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Abstract— This paper introduces a novel approach for mod-
eling the dynamics of soft robots, utilizing a differentiable
filter architecture. The proposed approach enables end-to-
end training to learn system dynamics, noise characteristics,
and temporal behavior of the robot. A novel spatio-temporal
embedding process is discussed to handle observations with
varying sensor placements and sampling frequencies. The
efficacy of this approach is demonstrated on a tensegrity robot
arm by learning end-effector dynamics from demonstrations
with complex bending motions. The model is proven to be
robust against missing modalities, diverse sensor placement, and
varying sampling rates. Additionally, the proposed framework
is shown to identify physical interactions with humans during
motion. The utilization of a differentiable filter presents a novel
solution to the difficulties of modeling soft robot dynamics.
Our approach shows substantial improvement in accuracy
compared to state-of-the-art filtering methods, with at least
a 24% reduction in mean absolute error (MAE) observed.
Furthermore, the predicted end-effector positions show an
average MAE of 25.77mm from the ground truth, highlighting
the advantage of our approach. The code is available at https:
//github.com/ir-lab/soft_robot_DEnKF.

I. INTRODUCTION

Soft robots are deformable structures that can be ac-
tuated and are composed of materials that form smooth
curved shapes [1]. Robots of this type have the ability to
perform a large range of movements, including extension,
contraction, bending, shearing, and twisting, which makes
them highly adaptable to confined spaces [2], [3] such as
in medical [4] and industrial settings. Tensegrity structures,
composed of compressive members that are supported by
tensile cables [5], have been utilized in the design of soft
robots. Such tensegrity robots have become popular in recent
years since they bridge the gap between an inherently flexible
system and the ability to use rigid components [6]–[8]. Their
design allows for effective resistance against compressive
forces in specific directions while also maintaining overall
flexibility.

However, modeling the dynamics of soft robots with high-
redundancy, flexibility, and a large number of degrees of
freedom (DoF) is a daunting task due to their intricate,
nonlinear design properties. Although numerical simulation
tools [9] based on discrete differential geometry have pro-
vided insightful ways to analyze robot dynamics, real robots
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Fig. 1: Left: A human is shown interacting with a soft robot; Right:
The differentiable Kalman filtering framework includes temporal
and positional embedding modules (TE and PE) and a sensor model
for projecting encoded raw observations to observation space. The
filtering process involves utilizing the Kalman filter update step,
where a stochastic transition model with an ensemble state is used
to approximate the posterior distribution.

are still widely modeled using analytical approaches, such as
the finite element method [10] and Cosserat rod theory [11].
However, these analytical methods also have limitations,
such as the constraints imposed by limited computing re-
sources and model generalizability. Different types of robots
may require different mathematical modeling approaches.
Moreover, a change to the properties of the robot, e.g.,
sensing or actuation, may require substantial human expertise
and time investment to adjust the underlying model and its
parameters. Soft robots also present modeling challenges due
to uncertainties with regard to optimal number of sensors,
sensor placement and temporal sampling frequency required
to capture their dynamics accurately [12]. More generally,
soft robots are a manifestation of complex and highly non-
linear systems which are known to be hard to model.

In this paper, we argue that recent innovations in modeling
complex systems are particularly well-suited for learning and
predicting the non-linear dynamics of soft robots. In partic-
ular, we focus on deep state-space models (DSSM) [13].
These models learn to estimate states and measurements
from observed sequences in a data-driven fashion [13]–[15].
Accordingly, the use of DSSMs can help to overcome the
aforementioned modeling challenges associated with soft
robots. One set of algorithms based on DSSMs, namely
Differentiable Filters (DFs), focuses on learning state transi-
tion and measurement models from data while preserving
the mechanisms inherent to Bayesian recursive filtering.
These properties render DFs ideal for systems with complex
dynamics and sensor observations. In addition, DFs also

ar
X

iv
:2

30
8.

09
86

8v
1 

 [
cs

.R
O

] 
 1

9 
A

ug
 2

02
3

https://github.com/ir-lab/soft_robot_DEnKF
https://github.com/ir-lab/soft_robot_DEnKF


provide interpretable state representations and uncertainty
estimation techniques, which is crucial for safety-critical
systems [16].

Extending prior works on DSSMs, this paper introduces
a novel differentiable filter called differentiable Ensemble
Kalman Filters (DEnKF), for modeling soft robots. It offers
an end-to-end learning approach to estimate the state of the
system, which is highly nonlinear and difficult to model
analytically. The main contributions are:

• The introduction of a positional embedding process
that enables the spatial generalization of DEnKF by
encoding observations with respect to their positions.
As a result, learned models can account for changes to
the location of sensors on the robot body.

• The use of a temporal embedding process that allows
DEnKF to perform inference at variable rates and
account for a multitude of time-delays due to sensing,
hardware or communication.

• The modular structure of the framework separates the
state dynamics from the end-to-end learning process,
ensuring that the state remains dynamic even in the
absence of observations.

• The paper also demonstrates a downstream application
task of the framework for estimating human contact and
physical interactions with the robot.

II. RELATED WORK

Soft robots are known to be difficult to model due to
their highly nonlinear and often complex behavior [1]. To
address this challenge, previous works have proposed various
modeling approaches with different assumptions.

Soft robot modeling: A common approach for modeling
soft robots is through steady-state models, which are equiv-
alent to the kinematic model and assume that the system
remains at rest in the absence of external forces. Steady-
state models have been used in previous works, such as
in [17], but they have limitations in terms of reachability,
efficiency, and speed of the controller. Another approach for
modeling soft robots involves using the finite element method
(FEM) to develop geometrically exact models, as proposed
in [10]. FEM-based models have been shown to accurately
capture the behavior of soft robots. However, despite recent
advancements in FEM algorithm optimizations, real-time
applications necessitate further advancements in hardware
technology. Data-driven methods, such as using multiple
layer perceptrons to develop mappings from action space to
state space, have also been proposed for soft robot model-
ing [17], [18], but these methods have limitations in terms
of generalizability. Dynamic models, which account for the
time-varying behavior of the system, have been shown to pro-
vide advantages for effective motion planning. For example,
in [19], a model-based dynamic controller is proposed under
the piecewise constant curvature assumption, and in [20],
modeling based on a first-order dynamical system is used.
However, due to the specificity of each dynamic model
developed for different soft robot physics, it is challenging to
achieve generalization. Recently, a state estimation approach

Fig. 2: The tensegrity robot: the robot contains 5 layers where
each layer is a flexible tensegrity module with struts, stiff cables,
and actuators. The sensory data associated with the robot are the
IMUs, MoCap, and the pressure vector readings from the pneumatic
cylinders actuators.

based on a sparse Gaussian process regression and Cosserat
rod theory is proposed in [21], providing a general way of
continuum robot modeling. However, this approach also has
its own limitations, such as the need for high computational
resources and the difficulty of incorporating prior knowledge
of physical constraints.

In general, each modeling approach is associated with
certain advantages and limitations, and the selection of a
particular approach hinges on diverse factors, including the
particular application’s demands, available resources, and the
feasibility of sensor deployment.

Differentiable filters: Differentiable Filters (DFs) are
composed of neural networks with algorithmic priors of
Bayesian filter techniques to provide learning-based ap-
proaches for the forward and measurement models in re-
cursive filtering. BackpropKF [22] trains Kalman Filters
using backpropagation with the integration of feed-forward
networks and convolutional neural networks. Similarly, dif-
ferentiable algorithm networks [23] introduce neural network
components that encode differentiable robotic algorithms,
akin to Differentiable Particle Filters (DPFs) [24], [25]. DPFs
employ algorithmic priors to increase learning efficiency
and variations have been explored using adversarial methods
for posterior estimation [26]. DFs were analyzed in [15]
for training and modeling uncertainty with noise profiles.
The authors implemented the DFs as multi-layer perceptrons
enveloped in an RNN layer, and tested them on real-world
tasks in [15], [16]. The results showed that end-to-end
learning is crucial for accurately learning noise models.

III. SOFT ROBOT MODELING WITH DENKF

This section provides a detailed examination of the tenseg-
rity robot structure, the bending motion mechanism, and the
relevant sensory information. It then introduces the differ-
entiable ensemble Kalman Filters (DEnKF) and its learning
process as a method for propagating the robot state forward
in time and correcting it using sensory data. To improve
the framework’s robustness and generalization across diverse
sensor placements and inference rates, two enhancements
– Temporal and Positional embedding (TE and PE) – are
detailed to show how encoded state and observation features
can be learned.



A. Preliminaries

The soft robot system employed in our work is a tensegrity
robot arm developed in [8]. This robot is built using a
strict tensegrity structure, which consists of elements like
struts, cables, spring-loaded cables, and actuated cables. The
arm has five layers, as depicted in Fig. 2. Each of these
modules can be viewed as a layer of an arm-like tensegrity
structure. By applying an external force, various continuous
bending postures can be produced. As shown in Fig. 2, the
stiff cables maintain the longitudinal length while external
forces contribute solely to changes in the bending direction.
The sensory data associated with the robot, which is used
to describe its kinematics, includes Inertial Measurement
Unit (IMU) data, optical motion capture (MoCap) data, and
proportional pressure control valves data. There are five
IMUs mounted at each strut of the robot’s layers, with each
layer having four different struts for IMU placement. Thus,
there are 20 different locations for IMU placement.

Fig. 3: The placement of the
IMUs denoted by Z .

The state of a soft robot
at time t is represented by
a 7-dimensional vector xt =
[x, y, z,qx,qy,qz,qw]

T , which
denotes the position and orienta-
tion of the robot’s hand tip (end-
effector). The quaternion vector
q represents the posture of the
robot relative to the base frame
(layer 1’s bottom). The action
at of the system is the pres-
sure vector of the 40 pneumatic
cylinder actuators, where at ∈
R40. The raw observation yt
consists of 5 IMU readings, where yt ∈ R30, with each
IMU providing a 6-dimensional vector of accelerations and
angular velocities relative to its location. An example of the
IMU placements is shown in Fig. 3, where the blue cubes
represent the location of the IMUs on each strut at each
layer. Each integer number Zi denotes a location label, and
a vector of integers Z is recorded for five IMU locations,
i.e., Z = [1, 5, 9, 14, 18], with 1 ≤ Zi ≤ 20.

B. Bayesian Filtering

Recursive Bayesian filtering is a technique used to esti-
mate the state xt of a discrete-time dynamical system, given
a sequence of actions a1:t and noisy observations y1:t. The
posterior distribution of the state can be represented by the
following equation:

p(xt|a1:t,y1:t,x1:t−1)

∝ p(yt|at,xt) p(xt|a1:t−1,y1:t−1,x1:t−1).
(1)

We can denote the belief of the state as bel(xt) =
p(xt|a1:t,y1:t,x1:t−1). Assuming the Markov property,
where the next state is dependent only on the current state,

we get the following expression:

bel(xt) = p(yt|xt)︸ ︷︷ ︸
observation model

t∏
t=1

state transition model︷ ︸︸ ︷
p(xt|at,xt−1) bel(xt−1), (2)

where p(yt|xt) is the observation model and p(xt|at,xt−1)
is the transition model. The transition model describes the
laws that govern the evolution of the system state, while
the observation model identifies the relationship between
the hidden, internal state of the system and observed, noisy
measurements.

In our work, we introduce a method for state estimation
called differentiable ensemble Kalman Filters (DEnKF). Our
approach combines the traditional EnKF algorithm with re-
cent advancements in stochastic neural networks (SNNs) [27]
who established a connection between Dropout training and
Bayesian inference in deep Gaussian processes. The EnKF
algorithm involves updating the approximate posterior dis-
tribution by propagating each ensemble member forward in
time. In DEnKF approach, we maintain the core algorithmic
steps of EnKF while leveraging the capabilities of SNNs. To
represent the initial state distribution, we use an ensemble of
E members, denoted by X0 = [x1

0, . . . ,x
E
0 ], where E ∈ Z+.

The key difference between our approach and traditional
EnKF is the implicit modeling of process noise through
sampling from a stochastic neural network.

Prediction Step: We leverage the stochastic forward
passes from a trained state transition model to update each
ensemble member:

xit|t−1 ∼ fθθθ(x
i
t|t−1|at,x

i
t−1|t−1), ∀i ∈ E. (3)

Matrix Xt|t−1 = [x1
t|t−1, · · · ,x

E
t|t−1] holds the updated

ensemble members which are propagated one step forward
through the state space. Note that sampling from the tran-
sition model fθθθ(·) (using the SNN methodology described
above) implicitly introduces a process noise.

Update Step: Given the updated ensemble members
Xt|t−1, a nonlinear observation model hψψψ(·) is applied to
transform the ensemble members from the state space to
observation space. Following our main rationale, the obser-
vation model is realized via a neural network with weights
ψψψ. Accordingly, the update equations for the EnKF become:

HtXt|t−1 =
[
hψψψ(x

1
t|t−1), · · · , hψψψ(x

E
t|t−1)

]
, (4)

HtAt = HtXt|t−1 (5)

−

[
1

E

E∑
i=1

hψψψ(x
i
t|t−1), · · · ,

1

E

E∑
i=1

hψψψ(x
i
t|t−1)

]
.

HtXt|t−1 is the predicted observation, and HtAt is the
sample mean of the predicted observation at t. EnKF treats
observations as random variables. Hence, the ensemble can
incorporate a measurement perturbed by a small stochastic
noise thereby accurately reflecting the error covariance of the
best state estimate [28]. In our differentiable version of the
EnKF, we also incorporate a sensor model which can learn



TABLE I: Differentiable filters’ learnable sub-modules.

fθθθ : 2×SNN(64, ReLu), 2×SNN(128, ReLu), 1×SNN(S, -)
hψψψ : 2×fc(32, Relu), 2×fc(64, ReLu), 1× fc(O, -)
rζζζ : 2×fc(16, ReLu), 1×fc(O, -)

sξξξ: fc(128, ReLu), flatten(), 2×SNN(512, ReLu), 1×SNN(256, ReLu),
1×SNN(128, ReLu), 1×SNN(O, -)

fc: fully connected, conv: convolution, S, O: state and observation dimension.
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Fig. 4: The top and bottom figures show the output latent feature
maps from the temporal embedding process and the positional
embedding process, respectively, for various sampling frequencies
fs and IMU positions Z .

projections between a latent space and observation space. We
train a stochastic sensor model sξξξ(·):

ỹit ∼ sξξξ(ỹ
i
t|yt), ∀i ∈ E, (6)

where yt represents the raw observation. Sampling yields
learned observations Ỹt = [ỹ1

t , · · · , ỹEt ] and the sample
mean ỹt = 1

E

∑i
i=1 ỹ

i
t. The innovation covariance St can

then be calculated as:

St =
1

E − 1
(HtAt)(HtAt)

T + rζζζ(ỹt), (7)

where rζζζ(·) is the measurement noise model implemented
using multi-layer perceptron (MLP), it takes a learned ob-
servation ỹt at time t and provides a stochastic noise in the
observation space by constructing the diagonal of the noise
covariance matrix. The final estimate of the ensemble Xt|t
can be obtained by performing the KF update step:

At = Xt|t−1 −
1

E

E∑
i=1

xit|t−1, (8)

Kt =
1

E − 1
At(HtAt)

TS−1
t , (9)

Xt|t = Xt|t−1 +Kt(Ỹt −HtXt|t−1), (10)

where Kt is the Kalman gain. In inference, the ensemble
mean x̄t|t =

1
E

∑E
i=1 x

i
t|t is used as the updated state. The

neural network structures for sub-modules are described in
Table I.

C. Spatio-Temporal Embedding

The aim of the temporal and positional embedding is
to increase the generalizability of the robot state estimator
under varied inference frequencies and sensor positions.
Taking inspiration from language models, which encode
different positional information of words in a sentence [29],
we incorporate temporal and positional labels in a similar

fashion. We opt to use sinusoidal functions implemented
in [29] with varying frequencies using the temporal and
positional embedding functions:

PE(pos,i) =

{
sin( pos

100002i/dm
) if i mod 2 = 0

cos( pos
100002i/dm

) otherwise (11)

where pos is the position and i is the dimension, dm is the
dimension of the feature space. The embedding function is
first passed the different sensor placements denoted as Z ,
and then the sensor model takes the embedded input features
from the observation:

ỹit ∼ sξξξ(ỹ
i
t|yt, Z ), ∀i ∈ E. (12)

The latent feature maps displayed in Fig. 4 exhibit varied
encodings of Z , which enables sξξξ to learn from the dis-
tinctive features presented in each encoding. The temporal
embedding process is used when the system progresses at
different speeds. In our system, we offer four options for the
sampling frequency fs – 5Hz, 10Hz, 30Hz, and 50Hz. The
temporal embedding process is integrated within the latent
space of the state transition model as follows:

xit|t−1 ∼ fθθθ(x
i
t|t−1|at,x

i
t−1|t−1, fs ), ∀i ∈ E. (13)

Here, the input state Xt−1 along with its corresponding fs
are encoded by fθθθ(·) into a 64-dimensional latent vector,
which is then used to apply the state transition. The encoded
latent vector from the same initial state X0 is shown in Fig. 4
for different values of fs. By doing so, fθθθ(·) is able to learn
the transitions from the unique state features.

IV. EXPERIMENT

This section presents a series of experiments that are
conducted to evaluate the performance of the proposed differ-
entiable ensemble Kalman filters (DEnKF) for state tracking.
A comparison with baseline differentiable filters [15], [24] is
also discussed. Furthermore, two downstream tasks of state
estimation are performed, namely estimation with missing
observations and virtual force estimation.

A. Experimental Setup

Data: The dataset is obtained by performing optical mo-
tion capture on the real tensegrity robot hand tip while
supplying randomly generated desired pressure vectors to
the pneumatic cylinder actuators. As mentioned in Sec. III-
A, we record 40-dimensional pressure vectors as the action
at ∈ R40, 5 IMU readings yt ∈ R30 with the corresponding
position Z , and a 7-dimensional state xt. We collect 10
time-series data D1 − D10 (shown as Table III), with each
continuous sampling lasting for one hour. There are 12,000
trials collected in total. During each trial, the robot is
moved from the current equilibrium posture to the next
equilibrium posture by applying the new desired pressure.
We down-sample each time-series data to obtain the dataset
with different sampling frequencies fs. All data is gathered
through the a ROS2 network, and their synchronization is
achieved using the “message_filters" package.



TABLE II: Ablation study of proposed DEnKF with and without positional and temporal embedding processes for state
estimation task in different conditions. The MAE error metric of the 10-fold cross-validation is reported.

Method Fixed Z Multiple Z Multiple Z and fs
EE (mm) q EE (mm) q EE (mm) q

DEnKF-Fix 25.7765±7.827 0.0648±0.035 51.7728±7.489 0.1996±0.034 106.2310±17.760 0.1722±0.065
DEnKF-PE 29.6578±8.873 0.0626±0.028 22.5427±9.146 0.0768±0.033 71.5244±9.411 0.1844±0.022
DEnKF-PE+TE 31.5985±9.582 0.0788±0.021 21.7658±6.337 0.0641±0.026 25.7566±4.835 0.0466±0.055
Means±standard errors.
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Fig. 5: The real-time estimation of the state on the tensegrity robot arm is demonstrated in this study. Specifically, the top figure presents
a motion sequence of the robot without applying external forces, while the bottom figure showcases the real-time tracking outcomes
(along with the corresponding uncertainty) of the positions of the hand tip.

TABLE III: Time-series data with different sensor place-
ments.

D1 : [1,4,9,14,18], D2 : [1,5,9,15,19], D3 : [2,6,10,15,19]
D4 : [2,6,10,16,20], D5 : [2,6,10,13,17], D5 : [3,7,11,13,17]
D6 : [3,7,11,14,18], D7 : [3,7,11,16,20], D8 : [4,8,12,16,20]
D9 : [4,8,12,14,18], D10 : [4,8,12,15,19]

Training: Proposed framework contains four sub-modules
as listed in Table I. The entire framework is trained in an end-
to-end manner via a mean squared error (MSE) loss between
the ground truth state x̂t|t and the estimated state x̄t|t at
every timestep. We also supervise the intermediate modules
via loss gradients Lfθθθ and Lsξξξ . Given ground truth at time t,
we apply the MSE loss gradient calculated between x̂t|t and
the output of the state transition model to fθθθ as in Eq. 14. We
apply the intermediate loss gradients computed based on the
ground truth observation ŷt and the output of the stochastic
sensor model ỹt:

Lfθθθ = ∥x̄t|t−1 − x̂t|t∥22, Lsξξξ = ∥ỹt − ŷt∥22. (14)

All models in the experiments were trained for 50 epochs
with batch size 64, and a learning rate of η = 10−5. The
ensemble size of the Kalman filter was set to 32 ensemble
members.

B. State Estimation

In this experiment, we investigate the effectiveness of
proposed differentiable filters in estimating the state of the
tensegrity robot, and perform comparisons against other
differentiable filters baselines. To reiterate, the robot state

is defined as xt = [x, y, z,qx,qy,qz,qw]
T , the learned

observation ỹt is defined to have the same dimension as
the robot state, where ỹt = [x, y, z,qx,qy,qz,qw]

T . The
state estimator tracks the robot end-effector (EE) in position
and orientation while random generated pressure vectors are
supplied for the pneumatic cylinder actuators.

Results: The proposed DEnKF leverages both the posi-
tional embedding (PE) and temporal embedding (TE) pro-
cesses. We conducted a comprehensive evaluation of the
performance of DEnKF under different Z conditions and
with varying fs. The experiment involved training and vali-
dating three models: a) DEnKF-Fix trained on a single time-
series data, b) DEnKF-PE trained with multiple time-series
data collected from diverse Z conditions, and c) DEnKF-
PE+TE trained with multiple time-series data from various Z
conditions and fs values. Table II presents the ablation study
results for the three models evaluated with 10-fold cross-
validation and the mean absolute error (MAE) metric. In
the ablation study, three different conditions are considered
– the fixed IMU positions, multiple IMU positions, and
multiple IMU positions with various sampling frequencies.
The DEnKF-Fix model, trained with a single time-series data
and a fixed IMU placement, shows the best performance
with an average 25.77mm offset from the ground truth EE
positions. However, its performance is limited to fixed IMU
placement only. The DEnKF-PE+TE model demonstrates ro-
bust performance across different Z conditions and improves
the accuracy of the EE positions and orientations by 58%
and 66% respectively, compared to the DEnKF-Fix model.



While DEnKF-PE achieves comparable MAE to DEnKF-
PE+TE under multiple Z conditions, the performance of
DEnKF-PE+TE outperforms DEnKF-PE by 64% and 75%
on position and orientation respectively, when multiple fs
values are provided.
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Fig. 6: State estimation results on the EE positions (x, y, z) and
orientations presented as (qx,qy,qz,qw).

To perform a comprehensive evaluation of the DEnKF
framework, a long-term state estimation experiment lasting
for five minutes was carried out on the physical tensegrity
robot, as depicted in Fig. 5. The video sequence captures
the robot in different configurations at various points in
time, while the estimated positions of the EE demonstrate
robust and stable state tracking throughout the entire duration
of the experiment. Moreover, the complete 7-dimensional
state vector, which includes both position and orientation,
is shown in Fig. 6. While the orientation vector exhibits
a relatively larger uncertainty, the framework is able to
accurately track the overall state over time. Further analysis
of the state tracking is conducted by visualizing the EE
trajectories in 3D for the DEnKF-PE+TE model, as shown
in Fig. 7. Each trajectory represents one test trial, and the
prediction results of the DEnKF model are shown with
the ensemble state outputs representing the uncertainty. The
trajectories show the robustness and adaptability of DEnKF
across a range of conditions, including multiple distinct Z
and fs.

Comparison: Table IV presents the performance compar-
ison of our proposed differentiable Kalman filter with fixed
sensor model (DEnKF-Fix) against state-of-the-art differen-
tiable filters for state estimation of soft robots, namely differ-
entiable Extended Kalman Filters (dEKF) [15], differentiable
Particle Filters (DPF) [24], and the modified differentiable
Particle Filter with learned process noise model (dPF-M-
lrn) [15]. To ensure a fair comparison, we removed the
temporal and positional embedding processes (TE and PE)
for the DEnKF and supplied the same sensor model sξξξ
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Fig. 7: Testing results on state estimation with various IMU
positions Z and sampling frequencies fs.

TABLE IV: Comparison with other baselines on state estima-
tion task measured in RMSE and MAE of the EE position
with fixed IMU locations Z . Results for dEKF, dPF, and
dPF-M-lrn are reproduced for detailed comparisons.

Method Fixed IMU Z Wall clock
time (s)RMSE MAE

dEKF [15] 61.753±1.630 41.960±1.147 0.047
DPF [24] 51.184±7.204 34.317±4.205 0.060

dPF-M-lrn [15] 49.799±8.264 33.903±6.964 0.059
DEnKF-Fix (ours) 31.519±9.974 25.777±7.827 0.062
Means±standard errors.

for all methods. For the DPF and dPF-M-lrn methods, we
trained and tested with 100 particles. Our results indicate
that the DEnKF-Fix approach outperforms the state-of-the-
art methods with a Mean Absolute Error (MAE) of 25.78mm.
Specifically, our approach achieved an MAE that is 24%,
25%, and 39% lower than that of dEKF, DPF, and dPF-M-lrn,
respectively. Among the baselines, dPF-M-lrn shows slightly
better results than others, it does not exhibit any advantages
over DEnKF-Fix. Our findings highlight the effectiveness of
the DEnKF for state estimation of soft robots, particularly
in comparison to existing differentiable filter approaches.

C. State Estimation with Missing Observation

In the field of soft robotics, sensor failures are com-
mon and can be mitigated by using learning-based sensing
techniques [30]. The modular structure of the proposed
framework offers an additional advantage by enabling com-
pensation for such issues. In this experiment, we investigate
the robustness of DEnKF in the event of sensor failures.
Specifically, we use the forward model fθθθ to update the
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Fig. 8: State estimation results with missing observations (grey)
using DEnKF; Only the forward model fθθθ is used when no
observation is obtained.

robot state in the absence of observations. The experiment
is conducted on a trained DEnKF-PE+TE model, which has
not been exposed to such scenarios during training.

Results: In the experiment, we enable random 12.5% and
6.26% time windows with no observations for each testing
trial (with 20 seconds). Figure 8 demonstrates one of the
results when the state estimator is in the scenario where no
observations are available. The prediction results show the
state tracking outcomes with observation, while the green
line represents the case where the forward model fθθθ alone is
used. The uncertainty, which is described by the distribution
of the ensemble members, increases when no observations
are obtained and decreases when observations are obtained
again.
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Fig. 9: Experiment on estimating virtual forces: in a testing se-
quence of 5 minutes, the robot is subjected to different forces
labeled as A, B, C, and D, the virtual forces δ is captured during
each interaction.

D. Virtual Force Estimation

An important downstream application of DEnKF is virtual
force estimation. During training, the forward model fθθθ
learns the system dynamics with given actions and previous
states in the prediction step of DEnKF. However, in the cor-
rection step, which involves the sensor model sξξξ and Kalman

update, only a time-invariant mapping between observation
space and state space is conducted, without considering the
state dynamics. In other words, the correction step estimates
the state based on the posture configurations of the robot.
Therefore, the correction step always generates a “corrected"
state x̄t|t at time t regardless of whether a force is applied to
the robot or not, but the prediction step outputs an estimated
state x̂t|t−1 assuming no force is applied. The virtual force
defined as δ = ∥x̄t|t−x̂t|t−1∥p, it is estimated between these
two different outputs using the Minkowski distance:

∥x̄t|t − x̂t|t−1∥p =
(∑

|x̄t|t − x̂t|t−1|p
) 1

p

(15)

with p = 10.
Results: In this experiment, we apply random pressure

vectors to the pneumatic cylinder actuators and conduct
several interactions with the robot by applying external forces
of different directions and magnitudes. The forces are applied
four times, labeled A, B, C, and D, during a test sequence of
5 minutes as shown in Fig. 9. We capture the virtual force
δ value during testing, also shown in Fig. 9. The gray areas
indicate the time window of interaction. It is apparent that δ
reflects the forces during each interaction. Interestingly, the
magnitude of the Minkowski distance δ is proportional to the
actual forces applied to the robot. For instance, in interaction
D, where the actual forces are significant enough to entirely
change the posture configurations of the robot (snapshot D in
Fig. 9), the δ value reaches a higher value (>400) compared
to the other interactions.

V. CONCLUSIONS

This paper presents a comprehensive study on the mod-
eling of soft robot dynamics using differentiable ensemble
Kalman filters (DEnKF). To enhance the spatio-temporal
generalizability of state estimation, the proposed approach
integrates temporal and positional embedding (TE and PE)
processes. Through experiments on a highly nonlinear sys-
tem, specifically the tensegrity robot arm, the proposed
DEnKF demonstrates stable and accurate state tracking. In
comparison to other differentiable filter frameworks, the
proposed DEnKF outperforms the baselines and is capable
of handling other downstream tasks, such as missing ob-
servation and virtual force estimation. Notably, the proposed
DEnKF approach allows for fine-grained analysis of the state
forward model and sensor model, which is not supported
by other baselines. Because those baselines are RNN-based
filters and the forward model has to remain in the same
hidden state until an observation is processed.

With respect to limitations, this study focuses exclusively
on the application of IMU sensors, while other types of soft
robot sensors, such as fiber-based deformation sensors [31]
and tendon/backbone strain sensors [32], have not been
tested. It is important to acknowledge that each sensor
has unique characteristics, and a fusion module may be
able to leverage the advantages of multiple sensors based
on the specific application requirements. Regarding force
estimation, while the Minkowski distance has demonstrated



the ability to reflect actual external forces, it is important
to note that actual forces can also be learned and cali-
brated using supervised learning techniques. Additionally,
other distance metrics can be explored to find the best fit
for a particular application. Therefore, further research is
needed to investigate the potential benefits and limitations
of different types of soft robot sensors and distance metrics
for force estimation.

In future research, the authors aim to extend the function-
ality of the DEnKF framework by exploring the calibration of
virtual forces to actual values for improved force estimation.
Additionally, the authors plan to investigate alternative state
representations, such as segment-wise estimation of the soft
robot, which may facilitate a more detailed understanding
of the deformation characteristics of the robot and enhance
estimation accuracy. These proposed efforts are expected to
enhance the versatility and efficacy of the DEnKF framework
and further advance its applicability in the domain of soft
robotics.

ACKNOWLEDGEMENT

This research was funded by the JSPS Grants-in-Aid
for Scientific Research (KAKENHI) program under grant
numbers 19K0285, 19H01122, and 21H03524. This research
was also funded partially by “The Global KAITEKI Center”
(TGKC) of the Global Futures Laboratory at Arizona State
University.

REFERENCES

[1] C. Lee, M. Kim, Y. J. Kim, N. Hong, S. Ryu, H. J. Kim, and S. Kim,
“Soft robot review,” International Journal of Control, Automation and
Systems, vol. 15, no. 1, pp. 3–15, 2017.

[2] K. Lee, Y. Wang, and C. Zheng, “Twister hand: Underactuated robotic
gripper inspired by origami twisted tower,” IEEE Transactions on
Robotics, vol. 36, no. 2, pp. 488–500, 2020.

[3] E. Q. Yumbla, Z. Qiao, W. Tao, and W. Zhang, “Human assistance
and augmentation with wearable soft robotics: a literature review and
perspectives,” Current Robotics Reports, pp. 1–15, 2021.

[4] J. Burgner-Kahrs, D. C. Rucker, and H. Choset, “Continuum robots
for medical applications: A survey,” IEEE Transactions on Robotics,
vol. 31, no. 6, pp. 1261–1280, 2015.

[5] R. E. Skelton and M. C. Oliveira, Tensegrity Systems. Springer Nature,
2009.

[6] E. Jung, V. Ly, N. Cessna, M. L. Ngo, D. Castro, V. SunSpiral, and
M. Teodorescu, “Bio-inspired tensegrity flexural joints,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 5561–5566.

[7] K. Kim, A. K. Agogino, and A. M. Agogino, “Rolling locomotion
of cable-driven soft spherical tensegrity robots,” Soft robotics, vol. 7,
no. 3, pp. 346–361, 2020.

[8] S. Ikemoto, K. Tsukamoto, and Y. Yoshimitsu, “Development of
a modular tensegrity robot arm capable of continuous bending,”
Frontiers in Robotics and AI, vol. 8, 2021.

[9] W. Huang, X. Huang, C. Majidi, and M. K. Jawed, “Dynamic
simulation of articulated soft robots,” Nature communications, vol. 11,
no. 1, p. 2233, 2020.

[10] Z. Gong, J. Cheng, K. Hu, T. Wang, and L. Wen, “An inverse
kinematics method of a soft robotic arm with three-dimensional
locomotion for underwater manipulation,” in 2018 IEEE International
Conference on Soft Robotics (RoboSoft). IEEE, 2018, pp. 516–521.

[11] F. Renda, F. Giorgio-Serchi, F. Boyer, C. Laschi, J. Dias, and
L. Seneviratne, “A unified multi-soft-body dynamic model for under-
water soft robots,” The International Journal of Robotics Research,
vol. 37, no. 6, pp. 648–666, 2018.

[12] A. W. Mahoney, T. L. Bruns, P. J. Swaney, and R. J. Webster, “On
the inseparable nature of sensor selection, sensor placement, and state
estimation for continuum robots or “where to put your sensors and how
to use them”,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2016, pp. 4472–4478.

[13] S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang,
and T. Januschowski, “Deep state space models for time series
forecasting,” in Advances in Neural Information Processing Systems,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, Eds., vol. 31. Curran Associates, Inc., 2018.

[14] A. Klushyn, R. Kurle, M. Soelch, B. Cseke, and P. van der Smagt,
“Latent matters: Learning deep state-space models,” Advances in
Neural Information Processing Systems, vol. 34, 2021.

[15] A. Kloss, G. Martius, and J. Bohg, “How to train your differentiable
filter,” Autonomous Robots, pp. 1–18, 2021.

[16] M. A. Lee, B. Yi, R. Martín-Martín, S. Savarese, and J. Bohg, “Mul-
timodal sensor fusion with differentiable filters,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2020, pp. 10 444–10 451.

[17] T. George Thuruthel, E. Falotico, M. Manti, A. Pratesi, M. Cianchetti,
and C. Laschi, “Learning closed loop kinematic controllers for contin-
uum manipulators in unstructured environments,” Soft robotics, vol. 4,
no. 3, pp. 285–296, 2017.

[18] H. Jiang, Z. Wang, X. Liu, X. Chen, Y. Jin, X. You, and X. Chen,
“A two-level approach for solving the inverse kinematics of an
extensible soft arm considering viscoelastic behavior,” in 2017 IEEE
international conference on robotics and automation (ICRA). IEEE,
2017, pp. 6127–6133.

[19] C. Della Santina, R. K. Katzschmann, A. Bicchi, and D. Rus, “Model-
based dynamic feedback control of a planar soft robot: trajectory
tracking and interaction with the environment,” The International
Journal of Robotics Research, vol. 39, no. 4, pp. 490–513, 2020.

[20] T. George Thuruthel, F. Renda, and F. Iida, “First-order dynamic
modeling and control of soft robots,” Frontiers in Robotics and AI,
vol. 7, p. 95, 2020.

[21] S. Lilge, T. D. Barfoot, and J. Burgner-Kahrs, “Continuum robot
state estimation using gaussian process regression on se (3),” The
International Journal of Robotics Research, vol. 41, no. 13-14, pp.
1099–1120, 2022.

[22] T. Haarnoja, A. Ajay, S. Levine, and P. Abbeel, “Backprop kf:
Learning discriminative deterministic state estimators,” in Advances
in neural information processing systems, 2016, pp. 4376–4384.

[23] P. Karkus, X. Ma, D. Hsu, L. P. Kaelbling, W. S. Lee, and T. Lozano-
Pérez, “Differentiable algorithm networks for composable robot learn-
ing,” arXiv preprint arXiv:1905.11602, 2019.

[24] R. Jonschkowski, D. Rastogi, and O. Brock, “Differentiable particle
filters: End-to-end learning with algorithmic priors,” arXiv preprint
arXiv:1805.11122, 2018.

[25] X. Chen, H. Wen, and Y. Li, “Differentiable particle filters through
conditional normalizing flow,” in 2021 IEEE 24th International Con-
ference on Information Fusion (FUSION). IEEE, 2021, pp. 1–6.

[26] Y. Wang, B. Liu, J. Wu, Y. Zhu, S. S. Du, L. Fei-Fei, and J. B.
Tenenbaum, “Dualsmc: Tunneling differentiable filtering and planning
under continuous pomdps,” arXiv preprint arXiv:1909.13003, 2019.

[27] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international
conference on machine learning. PMLR, 2016, pp. 1050–1059.

[28] G. Evensen, “The ensemble kalman filter: Theoretical formulation and
practical implementation,” Ocean dynamics, vol. 53, no. 4, pp. 343–
367, 2003.

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[30] B. W. K. Ang and C.-H. Yeow, “A learning-based approach to
sensorize soft robots,” Soft Robotics, vol. 9, no. 6, pp. 1144–1153,
2022.

[31] H. Liu, A. Farvardin, S. A. Pedram, I. Iordachita, R. H. Taylor, and
M. Armand, “Large deflection shape sensing of a continuum manip-
ulator for minimally-invasive surgery,” in 2015 IEEE international
conference on robotics and automation (ICRA). IEEE, 2015, pp.
201–206.

[32] K. Xu and N. Simaan, “An investigation of the intrinsic force sensing
capabilities of continuum robots,” IEEE Transactions on Robotics,
vol. 24, no. 3, pp. 576–587, 2008.


	Introduction
	Related work
	Soft robot Modeling with DEnKF
	Preliminaries
	Bayesian Filtering
	Spatio-Temporal Embedding

	Experiment
	Experimental Setup
	State Estimation
	State Estimation with Missing Observation
	Virtual Force Estimation

	Conclusions
	References

