
Flexible Gear Assembly With Visual Servoing and Force Feedback

Junjie Ming, Daniel Bargmann, Hongpeng Cao, and Marco Caccamo

Abstract— Gear assembly is an essential but challenging
task in industrial automation. This paper presents a novel
two-stage approach for achieving high-precision and flexible
gear assembly. The proposed approach integrates YOLO to
coarsely localize the workpiece in a searching phase and
deep reinforcement learning (DRL) to complete the insertion.
Specifically, DRL addresses the challenge of partial visibility
when the on-wrist camera is too close to the workpiece.
Additionally, force feedback is used to smoothly transit the
process from the first phase to the second phase. To reduce
the data collection effort for training deep neural networks, we
use synthetic RGB images for training YOLO and construct
an offline interaction environment leveraging sampled real-
world data for training DRL agents. We evaluate the proposed
approach in a gear assembly experiment with a precision
tolerance of 0.3 mm. The results show that our method can
robustly and efficiently complete searching and insertion from
arbitrary positions within an average of 15 seconds.

I. INTRODUCTION

High-precision and flexible gear assembly have been es-
sential in industrial automation [1]. Typically, a gear assem-
bly process involves searching and insertion [2]. To complete
these two procedures, conventional gear assembly relies on
tedious position teaching, which has the limitations of time
cost and low flexibility [3]. Recent work leverages visual
information [4]–[7] and force/torque (FT) feedback [8]–[13]
in robotic assembly to avoid the reliance on tedious position
teaching, achieving promising performance.

In this work, we aim to develop an efficient solution to
realize the part searching and insertion for high precision
and flexible gear assembly task, as shown in Figure 1. The
assembly scenario consists of a placement tray with an initial
gear, a Frank Emika Panda Robot, and the target platform
mounted with a gear near the peg to be assembled. The robot
is equipped with an RGBD camera on the wrist to observe
the environment and a force sensor on the gripper to detect
contact. This assembly process aims to grasp a gear from
the placement tray and insert it onto the peg to finish the
assembly with the gear on the platform under the precision
tolerance of 0.3 mm. We simplify the grasping by initializing

Junjie Ming and Daniel Bargmann are with the Fraunhofer Insti-
tute for Manufacturing Engineering and Automation, Stuttgart, Germany.
junjieming@gmail.com, danb@ipa.fraunhofer.de

Hongpeng Cao is with the School of Engineering and De-
sign, Technical University of Munich (TUM), Munich, Germany.
cao.hongpeng@tum.de

Marco Caccamo is with the School of Engineering and Design, Technical
University of Munich (TUM), Munich, Germany and Munich Institute of
Robotics and Machine Intelligence, Technical University of Munich (TUM),
Munich, Germany. mcaccamo@tum.de

A video showing the gear assembly process with the proposed approach is
available at https://www.youtube.com/watch?v=5BDMzEspp_
M&ab_channel=HongpengCao.

Fig. 1: The figure provides an overview of the gear assembly
task, with the objective of grasping a gear from the placement
tray, observing the environment using the on-wrist RGBD
camera, and inserting the gear held by the robot onto the
peg using visual servoing to complete the assembly.

the gear with a known position on the placement tray and
pre-program a fixed motion for grasping, as the assembly is
the main focus of this work.

We propose a vision-based two-stage approach with force
feedback to solve the above gear assembly problem. Specif-
ically, in the first stage, we use YOLO [14] with depth
information to roughly localize the object. With the coarse
position, we can efficiently drive the robot using position
control to reach the neighbor of the peg. We use force
feedback to determine whether the gear touches the peg or
not for deciding the transition between the two stages.

As shown in 2a, after the first stage, the centers of the
gear and peg are not aligned perfectly due to the perception
error. Meanwhile, the camera loses the direct view of the peg,
which imposes the challenges of predicting or measuring the
relative position of the peg. We propose a novel solution to
this challenge by training deep reinforcement (DRL) agents
to learn the underlying relative positions from partially visi-
ble target platforms in RGB images, as shown in 2b. Through
interaction with the environment, DRL learns to output
movement setpoints for position control to complete the

ar
X

iv
:2

30
3.

03
15

3v
1

 [
cs

.R
O

]
 6

 M
ar

 2
02

3

https://www.youtube.com/watch?v=5BDMzEspp_M&ab_channel=HongpengCao
https://www.youtube.com/watch?v=5BDMzEspp_M&ab_channel=HongpengCao

(a) Assembly misalignment er-
rors after the first stage

(b) View of the robot camera
during assembly phase

Fig. 2: The figure shows the assembly status after localization
from the first stage.

insertion. We explore DQN [15] algorithm with discretized
action space and PPO [16] with continuous action space for
the insertion to study the potential of the proposed method.

To reduce the data collection effort for training deep
neural networks, we use synthetic RGB images for training
YOLO and constructing an offline interaction environment
leveraging sampled real-world data for training DRL agents.
The real-world assembly experiment shows that the proposed
approach can achieve high robustness and efficiency when
tested in the gear assembly task from 100 different starting
points.

To summarize our contributions, we propose a novel two-
stage approach by integrating YOLO and deep reinforcement
learning with force feedback for achieving high-precision
and flexible gear assembly. We simplify the training of
YOLO using synthetic images and ease the training of
DRL agents with a real-images constructed offline training
environment. For the insertion, we explore DQN and PPO
to effectively address the challenge of partial visibility when
the on-wrist camera is too close to the target. At last, we
evaluate the proposed approaches in a real-world assembly
experiment under varying positional conditions.

This work is structured as follows: Section I describes the
background for the gear assembly task and an overview of the
proposed solution. Section II summarizes the related work.
The proposed approach is introduced in detail in Section III.
The experimental setup and the evaluation of the proposed
approach are discussed in Section IV. Section V concludes
the work and gives a brief outlook on future work.

II. RELATED WORK

Robotic assembly is a challenging task in industrial au-
tomation. Related work leverages visual information [4]–[7]
and force/torque (FT) feedback [8]–[13] in robotic assembly
to avoid the reliance on tedious position teaching, improving
assembling reliability and flexibility.

Vision-based approaches focus on pose detection for part
searching, and recent work mainly aims to improve the de-
tection accuracy [4], [5], [7]. In [4], a CNN-based algorithm
is proposed to estimate the poses of the part from depth
images and apply pose refinement to improve the estimation
accuracy. [6] detects the pose of the part from the 3D
point cloud and gets more accurate pose estimation through

refinement using the iterative close point (ICP) algorithm.
The pose detection can also be simplified by detecting a
checkerboard attached near the part [4].

Once the poses of the parts are available, the assembly
motion can be generated using a motion planer based on
kinematics and geometry prior-knowledge [17]. The move-
ment can be realized using position control. However, the
quality of the vision-based approaches is highly dependent on
the detection accuracy. Furthermore, it can be affected by the
uncertainties presented in the insertion phase due to contact
between different parts [1]. This challenge motivates using
force/torque (FT) sensors to provide contact information for
the robot to deal with the uncertainties in the assembly
process.

Directly deriving relative positions from F/T signals is
challenging, as the contact dynamics model is complex [13].
Deep reinforcement learning (DRL) holds the promise of
completing the insertion by learning from interactions with
the environment, where the dynamic model is not needed.
Recent work [8]–[12] train DRL agents to map the F/T
signals with other observations, for instance, the pose of the
part, directly to the actions that drive the robot, achieving
promising performance. In contrast to outputting action,
[13] proposes utilizing DRL to select stiffness matrix in
admittance control to induce the motion that can complete
insertion.

Our work integrates YOLO to coarsely localize the target
in the parts searching phase and deep reinforcement learning
to align parts with finishing the insertion. Different from the
related work that trains DRL to interpret relative positions
from F/T signals for insertion, the novelty of our work lies
in learning the underlying relative positions from partially
observed target platforms in RGB images.

III. METHODS

In this section, we introduce a vision-based two-stage
approach with the assistance of force feedback to address
the gear assembly problem. Specifically, in the first stage, we
use YOLO [14] with depth information to roughly localize
the object. In the second stage, we train deep reinforcement
learning agents to mitigate the inaccuracies from the first
stage and finish the gear assembly by utilizing force feed-
back.

A. Target localization

The first stage of our assembly task involves localizing
the target platform and bringing the end-effector to the
center of the peg. We utilize an RGBD camera to obtain
RGB and depth images of the assembly environment and
apply the YOLO algorithm [14] on the RGB image to
detect the 2D bounding box of the target platform. The
depth image is then used to estimate the 3D coordinates
{xpf , ypf , zpf} of the center of the platform with respect
to the camera center, as in [18]. Specifically, we convert
the pixel coordinates of the bounding box to 3D coordinates
using the camera’s intrinsic parameters and utilize the depth
values along with the converted 3D coordinates to obtain the

Fig. 3: The plot illustrates the Convolutional Neural Network (CNN) utilized for extracting features from image input and
outputting actions for the DQN and PPO agents.

3D position of the target platform. The 3D coordinates of the
targeting peg {xp, yp, zp} are calculated by subtracting the
relative distance from the detected center of the platform
{xpf , ypf , zpf}. Using position control, we then navigate
the end-effector to {xp, yp, zp} and move the gripper down-
ward along the z-axis. The first stage is deemed complete if
the force detected in the z-axis exceeds the predetermined
threshold fz .

It should be noted that the localization method in the
first stage may not align the center of the peg and gear
perfectly due to the inaccuracies of the detected bounding
box, resulting in an alignment error, as shown in Fig. 2a.
In the next section, we introduce training reinforcement
learning agents to address the alignment error and complete
the assembly task.

B. Gear assembly

To address the alignment error, we train DRL agents to
generate {x, y} set-points and use the position control to
navigate the end-effector. Meanwhile, we apply a minor z
position control to attempt downward insertion. Once the
centers of the gear and peg are aligned, the gear can drop
onto the peg, and the alignment process is completed. The
gear is then further lowered using only z control until it
reaches the specified threshold ht. Finally, a rotation along
the z axis is applied to complete the assembly process,
resulting in the gear being successfully assembled with
another gear mounted on the platform.

1) Centers alignment using DRL: After the first stage, the
camera is close to the peg, losing the peg’s direct view, as
shown in Figure 2b. This imposes a challenge when aligning
the centers of the gear and peg, as the center of the peg is
not directly observable. We train DRL agents to infer the
underlying relative positions to the peg’s center by observing
its neighboring images to address this partial observable
problem.

The process can be formulated as a Partially Observ-
able Markov Decision Process (POMDP) with M =
{S,A, P,Ω, T , R, γ}. In the POMDP, S represents a set of
states, A a set of actions, P : S × A × S 7→ R the state-
transition probability function indicating the probability of a
state-action pair leading to a specific next state. Ω stands for
the set of possible observations that the agent can receive,
and T : Ω × A × Ω 7→ R is the probability of receiving
observation Ω given that the agent takes action a in state

(a) Scanned platform (b) Synthetic RGB image

Fig. 4: The figure displays the 3D mesh of the platform and
the synthetic image for training YOLO.

s. The reward function R : S × A × S 7→ R maps a state-
action-state triple to a real-valued reward. The discount factor
γ ∈ [0, 1] controls the relative importance of immediate
and future rewards. The goal in DRL is to find a policy
π : S 7→ A, mapping a state to an action that maximizes the
expected return from step t

Gt =

∞∑
i=t

γi−tR(si, ai, si+1). (1)

Specifically, in the POMDP, the observation of the agent
at time t is the neighbor RGB image of the platform, as
shown in Figure 2b, and action is a two-dimensional offset
{xδ, yδ} to the end-effector’s position in {x, y} plane. To
find a policy that maximizes the return, we explore DQN
[15] algorithm for discretized action output and PPO [16] for
continuous action output. We design a convolutional neural
network (CNN), as shown in Figure 3, to extract features
from RGB images and output the movement offset {xδ, yδ}
actions for DQN or PPO.

DQN is a value-based approach, and CNN stands for
the Q value network. The action is selected by applying
the arg max function on Q values output on different ac-
tions ai = arg max(Q(si, A)), where A is the movement
in {x, y} direction associated with discretized step size
{−1, + 1, − 5, + 5} mm. In contrast, PPO is a policy-
based approach, and the CNN represents the policy network
that directly maps the image observation into continuous
{xδ, yδ} output in [−5, + 5] mm. For more details about
DQN and PPO, we refer readers to the literature [15] and
[16].

2) Training: The training of deep neural networks is non-
trivial due to the high demand for training data. To ease
the data collection effort for training YOLO, we use a 3D

Fig. 5: The plot displays a grid world consisting of cells with
a length of 1mm, where the center of the peg is marked in
red and green grid points indicating the position for capturing
real images using the on-wrist camera.

scanner to obtain the 3D mesh of the target platform, shown
in Figure 4a, and import it into the Blender to generate
synthetic images, shown in Figure 4b, with annotations by
leveraging the pipeline proposed in [19]. After training, the
pre-trained YOLO is directly deployed in the first stage for
coarse localization without further training.

The training of DRL agents involves extensive interaction
with the environment, which imposes a challenge when
training in the real world due to the sampling complexity
[20]. To address this problem, we discretize the {x, y} plane
around the peg as a grid world. We then drive the robot to
take pictures at each grid point and record its coordinates,
which will be used to construct an environment proximity
to interact with the DRL agents for training. As shown in 5,
the grid is a 1 mm x 1 mm square, and the entire map has
30 rows and 35 columns, covering a 3 cm x 3.5 cm space.
This sampling process can be automated by programming
the movement of the robot without measuring the position
of the peg, and it can be done efficiently within 30 minutes.

The grid world enables us to derive a dense reward
function to guide the agents to learn more efficiently. As
shown in Equation 2, The first term of the reward function is
the normalized Manhattan distance between the current grid
point and the center of the peg, marked as red, where Spx and
Spy are the x, y coordinate of the grid point, nY and nX are
the total number of rows and columns in the sampling map.
The second term is the penalty term to penalize the robot
moving out of the 3 cm x 3.5 cm space. The agent receives
the highest reward, r = 1, when the center of the gear reaches
the target and receives an additional penalty, β = 10, when
the robot moves out of the boundary, as shown in Figure 6.

r = −(

∣∣Spx − nX

2

∣∣
nX

+

∣∣Spy − nY

2

∣∣
nY

)/2− β, (2)

Now we are ready to introduce the pre-training process.
The training episode starts from T0 at a random point
Spx0, py0 in the grid world, as shown in Figure 6. The

Fig. 6: The 3D diagram shows the rewards associated with
the training environment, with a red dot marking the center
of the peg. The offline training process is visualized using
green dots and arrows in the {x, y} plane.

observation for the agent is the recorded real-world image
from the on-wrist camera. The agents take the image as
input and output the movement offset to the current position
of the end-effector. By applying the movement offset, the
training environment will evolve to the next state at T1 at
Spx1, py1 . The interaction continues until the episode reaches
the maximum length or the episode terminates when the
robot moves out of the grid world. To note, PPO algorithm
outputs continuous action which might not lead the next state
reaching the exact grid point on the map. In this case, we
take the nearest grid point to the center of the end-effector
as the next state. This approximation will introduce a gap
between the pre-training environment and real world, which
will be mitigated through fine-tuning in the real world.

After pre-training, we transfer the learned agents to the
real world and further train DRL agents with sparse reward
[0, 1] to compensate for the inaccuracy of the pre-training
environment to reach optimal.

IV. EXPERIMENTS AND RESULTS

In this section, we introduce the experimental setup of the
assembly task and the evaluation of the proposed methods.

A. Hardware setup

The assembly scenario consists of three main components:
a placement tray, a Frank Emika Panda Robot, and the target
platform, as shown in Figure 7. The placement tray is a C-
shaped bracket with a blue platform on top for initial gear
placement. The target platform has an aluminum peg at the
center and a gear mounted for gear assembly with a tolerance
of 0.3 mm 1. The robot is embedded with a Realsense D415

1The two gears used in this work are GEABP1.0-40-10-B-10 and
GEABP1.0-20-10-B-10 respectively.

Fig. 7: The figure depicts the workflow of gear assembly,
consisting of three steps: 1) driving the robot to grasp the
gear on the placement tray; 2) returning the robot to the
initial position while holding the gear; and 3) completing the
assembly process using the proposed two-stage approaches.

Fig. 8: The plot illustrates the run time performance of
various approaches in gear assembly experiments with 100
different initial starting points, where the confidence interval
is 95 %.

RGBD camera on the wrist to observe the environment and
a force sensor on the gripper to detect contact. Moreover, the
robot’s gripper fingers are customized to be a pair of crabs
to increase grasping reliability.

As the initialization, the gear is placed at the placement
tray horizontally at a pre-configured known position to re-
duce the grasping uncertainty. The target platform is mounted
horizontally on the workbench. The robot arm is initialized
to view the target platform at any position of the {x, y}
plane and above a certain height. As depicted in Figure 7,
The workflow of the whole pipeline includes 1) the robot is
programmed to grasp the gear on the placement tray; 2) the
robot returns to the initial position with the gear in hand; 3)
the assembly starts using our proposed two-stage approach.

B. Software setup

In the proposed two-stage assembly approach, we use the
Darknet implementation of YOLO as in [14] for object detec-
tion and further integrate it with ROS framework as in [21]
for efficient data communication. We leverage the off-the-
shell implementation for PPO and DQN from [22] to address
the center alignment problem at the second stage. The robot’s
motion control and contact detection are performed by pitasc
[23], a modular robot operating system. Furthermore, We use
ROS as a communication bridge between different modules.

C. Evaluation

The target localization using YOLO in the first stage can
efficiently and reliably bring the in-hand gear to the neighbor
of the peg, leaving the center alignment in the second stage
as an essential factor for successful assembly. Therefore,
we mainly evaluate the performance of the second stage,
in which we initialize the second stage at randomly sampled
100 points in the neighbor of the peg and study the robustness
and running efficiency of PPO and DQN. Furthermore, we
implement a heuristic spiral search approach as a comparison
baseline.

1) Robustness performance: In the robustness test, we are
interested in answering how reliable different approaches can
achieve in assembly tasks with different starting points. We
set the maximum run time budget as 50 seconds, and the
experiment that can finish assembly within the budget will
be treated as a success. We repeat the experiment 100 times
from different randomly sampled starting points and report a
success rate (SR) for spiral search and offline-trained DQN
and PPO approaches. We furthermore report the SR of DQN
and PPO after real-world fine-tuning.

As shown in Figure 9, the offline-trained PPO achieves
the best performance with 100% SR, whereas the offline-
trained DQN fails in many cases, as marked as purple,
resulting in a 90% SR. The reason is that the relative pose,
i.e., a relative rotation or translation offset, of the target
platform to the end-effector is not perfectly calibrated before
sampling, which introduces a mismatch regarding the origin
and axis in the constructed offline training environment. This
mismatch imposes a big challenge for DQN, as DQN outputs
discretized action along the x, y axis. The policy learned
in the offline environment might not have a valid solution
to align the centers in the real world finely. However, PPO
outputs continuous actions, which has more compliance that
could compensate for planning errors in the real world. Spiral
searching only has a 19% SR, showing its sensitivity to the
distance to the peg, which also implies the demand for the
precision of the target localization.

We further fine-tune the learned DQN and PPO in the real
world to study the gap between the offline training environ-
ment and the real world. The real-world fine-tuning takes
approximately 10 minutes, after which DQN can achieve a
100% SR.

2) Efficiency performance: In the efficiency test, we aim
to study how fast different approaches can complete the
assembly task. We additionally record the time consumed

(a) Spiral Searching (b) Offline-trained DQN (c) Offline-trained PPO

Fig. 9: The plot demonstrates the robustness performance of different approaches in gear assembly experiments with 100
various initial starting points, where blue dots represent successful assemblies, purple dots denote failure cases and the green
circle corresponds to the shape of the peg.

(a) Spiral searching (b) Real-world tuned DQN (c) Real-world tuned PPO

Fig. 10: The figure displays the trajectories of gear assembly from various initial starting points using different methods,
where PPO achieves the most efficient performance with an average traveling score (ATS) of 1.3.

for each experiment performed in the robustness test, where
failed experiments consume a maximum time of 50 seconds.

As shown in Figure 8, the real-world tuned PPO is the
most efficient algorithm that takes approximately 6 seconds
to finish the second stage, whereas DQN, on average, takes
14 seconds. Spiral searching fails in cases where starting
points are far away from the center of the peg, resulting
in the most inefficient solution. Real-world tuning is gen-
erally beneficial to improve performance consistency and
reduce the average run time, especially for DQN. However,
we also notice that the policies learned from the offline
training environment have comparable performance to the
real-world tuned policies. This indicates that learning only
in the offline environment can achieve sufficiently good
efficiency, showing the potential of training policies solely
in the offline-environment constructed with sampling points
under tolerable accuracy.

To analyze the behaviors of different approaches, we
test spiral search, real-world tuned DQN and PPO from
12 different starting points across the {x, y} plane, and
their trajectories are visualized in Figure 10. The Figure
shows that the trajectories of the PPO are closer to the

optimal trajectories, i.e., straight line between two points.
In contrast, the DQN performs in Manhattan geometry due
to the discretized action space. To quantitatively study the
difference, we compute the traveling score Tscore for each
trajectory as

Tscore =
Ltraj

|Ptarget − Pstart|
, (3)

where Ltraj is the actual length of the trajectory, |Ptarget−
Pstart| stands for the euclidean distance between the start
and end point. The optimal trajectory would lead to a score
of 1. As shown in Figure 10, PPO achieves the average
traveling score (ATS) of 1.3 among 12 trajectories, and DQN
achieves 2.0. Spiral searching only succeeds in the four
nearest starting points, and the ATS for these four trajectories
is 29.9. Although PPO acts close to optimal solutions, it can
perform a curved trajectory starting from the bottom right
corner, as shown in Figure 10c. This is possibly due to the
space near the bottom right corner is not well explored during
training. This can be mitigated by resetting the training from
this region or using more exploration-efficient off-policy
algorithms.

With the most efficient real-world tuned PPO, the whole
assembly pipeline can be completed within approximately 15
seconds, in which the first stage takes roughly 9 seconds to
finish object searching and approaching.

V. CONCLUSIONS

In conclusion, we presented a novel two-stage approach
for autonomous assembly that integrates YOLO for target
coarse localization and deep reinforcement learning for fine
alignment. Our proposed approach exhibits impressive ro-
bustness and running efficiency when evaluated in an indus-
trial gear assembly task with 0.3mm precision tolerance. This
has been possible thanks to the use of deep reinforcement
learning that can effectively address the problem of partial
visibility when the on-wrist camera is too close to the target
and the force feedback to simplify the transitions between
two stages. We also introduced a novel offline training
strategy using real-world data to pre-train DRL agents.

The limitation of this work is that it requires visually
distinguishable spatial features on the part that can signify
its relative distance from the background. In other words,
our approach would struggle to learn from a broad plane of
uniform pattern and color, where every observation at differ-
ent positions looks identical. To overcome this limitation, one
can, for example, place printed irregular pattern near the part
to enhance spatial information. The current work is tested
only in the 3D space with simplified grasping. Future work
will extend to complete the whole pipeline by combining the
grasping and assembly in 6D space.

ACKNOWLEDGMENT

Marco Caccamo was supported by an Alexander von
Humboldt Professorship endowed by the German Federal
Ministry of Education and Research.

The authors would like to thank Lukas Dirnberger for his
assistance in synthetic data generation.

REFERENCES

[1] R. Li and H. Qiao, “A survey of methods and strategies for high-
precision robotic grasping and assembly tasks—some new trends,”
IEEE/ASME Transactions on Mechatronics, vol. 24, no. 6, pp. 2718–
2732, 2019.

[2] K. Sharma, V. Shirwalkar, and P. K. Pal, “Intelligent and environment-
independent peg-in-hole search strategies,” in 2013 International Con-
ference on Control, Automation, Robotics and Embedded Systems
(CARE), pp. 1–6, IEEE, 2013.

[3] G. Biggs and B. MacDonald, “A survey of robot programming
systems,” in Proceedings of the Australasian conference on robotics
and automation, vol. 1, pp. 1–3, 2003.

[4] Y. Litvak, A. Biess, and A. Bar-Hillel, “Learning pose estimation for
high-precision robotic assembly using simulated depth images,” in
2019 International Conference on Robotics and Automation (ICRA),
pp. 3521–3527, IEEE, 2019.

[5] Y. Huang, X. Zhang, X. Chen, and J. Ota, “Vision-guided peg-in-
hole assembly by baxter robot,” Advances in Mechanical Engineering,
vol. 9, no. 12, p. 1687814017748078, 2017.

[6] W.-C. Chang, Y.-K. Lin, and V.-T. Pham, “Vision-based flexible
and precise automated assembly with 3d point clouds,” in 2021 9th
International Conference on Control, Mechatronics and Automation
(ICCMA), pp. 218–223, 2021.

[7] D. De Gregorio, R. Zanella, G. Palli, S. Pirozzi, and C. Melchiorri,
“Integration of robotic vision and tactile sensing for wire-terminal
insertion tasks,” IEEE Transactions on Automation Science and Engi-
neering, vol. 16, no. 2, pp. 585–598, 2018.

[8] Z. Hou, J. Fei, Y. Deng, and J. Xu, “Data-efficient hierarchical rein-
forcement learning for robotic assembly control applications,” IEEE
Transactions on Industrial Electronics, vol. 68, no. 11, pp. 11565–
11575, 2020.

[9] T. Inoue, G. De Magistris, A. Munawar, T. Yokoya, and R. Tachibana,
“Deep reinforcement learning for high precision assembly tasks,” in
2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 819–825, IEEE, 2017.

[10] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, and A. M. Agogino, “Deep
reinforcement learning for robotic assembly of mixed deformable
and rigid objects,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 2062–2069, IEEE, 2018.

[11] Z. Hou, Z. Li, C. Hsu, K. Zhang, and J. Xu, “Fuzzy logic-driven
variable time-scale prediction-based reinforcement learning for robotic
multiple peg-in-hole assembly,” IEEE Transactions on Automation
Science and Engineering, vol. 19, no. 1, pp. 218–229, 2020.

[12] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, A. M. Agogino, A. Tamar,
and P. Abbeel, “Reinforcement learning on variable impedance con-
troller for high-precision robotic assembly,” in 2019 International
Conference on Robotics and Automation (ICRA), pp. 3080–3087,
IEEE, 2019.

[13] M. Oikawa, T. Kusakabe, K. Kutsuzawa, S. Sakaino, and T. Tsuji,
“Reinforcement learning for robotic assembly using non-diagonal
stiffness matrix,” IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 2737–2744, 2021.

[14] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[16] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[17] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” IEEE
Robotics & Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[18] N. Andriyanov, I. Khasanshin, D. Utkin, T. Gataullin, S. Ignar,
V. Shumaev, and V. Soloviev, “Intelligent system for estimation of
the spatial position of apples based on yolov3 and real sense depth
camera d415,” Symmetry, vol. 14, no. 1, p. 148, 2022.

[19] H. Cao, L. Dirnberger, D. Bernardini, C. Piazza, and M. Caccamo,
“Learning 6d pose estimation from synthetic rgbd images for robotic
applications,” arXiv preprint arXiv:2208.14288, 2022.

[20] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine,
“How to train your robot with deep reinforcement learning: lessons
we have learned,” The International Journal of Robotics Research,
vol. 40, no. 4-5, pp. 698–721, 2021.

[21] M. Bjelonic, “YOLO ROS: Real-time object detection for ROS.”
https://github.com/leggedrobotics/darknet_ros,
2016–2018.

[22] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dor-
mann, “Stable-baselines3: Reliable reinforcement learning implemen-
tations,” Journal of Machine Learning Research, vol. 22, no. 268,
pp. 1–8, 2021.

[23] L. Halt, F. Nagele, P. Tenbrock, and A. Pott, “Intuitive constraint-
based robot programming for robotic assembly tasks* the research
leading to these results has received funding from the european unions
seventh framework programme fp7/2013-2017 under grant agreement
n 608604 (liaa: Lean intelligent assembly automation) and horizon
2020 research and innovation programme under grant agreement
n 688642 (rampup).,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 520–526, IEEE, 2018.

https://github.com/leggedrobotics/darknet_ros

	I INTRODUCTION
	II Related work
	III Methods
	III-A Target localization
	III-B Gear assembly
	III-B.1 Centers alignment using DRL
	III-B.2 Training

	IV Experiments and results
	IV-A Hardware setup
	IV-B Software setup
	IV-C Evaluation
	IV-C.1 Robustness performance
	IV-C.2 Efficiency performance

	V CONCLUSIONS
	References

