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Abstract— The use of mobile robots in unstructured envi-
ronments like the agricultural field is becoming increasingly
common. The ability for such field robots to proactively identify
and avoid failures is thus crucial for ensuring efficiency and
avoiding damage. However, the cluttered field environment
introduces various sources of noise (such as sensor occlu-
sions) that make proactive anomaly detection difficult. Existing
approaches can show poor performance in sensor occlusion
scenarios as they typically do not explicitly model occlusions and
only leverage current sensory inputs. In this work, we present
an attention-based recurrent neural network architecture for
proactive anomaly detection that fuses current sensory inputs
and planned control actions with a latent representation of
prior robot state. We enhance our model with an explicitly-
learned model of sensor occlusion that is used to modulate
the use of our latent representation of prior robot state. Our
method shows improved anomaly detection performance and
enables mobile field robots to display increased resilience to
predicting false positives regarding navigation failure during
periods of sensor occlusion, particularly in cases where all
sensors are briefly occluded. Our code is available at: https:
//github.com/andreschreiber/roar.

I. INTRODUCTION

Throughout various domains, mobile robots are becoming
increasingly prevalent as technological advancements enable
such robots to autonomously execute a greater number of
tasks. In agriculture, for example, compact mobile robots can
move between crop rows and have been used to perform tasks
such as corn stand counting [1] and plant phenotyping [2].
However, the agricultural field environment presents numer-
ous challenges for such robots as this unstructured environ-
ment displays cluttered foliage, varying lighting conditions,
and uneven terrain.

These challenging conditions require algorithms that are
robust to noise and sensor occlusions in order for the robots
to remain autonomous, especially as the difficult nature of
the environment increases the possibility that robots enter
failure modes. Entering such failure modes may lead the
robot to require external intervention to accomplish its task or
may involve damage to the robot [3]. Thus, detecting poten-
tial navigation failures ahead of time becomes increasingly
important in order to prevent damage and ensure optimal
efficiency. However, the difficulty of developing algorithms
to proactively detect such failure modes is exacerbated by
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(a) (b)

Fig. 1. Example sequences from the field environment dataset introduced
by Ji et al. [4], with each of the two sequences displayed top to bottom.
A blue line indicates the planned trajectory, and the LiDAR map is shown
in the top right of the images. (a) shows a brief occlusion caused by low-
hanging vegetation which does not lead to immediate navigation failure,
while (b) shows an obstruction that leads to navigation failure.

the unstructured nature of the field environment, as such
algorithms must be able to differentiate between scenar-
ios representing genuine navigation failures (e.g., colliding
with rigid obstacles or prematurely leaving the crop row)
and the frequent but ultimately non-catastrophic noise (e.g.,
occlusions) created by the environment. An example of
the difference between an occlusion that does not lead to
navigation failure and a true failure mode is shown in Fig 1.

Detecting such failure modes is commonly approached
from the perspective of anomaly detection (AD) [4]–[8], with
failure modes being treated as anomalies. Many works on
AD [5]–[7] view the problem from a reactive perspective,
in which anomalies are detected as they occur; however,
with reactive AD, potential failure conditions cannot be
detected before they occur in order to avoid them. Due to this
limitation, recent work has focused on proactive AD in which
the robot predicts the probability of failure within a time
horizon using both current sensory inputs and planned future
actions [4], [8]–[10]. In unstructured environments like those
seen by the field robots, AD models may additionally utilize
multi-sensor fusion of different inputs like RGB cameras and
LiDAR to increase robustness to noise and occlusions [4],
[8]. In these multi-sensor approaches, occlusion conditions
can be implicitly learned without supervision [4] or explicitly
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modeled [8]. However, such approaches only make use of
current sensory inputs and do not maintain a history of prior
sensory state. Thus, using multi-sensor fusion to address the
possible occlusion of sensors can still fail if all sensors are
briefly occluded. Such failures during periods of occlusion
typically manifest as false positives, where the AD algorithm
falsely predicts that the robot has entered a failure mode. As
a prediction of failure can lead to interruption of normal
robot operation, reducing these false positives minimizes the
number of spurious interruptions and improves operating
efficiency.

Due to these limitations, we introduce a new proactive
AD neural network. Our proposed network, termed Recurrent
Occlusion-AwaRe (ROAR) anomaly detection, learns when
sensors are occluded and incorporates an attention-based
mechanism to fuse sensor data, predicted future actions, and
a summary of prior robot state (informed by occlusion of
the sensors) to provide improved AD performance when
sensor occlusion occurs. Our architecture can reduce false
positives in brief periods of total sensor occlusion, and
more effectively makes use of its summarization of the prior
robot state by explicitly learning when sensors are occluded.
Furthermore, as multi-sensor approaches may not always
be possible or economical due to their increased hardware
requirements, we demonstrate that a variant of our model
using only one input sensor can still provide an attractive
alternative to existing multi-sensor fusion approaches.

We summarize our contributions as follows:

1) We propose an attention-based recurrent neural net-
work architecture that fuses planned future actions and
multiple sensory inputs with a latent representation of
robot state (which summarizes prior sensory inputs
and prior planned control actions) to improve AD
performance in unstructured environments, particularly
when total sensor occlusion occurs.

2) We leverage an explicitly learned model of sensor
occlusions to provide enhanced utilization of the latent
representation of robot state and improved AD perfor-
mance with our recurrent neural network architecture.

3) We show that our network demonstrates improved
performance over existing methods, and displays in-
creased robustness against false positives in brief peri-
ods of total sensor occlusion. We also demonstrate that
when even only one sensor modality is used, our model
significantly outperforms other single-sensor networks
and provides an attractive alternative to multi-sensor
fusion models in cases where multiple sensors may
not be available.

II. RELATED WORK

AD is studied and applied in a variety of contexts. In the
context of robotics and autonomous systems, AD (also called
outlier detection or novelty detection) is frequently used to
detect failures and often draws upon additional areas such as
deep learning and multi-sensor fusion to provide improved
performance.

A. Multi-Sensor Fusion using Neural Networks

Contemporary robots and autonomous systems typically
feature numerous sensors. Thus, there has been pronounced
study on how to effectively fuse such sensor data, with
many approaches utilizing neural networks for such fusion.
For example, Nguyen et al. [11] propose a neural network
architecture that fuses multi-modal signals from images,
LiDAR, and a laser distance map in order to learn to navigate
in complex environments like collapsed cities. Similarly, Liu
et al. [12] present a method for learning navigation policies
that makes use of multi-modal sensor inputs, improving
robustness to sensor failure by introducing an auxiliary loss
to reduce variance of multi- and uni-sensor policies and by
introducing sensor dropout. Likewise, Neverova et al. [13]
present ModDrop, which introduces a modality-wise dropout
mechanism similar to sensor dropout for multi-modal gesture
recognition. ModDrop randomly drops sensor modality com-
ponents during training, improving model prediction stability
when inputs are corrupted.

Numerous deep learning-based methods of multi-sensor
fusion integrate attention mechanisms to achieve more ef-
fective fusion of sensory inputs. Such attention-based fusion
mechanisms have seen significant use in fields such as human
activity recognition. For example, [14]–[16] all describe
attentional fusion architectures that combine data collected
from multiple sensors that are affixed to a subject’s body.

B. Occlusion Modeling

In robotics and autonomous systems, sensors can experi-
ence occlusions, which may require a fusion mechanism with
special provisions to ensure stable predictions. Occlusions
may manifest as faulty sensor readings, and sensor- or
modality-wise dropout could be used to account for such
occlusions [12], [13]. Other works have also attempted to
specifically devise strategies for fusion under sensor occlu-
sion rather than treating an occlusion as a sensor failure.
For example, Palffy et al. [17] introduce an occlusion-
aware fusion mechanism for pedestrian detection by using
an occlusion-aware Bayesian filter. Ryu et al. [18] describe
a method for robot navigation that is intended to work
specifically in cases of prolonged sensor occlusion of 2D
LiDAR caused by issues like dust or smudges. However,
the assumption of prolonged occlusions does not entirely
suit the agricultural field environment that we target, which
typically features brief dynamic occlusions (e.g., a leaf
briefly covering the camera as the robot drives down a crop
row). Similarly, we seek to design a multi-modal anomaly
detector, whereas the method presented by Ryu et al. [18]
considers navigation using only a 2D LiDAR sensor.

C. Anomaly Detection using Machine Learning

In addition to sensor fusion and occlusion modeling, AD
using machine learning is directly related to our work.
One frequently used approach to AD with machine learning
involves analyzing the reconstruction error of autoencoders
trained on non-anomalous data. For example, Malhotra et
al. [5] employs an encoder-decoder architecture that learns



to reconstruct non-anomalous time-series and flags samples
having high reconstruction error as anomalies. An and Cho
[19] leverage the variational autoencoder (VAE) to detect
anomalies using a more theoretically-principled reconstruc-
tion probability instead of the reconstruction error of a
generic autoencoder. Lin et al. [20] combine elements seen
in other works [5], [19], proposing a VAE-LSTM model for
time-series AD that leverages a VAE to generate features
for short time windows and an LSTM to capture longer-
term correlations relevant to AD. Other machine learning
techniques for AD have also been studied, such as recent
works [21], [22] that utilize contrastive learning as a method
of AD by detecting out-of-distribution samples.

Much research has also investigated applying AD specif-
ically to robotics and autonomous systems. Wyk et al. [23]
describe a method for AD of sensors in autonomous vehicles
by combining a convolutional neural network (CNN) with
an adaptive Kalman filter that is paired with a failure
detector. He et al. [24] present an approach that detects
anomalies in autonomous vehicles by exploiting redundancy
among heterogeneous sensors to detect anomalies in sensor
readings. In robotics, Yoo et al. [25] describe a multi-modal
autoencoder for AD applied to object slippage, whereas Park
et al. [6] use an LSTM-based VAE to detect anomalies in
robot-assisted feeding. In the agricultural field, prior work
[7] introduced a supervised VAE-based approach operating
on LiDAR and proprioperceptive measurements to predict
a variety of anomalies. However, these approaches focus
on predicting anomalies only as or after they have already
occurred and cannot be directly used for forecasting future
anomalies.

D. Proactive Anomaly Detection in Robotics

Several works have proposed proactive AD methods,
which–in contrast to reactive AD methods–can enable pre-
diction of anomalies before they occur in order to take
corrective actions to avoid failure entirely or to reduce the
damage caused by such a failure. LaND [9] and BADGR
[10] utilize a CNN architecture operating on input images
from a robot’s camera. The features extracted from the CNN
are used as an initial state for an LSTM which predicts
future events using planned control actions as input. Most
similar to our proposed method are multi-modal proactive
anomaly detection methods, such as PAAD [4] and GrASPE
[8]. PAAD fuses camera images, 2D LiDAR data, and a
predicted future trajectory using an attention-based multi-
modal fusion architecture. GrASPE predicts navigation suc-
cess probabilities for future trajectories using a multi-modal
fusion architecture (fusing 3D LiDAR, RGB camera, and
odometry data). The fusion mechanism in GrASPE uses
graph neural networks (GNNs), forming a graph with sensor
features as nodes. Sensor reliability information in GrASPE
is also provided via the graph adjacency matrix (with sensor
reliability computed through hand-designed, non-learning-
based algorithms). However, both GrASPE and PAAD do
not explicitly capture prior sensor state, with PAAD using
only the sensor data from the current time step to make

predictions and GrASPE relying only on a history of velocity
measurements to capture the prior state of the robot.

III. METHOD
Our goal is to design a method to predict future failures

of an autonomous field robot during operation that is robust
even in cases of brief total sensor occlusion.

The model we propose accepts multi-modal sensory in-
puts from two sensors: a 2D LiDAR unit and an RGB
camera. The 2D LiDAR produces a vector of range mea-
surements x(t)

l ∈ RL, and the RGB camera produces images
x
(t)
c ∈ RH×W×3. The model predicts future probabilities of

failure for the next T time steps based on knowledge of
future controls generated by a predictive controller used by
the robot. As a result, the model also requires inputs speci-
fying such planned control actions. Following the approach
of PAAD [4], we provide the planned control actions as a
grayscale image x

(t)
p ∈ RH×W×1, in which the planned path

from the predictive controller is projected from the camera’s
point of view as a curve onto a blank image. To incorporate
historical information that aids in prediction during periods
of total sensor occlusion, our proposed model leverages a
latent representation of state h(t) ∈ RD that is used as input
and evolved in each prediction step as new sensory and
control inputs are provided. At each prediction step, the
network outputs T probabilities of future failure ŷ(t:t+T ) :=
(y(t), y(t+1), ..., y(t+T−1)) ∈ [0, 1]T . For each time step,
the model also predicts the probability of occlusion for the
LiDAR and camera inputs: y(t)lidar ∈ [0, 1] and y

(t)
camera ∈ [0, 1].

Similar to existing works [4], [8]–[10], the proactive nature
of our proposed model is beneficial by allowing prediction
of future failures. In addition, like PAAD [4] and GrASPE
[8], our model uses a variety of sensor modalities to provide
improved prediction robustness. Our proposed model also
explicitly models sensor occlusion. However, as compared
with GrASPE, our mechanism for occlusion prediction is
directly learned within the neural network model, while
GrASPE uses classical (non-learning-based) algorithms to
determine sensor reliability. Learning occlusion via neural
network grants greater flexibility by enabling the model
to learn more nuanced representations of occlusion (such
as those produced by intermediate layers of an occlusion
prediction network) and does not require a hand-crafted
algorithm for detecting occlusion.

Unlike the prior models [4], [8]–[10], our proposed in-
clusion of a latent representation of robot state (which
summarizes prior control and sensory inputs) allows our
model to show increased resilience to false positives in
cases of brief total sensor occlusion. For example, if the
robot traverses a corn row with no obstructing ground-based
obstacles and briefly experiences occlusion of both LiDAR
and camera from leaves in the crop canopy, prior models
may raise an anomaly, whereas our proposed model can
utilize knowledge of the lack of obstacles captured by the
latent state representation to avoid falsely reporting failures.
We also combine the learning-based sensor occlusion esti-
mation in the attention mechanism that fuses the sensory



inputs, control inputs, and latent representation of state. The
inclusion of occlusion estimation in the attention mechanism
enables our model to learn how to combine information
about predicted sensor occlusion with the latent robot state to
provide improved predictions of future failure during sensor
occlusion.

A. Data

We utilize the dataset collected in a prior work [4] to verify
our model. This data was collected using the 4-wheeled,
skid-steer TerraSentia mobile robot. The TerraSentia features
a forward-facing RGB camera (OV2710) producing images
with a resolution of 240×320, and a LiDAR (Hokuyo UST-
10LX) with 270◦ range at an angular resolution of 0.25◦

that yields 1081 range measurements. The predictive path
is generated using the robot’s predictive controller, and is
projected onto a front-facing plane using the camera’s known
intrinsic parameters.

In addition to the failure labels provided in the dataset,
we add labels specifying camera occlusion and LiDAR
occlusion. LiDAR occlusion was automatically labeled with
samples displaying a median range measurement of less than
0.3 m for the center 215◦ of LiDAR measurements being
labeled as occluded. Images were automatically labeled as
occluded using thresholds on image sharpness and variance
of pixel values. These image occlusion labels were then
inspected and refined. Such refinement ensured correct oc-
clusion labels even when conditions like high levels of glare
from the sun led the automated labeling to predict the camera
as occluded (even though the path ahead could still be seen).

B. Model Architecture

The architecture for our model (shown in Fig. 2) consists
of three feature extractors, a multi-head attention fusion
module, a recurrent state feature, a fully-connected occlusion
prediction head for each sensory input, and a fully-connected
proactive anomaly detection prediction head.

The three feature extractors are adopted from PAAD [4]
as they have been shown to perform well in the agricultural
field environment. The planned trajectory feature extractor
accepts a 240× 320 grayscale image as input and applies a
region-of-interest (ROI) pooling layer followed by a convo-
lutional neural network to produce a 64-dimensional feature
vector f

(t)
path ∈ R64. The RGB image feature extractor is a

convolutional neural network based on a ResNet-18 [26]
backbone, with the convolutional layers pretrained on a
visual navigation task [27]. This image feature extractor
accepts a 240×320 RGB image and outputs a feature vector
f
(t)
camera ∈ R64. Finally, LiDAR features are extracted with a

supervised variational autoencoder (SVAE) as in prior works
[4], [7]; this LiDAR feature extractor uses 1081-dimensional
LiDAR input measurements to produce an output feature
vector f

(t)
lidar ∈ R64, where the features are the concatenated

means and log-variances produced by the VAE.
The features from the LiDAR and camera feature ex-

tractors are provided as inputs to occlusion prediction head
networks, which feature two layers (the first having 32

outputs with ReLU activation and the second having 1 output
with sigmoid activation). These prediction heads can be
viewed as functions glidar,occ : f

(t)
lidar 7→ y

(t)
lidar and gcamera,occ :

f
(t)
camera 7→ y

(t)
camera.

The data from the feature extractors is fused using a multi-
head attention module. The multi-head attention mechanism
can be viewed as computing attention for elements in a
sequence, where the sequence elements are the state features,
camera features, LiDAR features, and trajectory features.
The multi-head attention module utilizes 8 attention heads.
The keys and values for the attention module are formed by
concatenating the state vector with the features computed by
the feature extractors:

K = V = [h(t), f
(t)
path, f

(t)
camera, f

(t)
lidar] (1)

For the queries, the final three elements are the same as
for the keys and values. The query for the first element
(corresponding to the latent state representation) is formed
by concatenating occlusion-biased features from outputs of
the first fully connected layer of gcamera,occ and the first fully
connected layer of glidar,occ, which are denoted o

(t)
camera ∈ R32

and o
(t)
lidar ∈ R32, respectively. Letting f

(t)
occ = [o

(t)
camera, o

(t)
lidar],

the queries are thus given by:

Q = [f (t)occ , f
(t)
path, f

(t)
camera, f

(t)
lidar] (2)

The use of occlusion-biased features for the attention query
vector corresponding to the latent state is informed by the
assumption that the prior history of the robot is largely ir-
relevant when sensors are not occluded, since anomalies can
be detected using the non-occluded sensor measurements.
As a result, the latent state is primarily important when
sensors are occluded. Thus, we query the latent state using
sensory features that are biased towards features relevant in
predicting occlusion to incorporate this assumption into our
model.

The recurrent latent state for the network, h(t), is ini-
tialized to a zero vector at the beginning of an inference
sequence. The value of this latent state is evolved by setting it
equal to the first attention output (the first sequence element
in the attention mechanism corresponds to the latent state).
This construction allows the latent state for the next time
step to incorporate information from the sensory inputs,
planned control actions, and current latent state. In addition,
at each time step, a hardtanh activation (with minimum and
maximum limits of -10 and 10, respectively) is applied to
the new latent state in order to prevent uncontrolled growth
in the magnitude of the latent state for longer sequences.

The final prediction of the future anomaly scores is done
by concatenating the features output from the attention
module and feeding them through 2 fully connected layers.
The first of the fully connected layers has a 128-dimensional
output, upon which ReLU activation and dropout [28] are
applied (with a dropout probability of 0.5). The second
fully-connected layer outputs a T -dimensional vector with a
sigmoid activation function applied; the outputs of this fully
connected layer are the final anomaly prediction probabilities
for the next T time steps.
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Fig. 2. Proposed network architecture for ROAR. Neural networks are shown as blue boxes, intermediate features as gray boxes, non-learned operations
as pink boxes, the attention mechanism as an orange box, and outputs as green boxes. For clarity and conciseness, the SVAE [7] decoder is not shown.

C. Model Training

The model is trained with a loss function that is composed
of four components, corresponding to the SVAE [7] feature
extractor loss (LSVAE, which is composed of a KL divergence
term and a reconstruction term), the anomaly classifica-
tion loss (Lanomaly), the camera occlusion classification loss
(Lcamera,occ), and the LiDAR occlusion classification loss
(Llidar,occ). The total loss is given by:

L = LSVAE + αLanomaly + βLcamera,occ + γLlidar,occ (3)

where α, β, and γ are coefficients that specify the relative
weighting of the individual loss terms. Based on prior
work [4], we use a value of α = 6.21. As we are primarily
interested in the anomaly detection output, we set β = 0.1α
and γ = 0.1α to prevent the training from focusing too
heavily on occlusion outputs at the expense of the true output
of interest.

IV. EXPERIMENTAL RESULTS

Our experiments involve a modified version of the dataset
from PAAD, where we add labels indicating occlusion of the
LiDAR and camera, as described in Section III. This dataset
features 4.1 km of navigation with the TerraSentia, where
the robot moves with a reference speed of 0.6 m/s and data
is logged at 3 Hz. For the experiments, the network predicts
failures for the next 10 time steps (i.e., T = 10).

We utilize the same training and test split as in PAAD,
which features 29284 training samples (2262 of which
involve anomalies) and 6869 test samples (of which 696
involve anomalies). Due to the small number of anomalies,
we re-balance the training dataset by under-sampling non-
anomalous samples and over-sampling anomalous samples.
To train the sequential aspect of our model, we split the
training dataset into contiguous sequences of length 8 to
help with batching. The initial latent state is set to zero for
the first prediction step, with the remaining 7 steps using
the latent state from the prior prediction. At test time, the

sequences are not split into these fixed-length sequences;
instead, prediction at test time operates on entire temporally-
coherent sequences, with the first prediction step using a
latent state initialized to a zero vector. The model is trained
using the Adam optimizer [29] with a learning rate of 0.0005
and a weight decay coefficient of 0.00015.

A. Baselines

We compare the accuracy of ROAR against the following
baselines on the test set:

• CNN-LSTM [9], [10]: a model for intervention and
future event prediction proposed in LaND and BADGR.
This network features a convolutional feature extractor
that generates features from the input RGB image,
and then uses the image features as an initial hidden
state in an action-conditioned LSTM that predicts the
probability of future failure.

• NMFNet [11]: an anomaly detection adaptation of a
multi-modal fusion network that was devised for robot
navigation in difficult environments. Like in prior work
[4], we maintain the branch operating on 2D laser data
and the branch operating on image data, and replace
the 3D point cloud branch with a fully-connected net-
work that processes future actions from the predictive
controller.

• PAAD [4]: the proactive anomaly detection network fea-
tured in our prior work. This network features an SVAE
LiDAR feature extractor [7], a path feature extractor
CNN, a ResNet-based camera image feature extractor
[26], a multi-head attention sensor fusion module, and
a fully-connected fusion layer that combines path image
features with the fused observation features.

• Graph Fusion: a graph fusion network inspired by
GrASPE [8], where nodes correspond to features ex-
tracted from sensor and control inputs, along with an
additional state node with a self-loop that is added to
inject state information (rather than using prior velocity



measurements as in GrASPE). Two GCN [30] layers
(with edge weights computed as reliability measure-
ments from the automatically-generated occlusion la-
bels) and a GATv2 [31] layer are followed by a fully-
connected failure prediction network.

We benchmark against Graph Fusion rather than GrASPE
as GrASPE uses data sources unavailable in our dataset (e.g.,
3D LiDAR), and we are particularly interested in comparing
the fusion mechanism of ROAR with the graph-based fusion
seen in GrASPE. To ensure fair comparison, the CNN used
for computing RGB camera features in each baseline model
is the same pretrained ResNet-18 used by ROAR. In addition,
we show results using an image-only version of our model
(IO-ROAR) that removes the LiDAR feature extractor to
highlight the ability for a variant of our network to provide
results comparable to or exceeding multi-sensor alternatives
even in cases where additional sensors may not be available.

B. Quantitative Results

We evaluate the models using two quantitative metrics:
• F1-score: the harmonic mean of precision and recall,

given by F1 = 2PR/(P + R). This metric quantifies
performance of the model in a threshold-dependent
manner, where we select a threshold of 0.5 (i.e., we
flag failures as when the predicted probability of failure
exceeds 0.5). The F1-score varies from 0 to 1, with
higher values being better.

• PR-AUC: a metric calculating the area under the
precision-recall curve. This is a threshold-independent
metric that quantifies anomaly prediction performance.1

This metric varies from 0 to 1, with higher values being
better.

The results are presented in Table I. To account for different
initializations potentially yielding better results, the values
shown in Table I are the averages for each model over 5
training runs with different random seeds. We also present
the results of PR-AUC and F1-score for the best model of
the 5 trainings, where the best model is selected as the model
having the highest value for the threshold-independent PR-
AUC metric.

As seen in Table I, our method (ROAR) outperforms
all baselines in terms of both F1-score and PR-AUC. The

1Due to the highly skewed nature of the dataset, PR-AUC is used instead
of ROC-AUC [32].

TABLE I
PERFORMANCE OF DIFFERENT ANOMALY DETECTION METHODS

Model Modality Average Best Model

PR-AUC F1 PR-AUC F1

CNN-LSTM Image-Only 0.568 0.429 0.577 0.397
IO-ROAR Image-Only 0.758 0.574 0.797 0.599

NMFNet Multi-Modal 0.655 0.559 0.717 0.567
Graph Fusion Multi-Modal 0.775 0.618 0.807 0.621
PAAD Multi-Modal 0.790 0.604 0.817 0.606
ROAR Multi-Modal 0.800 0.639 0.834 0.692

TABLE II
NEURAL NETWORK INFERENCE TIME AND NUMBER OF PARAMETERS

OF GRAPH FUSION, PAAD, AND ROAR

Model Network Inference Time (ms) # Parameters (million)

Graph Fusion 5.98 11.98
PAAD 4.99 11.91
ROAR 4.99 11.92

superior performance of ROAR compared to the baselines
demonstrates how incorporating prior robot state and learned
occlusion information leads to improved anomaly detection
performance. Furthermore, we see that even the image-only
variant of our network outperforms one of the multi-modal
baselines that leverages an additional sensor (NMFNet), and
performs only slightly worse than Graph Fusion and PAAD
(which both leverage an additional sensor modality).

Table II shows the number of parameters and neural
network inference time of Graph Fusion, PAAD, and ROAR
(collected on a machine with an i9-9900K and an RTX
2070 Super). The results in Table II demonstrate that ROAR
has comparable inference speed to PAAD, despite providing
improved anomaly detection accuracy. ROAR also displays
faster inference than Graph Fusion due to the additional
overhead introduced by using graph neural networks. Graph
Fusion also requires occlusion labels to be provided as inputs
even at test time (which adds additional latency beyond the
neural network inference time shown in Table II by requiring
computation of occlusion label inputs), while ROAR does not
need the occlusion labels to be provided during test time.

C. Qualitative Results for Total Sensor Occlusion

In Fig. 3, we demonstrate qualitative predictions of our
model in the case of total sensor occlusion. The prediction
probabilities are shown as a blue curve in the graphs and an
anomaly probability threshold of 0.5 is shown as a red line.
The predictions shown in Fig. 3 demonstrate the robustness
of our model to producing false positives in cases of brief
sensor occlusion in an otherwise obstacle-free environment.
In Fig. 3, we also show predictions using PAAD and reset-
state ROAR (a variant of ROAR in which we set the
state vector to zero to highlight the effect of removing the
state information). While both PAAD and reset-state ROAR
produce false positives in this case, ROAR does not produce
a false positive in this example occlusion scenario.

Furthermore, in Fig. 4, we demonstrate the effect of
prolonged synthetic total sensor occlusion for both PAAD
and ROAR. In Fig. 4, the occlusion of all sensors causes
PAAD to predict failures in the near future (even though the
path was clear), whereas ROAR is robust to the occlusion of
all sensors. However, as the period of occlusion lengthens,
ROAR becomes increasingly likely to predict a failure. This
demonstrates how our model captures the intuitive insight
that brief occlusions in otherwise normal scenarios are not
necessarily failures, but as the duration of occlusion grows,
the probability of failure increases.



PAAD

ROAR

(reset state) ROAR

Fig. 3. Image (with predicted path drawn as a blue curve) and LiDAR
readings for three sequential frames, along with predictions for the last
frame using PAAD, reset-state ROAR, and ROAR.

D. Ablation Study

To study how different design considerations affect our
model, we conducted an ablation study. We specifically
analyze four variants of our model:

• No State: a version of our model where the latent state
is removed (always set to zero), preventing the model
from capturing information about the history of sensor
and control inputs.

• No Occlusion: a version of our model where the occlu-
sion modeling is removed, and the query vector for the
attention module equals the key and value vectors.

• Fixed Occlusion: a version of our model where we
provide a vector of repeated occlusion labels produced
by the automated labeling algorithm as the state query
vector instead of using the occlusion-biased features
(i.e., this variant includes occlusion predictions but the
predictions are not learned using a neural network).

• ROAR: the complete ROAR model.

PAAD ROAR

Fig. 4. Predictions using PAAD (left) and ROAR (right) on a sequence
featuring synthetic total sensor occlusion for the final three frames. ROAR
shows greater robustness to simultaneous LiDAR and camera occlusion
when compared to PAAD.

The results from the ablation study are shown in Table
III. These results show averages over 5 trainings on different
random seeds to account for different initializations, as well
as the metrics for the best model (the model of the 5
training runs that displays the highest value of the threshold-
independent PR-AUC metric).

The ablation study shows that, compared to other vari-
ants, ROAR on average displays higher performance in
terms of the threshold-independent PR-AUC, and the best
ROAR model outperforms the other models both on PR-
AUC and F1-score. Such results demonstrate the importance
of both occlusion modeling and the use of state. These

TABLE III
ABLATION STUDY

Model Average Best Model

PR-AUC F1 PR-AUC F1

No State 0.766 0.542 0.783 0.543
No Occlusion 0.762 0.644 0.832 0.636
Fixed Occlusion 0.777 0.651 0.818 0.653
ROAR 0.800 0.639 0.834 0.692



results also show that learning occlusion with a neural
network and using occlusion-biased features for querying
state outperforms the approach of using non-learning-based
algorithms to classify occlusions and providing the resulting
labels as neural network inputs. Furthermore, while the final
ROAR model displays slightly lower average F1-score than
the no occlusion and fixed occlusion models, the higher
average PR-AUC is more advantageous due to its threshold-
independent nature. Specifically, PR-AUC provides a gen-
eral, threshold-independent picture of anomaly detection
performance, whereas the F1-score could be improved for
a fixed model by tuning the detection threshold.

V. CONCLUSION
We have presented a novel occlusion-aware recurrent

neural network architecture for proactive anomaly detection
in field environments that is particularly well-suited for cases
when brief periods in which all sensors are occluded are
possible. Our network fuses sensory input data, a planned
trajectory, and a latent representation of state to predict
probabilities of future failure over a given time horizon. We
further enhanced our network by explicitly learning when
sensors are occluded, and using this learned information
to moderate the use of our latent representation of robot
state. Our experimental results validate our approach by
demonstrating superior quantitative performance over prior
methods, while also qualitatively showing robustness to false
positives during brief periods when all sensors are occluded.
Although our method outperforms the baselines, it shows the
limitation of requiring explicit labels of failures due to the
use of supervised learning. One possible direction for future
work could be to adopt a semi-supervised or unsupervised
approach, such as one based on reconstruction errors.
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