixed integer programs using neural networks,” arXiv
preprint arXiv:2012.13349, 2020.

[21] A. Cauligi et al., “Coco: Online mixed-integer control via supervised
learning,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp.
1447–1454, 2021.

[22] X. Lin, G. I. Fernandez, and D. W. Hong, “Reduce: Reformulation
of mixed integer programs using data from unsupervised clusters
for learning efficient strategies,” in 2022 International Conference on
Robotics and Automation (ICRA). IEEE, 2022, pp. 4459–4465.

[23] D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[24] L. Amatucci, J.-H. Kim, J. Hwangbo, and H.-W. Park, “Monte carlo
tree search gait planner for non-gaited legged system control,” in 2022
International Conference on Robotics and Automation (ICRA). IEEE,
2022, pp. 4701–4707.

[25] J. Gorski, F. Pfeuffer, and K. Klamroth, “Biconvex sets and optimiza-
tion with biconvex functions: a survey and extensions,” Mathematical
methods of operations research, vol. 66, no. 3, pp. 373–407, 2007.

[26] S. Boyd et al., “Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Foundations and Trends®
in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.

[27] A. Meduri, P. Shah, J. Viereck, M. Khadiv, I. Havoutis, and L. Righetti,
“Biconmp: A nonlinear model predictive control framework for whole
body motion planning,” IEEE Transactions on Robotics, 2023.

[28] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[29] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, et al.,
“Mastering atari, go, chess and shogi by planning with a learned
model,” Nature, vol. 588, no. 7839, pp. 604–609, 2020.

[30] M. Wüthrich et al., “Trifinger: An open-source robot for learning
dexterity,” arXiv preprint arXiv:2008.03596, 2020.

[31] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” Journal of Machine Learning
Research, vol. 17, no. 83, pp. 1–5, 2016.

[32] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
an operator splitting solver for quadratic programs,” Mathematical
Programming Computation, vol. 12, no. 4, pp. 637–672, 2020.

[33] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2022. [Online]. Available: https://www.gurobi.com

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[35] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” http://pybullet.
org.

[36] D. Driess, J.-S. Ha, and M. Toussaint, “Learning to solve sequential
physical reasoning problems from a scene image,” The Int. J of
Robotics Research, vol. 40, no. 12-14, pp. 1435–1466, 2021.

https://www.gurobi.com
http://pybullet.org
http://pybullet.org

	I Introduction
	II Problem Statement
	II-A Inputs
	II-B Outputs

	III Method
	III-A Continuous Contact Optimization via ADMM
	III-A.1 Dynamics
	III-A.2 Contact location
	III-A.3 Contact force
	III-A.4 Sticking contact
	III-A.5 Coulomb friction
	III-A.6 Cost function
	III-A.7 Biconvex Decomposition

	III-B Discrete Contact Planning via MCTS
	III-B.1 Assumptions and Heuristics
	III-B.2 Feasibility classifier
	III-B.3 Goal-conditioned policy-value network

	IV Experiments
	IV-A Experiment Setup
	IV-A.1 Tasks
	IV-A.2 Baselines
	IV-A.3 Software and hardware

	IV-B Evaluation metrics
	IV-C Training procedure
	IV-D Single motion primitives
	IV-E Long-horizon tasks
	IV-F Executing the contact plan

	V Conclusion
	References

