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T2FPV: Dataset and Method for Correcting First-Person View Errors
in Pedestrian Trajectory Prediction

Benjamin Stoler!, Meghdeep Jana?, Soonmin Hwang?3, and Jean Oh?

Abstract— Predicting pedestrian motion is essential for de-
veloping socially-aware robots that interact in a crowded
environment. While the natural visual perspective for a social
interaction setting is an egocentric view, the majority of existing
work in trajectory prediction therein has been investigated
purely in the top-down trajectory space. To support first-
person view trajectory prediction research, we present T2FPYV,
a method for constructing high-fidelity first-person view (FPV)
datasets given a real-world, top-down trajectory dataset; we
showcase our approach on the ETH/UCY pedestrian dataset
to generate the egocentric visual data of all interacting pedes-
trians, creating the T2FPV-ETH dataset. In this setting, FPV-
specific errors arise due to imperfect detection and tracking,
occlusions, and field-of-view (FOV) limitations of the camera. To
address these errors, we propose CoFE, a module that further
refines the imputation of missing data in an end-to-end manner
with trajectory forecasting algorithms. Our method reduces
the impact of such FPV errors on downstream prediction
performance, decreasing displacement error by more than 10%
on average. To facilitate research engagement, we release our
T2FPV-ETH dataset and software tool

I. INTRODUCTION

As more and more autonomous robots are anticipated
to interact with people in shared environments, trajectory
prediction in robotics has become increasingly popular in
the research community, as well as among various industry
and military stakeholders. In particular, predicting pedestrian
motion is essential for developing socially-aware robots that
interact in a crowded environment [1], [2], [3], [4], [5]. Exist-
ing state-of-the-art (SOTA) trajectory prediction algorithms
leverage datasets such as the ETH/UCY pedestrian dataset
that provide full trajectory information of all pedestrians
in a bird’s-eye view (BEV) scene [6]. However, bird’s-
eye view is an unrealistic view for agents navigating in
the real-world; agents generally rely on egocentric, first-
person view (FPV) sensing for these tasks. A realistic setting
also includes limited field-of-view (FOV), occlusions, and
changes in perspective and orientation of the ego-agent.

While collecting top-down data using an overhead camera
is relatively convenient, creating a first-person view counter-
part is far more challenging for several reasons. To begin
with, all participants in the scene would need to wear a
camera sensor to record their egocentric views, as well as
a location-recording sensor to establish their ground truth
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locations. Furthermore, such a setting is subject to psycho-
logical issues such as the observer (or Hawthorne) effect [7],
where people’s behaviors in these experiments may not be
entirely representative of natural social interaction.
Therefore, to promote research on first-person view tra-
jectory prediction, we propose T2FPV, a method for con-
structing an FPV version of data from a trajectory-only
dataset by simulating the agents in high fidelity. The FPV
data is collected by having each agent follow their recorded
trajectory with a simulated camera attached to them. We
perform extensive annotation and post-processing to provide
unique information beyond existing FPV datasets as follows:
1) we conduct SOTA detection-and-tracking, giving realistic
partial perception of trajectories and enforcing data imputa-
tion as a core aspect of the task (in contrast with prior works
which simply re-provide ground-truth BEV trajectories [4],
[81); 2) our approach utilizes SEANavBench [9], a high-
fidelity simulation environment, to provide realistic synthetic
images; and 3) we additionally provide the corresponding
ground truth of all observed and missed points of each
trajectory, for its history and future (compared to only having
information perceived from the camera as in [3], [10], [11]).
An overview of our approach is shown visually in Figure [I]
To showcase our approach, we construct the T2FPV-ETH
dataset based on the ETH/UCY trajectory dataset [6]. In
this realistic FPV setting, we observe that a new class of
errors is present compared to in BEV. These “FPV errors”
arise from occlusion and field-of-view (FOV) limitations
of robot sensing, combined with imperfect detection and
tracking, resulting in missing observations. When performing
trajectory prediction with various SOTA approaches, these
errors caused our observed metrics to be significantly worse
than what was reported in the BEV setting in the literaturd]
Prior work in pedestrian prediction has largely ignored
FPV errors, either throwing out incomplete tracks or relying
on simple interpolation over the missing points [13] [14].
Recent work has made significant advancement in data
imputation; however, the vast majority of these works focus
on artificially missing data [15], [16], [17]. Additionally,
these works only focus on imputation as an independent task
without considering how it affects prediction performance.
Hence, to reduce the FPV errors for improved prediction,
we propose Correction of FPV Errors (CoFE) that can refine
initial imputations via end-to-end training with a trajectory
prediction approach. We find that our approach decreases

*For instance, Average Displacement Error (ADE) / Final Displacement
Error (FDE) performance increased from 0.44m / 0.89m in BEV to 1.5Im
/2.08m in FPV for VRNN [12]
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Fig. 1: T2FPV Overview: Wse generate filtered ground truth tracks and the corresponding D&T tracks from a real-world
pedestrian dataset. The downstream task is to predict the future path (black circles) for a set of perceived track histories

(striped red diamonds).

prediction displacement errors by more than 10% on average
when compared to all tested imputation and forecasting
combinations.

Our main contributions are: 1) we propose a method for
creating an egocentric view for each agent given a set of
trajectories; 2) we generate the T2FPV-ETH dataset, a new
first-person view dataset that corresponds to the ETH/UCY
dataset; 3) we propose and evaluate CoFE, an end-to-end
learned input correction module, which reduces the impact
of FPV errors beyond SOTA imputation approaches; and 4)
we release our dataset and software tools to promote research
in first-person view trajectory prediction.

II. RELATED WORK

Real-World First-Person Datasets. Various large-scale
datasets provide video footage from an ego agent’s perspec-
tive. [18] is a large-scale first-person view video dataset, with
over 3500 hours of footage collected from various sources
around the world. Egocentric Basketball Motion Planning
[19] provides a wearable camera perspective from multiple
people in the scene. However, neither of these datasets are
focused on social navigation. They feature many instances
of the ego agent walking by themselves or performing an
unrelated task (such as carpentry, basketball, etc.) that have
inherently different social contexts than navigating in public.

[10] is a dataset of an egocentric pedestrian video stream,
providing pose, acceleration, and orientation information.
Similarly, [3] uses human camera wearers and pose estima-
tion to create a dataset of 2D targets to predict. However,
these approaches only provide a single perspective of an
ego agent in each scenario, limiting the diversity of ego
behaviors. Also, both lack the ground truth pose information
of other agents in the scene, especially due to occlusion and
FOV limits.

Self-driving datasets, such as [20], [21], suffer the same
problem of not having full ground truth information for
training and evaluation. Furthermore, a car’s ego-motion
is incomparable to a pedestrian’s ego-motion in terms of

physical characteristics. Additionally, the social interactions
and roles between the ego and detected agents are vastly
different between the two fields.

Synthetic Pedestrian Datasets and Simulation. Several
recent works have generated synthetic data in simulations
based on a corresponding real-world dataset. FvTraj [4] uses
Unity to render FPV images from ground truth trajectory
data [22], but these rendered images consist only of a flat
ground plane with no corresponding environment modeled.
DeepSocNav [8] generates ego view depth images from
ETH/UCY, with a low-fidelity environment model. However,
they do not include images from RGB cameras, which are far
more common than depth sensors. Furthermore, DeepSoc-
Nav [8] and FvTraj [4] do not release any generated images
or their in-house simulators, limiting reproducibility and en-
gagement within the research community. Most importantly,
both works only use the generated images for augmenting
ground truth trajectories when performing prediction; no
perception or detection and tracking is used, keeping the task
less realistic.

[23] and [9] are relatively high-fidelity simulation envi-
ronments with scene constructions of ETH/UCY, built in
Unreal Engine [24] and Unity [22] respectively, but both lack
first-person views. Furthermore, these approaches also have
the same aforementioned limitations as [8], [4] regarding
perception and task settings.

Pedestrian Trajectory Prediction. Recent work on tra-
jectory prediction and forecasting has mostly focused on top-
down trajectory datasets such as ETH/UCY [6], SDD [25],
and inD [26]. [1] uses LSTMs to jointly predict trajectories
of all agents, incorporating pooled hidden-state information
from neighbors as a social cue. Some approaches, such as
AC-VRNN [12], use generative models within a VRNN [27],
incorporating social interactions via attentive hidden state
refinement. Several works also leverage top-down images
explicitly, whether in an RGB form or with added semantic
segmentation [5], [28], [29]. SGNet [30] generates coarse
step-wise goals to assist trajectory prediction sequentially.



[31] incorporates agent dynamics and environment informa-
tion and forecasts using a graph-structured recurrent model.

Fewer works have focused on the FPV setting for pedes-
trians. [3] utilizes FPV to model and predict the trajectory
of a single agent directly in pixel-space. [32] creates a
spatial visual distribution of objects from FPV, and applies
perception and ego-agent trajectory planning in a 2.5D co-
ordinate system. [11] uses a transformer-based architecture,
with a graph scene encoding to forecast the camera wearer’s
trajectory with nearby agents as a cue. Still, none of these
works deal with FPV errors when providing the trajectories
of detections.

Trajectory Robustness. The field of sequence imputa-
tion has had much success with deep learning recently.
NAOMI [16] uses a non-autoregressive approach at mul-
tiple step sizes to impute missing data in the context of
basketball players and billiard ball trajectories. [17] trains
imputation and prediction together but still only evaluates
them separately rather than as an end-to-end pipeline. [33]
evaluates the end-to-end task but only focuses on low-
resolution, long-term GPS data, dissimilar to the fine-grained
social navigation task. Also, these approaches only deal with
artificial missing-completely-at-random (MCAR) data rather
than dealing with pathologically missing data due to FPV
errors.

[15] focuses on real vehicle and human motion trajectories,
by transforming existing forecasting challenges into imputa-
tion ones. However, similar to the above approaches, they
still only apply MCAR masks to ground truth. Furthermore,
they only deal with imputation between ground truth points,
rather than points which themselves may be erroneous from
the perception model.

There have been several recent works in improving the
robustness of trajectory forecasting to perception errors. [13]
combines refinement via exponential smoothing with trajec-
tory prediction to iteratively re-match observed trajectories
with ground truth. [14] reframes the perception pipeline
to remove tracking altogether, instead operating directly on
detections and affinity matrices. However, both approaches
still rely only on simple linear interpolation and extrapolation
for missing data. While these are interesting approaches that
we believe to be complementary to ours, we leave them as
future work as they primarily focus on tracking and data
association errors.

IIT. PROBLEM FORMULATION

A trajectory prediction problem using complete informa-
tion is defined as follows: for IV pedestrians in a scene, we
denote the position of each agent ¢ in the xy ground-plane at
time-step ¢ as X} = (zf,y!). Given the observed track his-
tories, XPist = (Xt = 1,2, ..., Tps}, the task is to predict
the future paths Xt = {X¥|t = Topsi1, Tobst2y oy Tpred}
for all agents 7 in a given scene, including the ego agent.

In this paper, we introduce a trajectory prediction task
where each agent is to predict the trajectories of all agents
in their view only using their egocentric information. Hence,
observed non-ego track histories may be erroneous compared

to the ground truth (GT). Thus, given that X! denotes the
ground truth position of a given agent ¢ at time ¢, we will
define X} to be the estimated position of agent ¢ at time ¢.
Similarly, Xihi“ will represent an estimated history portion
of the agent, where missing points have been imputed by
some method. If the scene has N agents, note that there is
a single ego agent e, and N — 1 detected agents. Thus, the
FPV trajectory prediction problem involves predicting Xif“t
for each agent ¢ in a scene, given Xg’;‘“ for each detected
agent d; and XSt for the ego agent, e.

IV. TRAJECTORIES TO FIRST-PERSON VIEW

We describe our T2FPV method, demonstrating how we
construct first-person view data from an example trajectory
dataset, namely the ETH/UCY dataset. This dataset consists
of five “folds” of recorded data, in different locations and
times: ETH, Hotel, Univ, Zaral, and Zara2.

A. Video and Annotation Generation

Our approach for creating FPV datasets from real-world
trajectory datasets begins with generating videos and ground-
truth annotations. We use the SEANavBench [9] simula-
tion environment as a starting point for our simulation.
SEANavBench consists of high-fidelity pre-modeled scenes
for each location within ETH/UCY. We leave these scenes
as unchanged as possible, for consistency with prior works
using SEANavBench.

As in [4], we enforce a number of assumptions when ren-
dering these tracks. For instance, we orient each pedestrian’s
gaze with the direction they are traveling in, with spherical
linear interpolation for smoother angle changes. Additionally,
we mount a camera on each pedestrian at a fixed height
of 1.6m from their base and assign the following physical
characteristics to the camera: 18mm focal length, 36 X 24mm
sensor, and zero lens shift for the principal point. When
rendered at our 640 x 480 resolution, this results in a vertical
FOV of approximately 67°.

Using the above assumptions, we then render the first-
person videos for every person following their track from
the original dataset, as well as output an annotation for each
agent at every frame. The videos consist of the RGB render,
as well as an instance segmentation render, as shown in
Figure [T} where each object in the scene has been given a
unique color. The annotations consist of the agent’s ID, pose
information, and a list of what other agents can be seen in
the camera’s view, i.e., the poses of all visible agents in both
the camera and world reference frame. This detection list is
generated by utilizing the aforementioned segmentation mask
to determine agent visibility.

B. Perception: Detection and Tracking

To perform trajectory prediction in a realistic setting, we
employed an off-the-shelf object detector and tracker to
produce the observations required. We used a 3D object
detector [34] which is SOTA among recent image-only
methods which do not require depth information [35], and a
simple but effective probabilistic tracker [36]. We made the



TABLE I: Detection and tracking performance.

TABLE II: T2FPV-ETH statistics.

Fold Detection Tracking

AP>p APpgpvy AMOTA AMOTP
ETH 96.50 44.10 0.384 1.262
Hotel 94.24 42.56 0.361 1.325
Univ 90.65 67.56 0.318 1.465
Zaral 97.29 90.22 0.709 0.610
Zara2 94.67 73.78 0.517 1.000

following changes to both approaches to produce reasonable
detection and tracking results.

In DD3D [34], we set the parameters of feature map
assignment to use thresholds that fit our ground truths
appropriately. We also only used instances that are “visible”
(as defined in Section[[V-C)), which helps to filter out heavily
occluded instances. For the tracker [36], we changed the
matching metric to use BEV IoU (Intersection-over-Union in
top-down view) from Mahalanobis distance [37] to associate
detections to tracks. We also applied the Kalman filter only
to each instance’s 3D location and orientation and used
state and observation noise covariances calculated from our
ground truth data.

Following the common evaluation procedure as in the
ETH/UCY trajectory prediction task, we trained one model
for each of the five folds, using the other four folds as the
training and validation sets respectively. We then produced
tracking results on all ego videos from each fold’s test-set.

C. FPV Dataset Creation

In transitioning from bird’s-eye-view (BEV) to first-person
view (FPV), given a scene with N agents, we now construct
N variations of the original scene, i.e., from each agent’s
perspective. We begin with the same pre-processing popu-
larized in Social GAN [2], only considering scenes with at
least two concurrent agents in a sliding window consisting
of Tpps = 8 and Tjreq = 12 time steps. Then, to account
for FPV errors, we redesign the scene as follows, for each
agent’s perspective.

First, we consider the set of observed tracks from the
detection and tracking module. We filter out tracks that are
seen by the ego agent for fewer than k of the first Tips
time steps. Next, we perform an initial imputation on missing
values using linear interpolation (as in [14]). This creates a
D&T set of tracks, consisting of Xh‘s‘t for each detection.

We then consider the set of ground truth tracks from BEV.
We filter out tracks that are impossible to have been seen by
the ego agent for fewer than k of the first T;;, time steps
(i.e. by having fewer than P pixels visible from instance
segmentation). Furthermore, we filter out tracks for which
the ground truth is missing pieces of data for any of Ty
or Tpreq. In our creation of T2FPV-ETH, we used £ = 3
and P = 100. This step then creates a GT set of tracks,
consisting of XhlSt as well as Xf“t for each agent which is
feasibly visible to the ego agent.

For each scene, the GT and detected sets of tracks are
associated together by performing Hungarian matching, as
in [13], [38], [14], based on the mean squared error (MSE)

Fold \ Num Ego Num Dets Det MSE  FPV Err. Rate
ETH 181 60 2.05 0.44
Hotel 1053 449 2.03 0.51
Univ 24,334 120,072 1.13 0.45
Zaral 5,939 3,686 0.64 0.28
Zara2 17,608 11,775 1.05 0.32

between each Xh‘s‘t and X1t Finally, each scene has the
corresponding ego agent XSt and Xfut appended.

D. Dataset Statistics

We measure the detection and tracking performances of
the SOTA methods we employed in Table |l For detection
performance, we measure the standard average precision
(AP, p) in 2D image space and observe that it performs well.
Also, we measure the localization quality of detected objects
in 3D space by calculating IoU-based average precision in
the top-down view (APpgy). Both metrics use the same
IoU threshold of 0.5. The APggy performance is worse
than AP,p, which shows the challenge of image-based 3D
detection. For tracking, we adopt two popular metrics from
[39], Average Multi-Object Tracking Accuracy (AMOTA)
and Precision (AMOTP). AMOTA combines false positives,
missed targets, and identity switches, and AMOTP measures
the misalignment between prediction and ground truth. Al-
though “Univ" shows the worst performance because of the
pedestrian density (Table[[I), the detector and tracker perform
reasonably well, as shown qualitatively in Figure [T}

Table [l provides a high-level overview of the number
of scenes and detections, as created in Section We
note that this table demonstrates a data augmentation effect,
as there is now a one-to-one correspondence between each
ego agent and a scene; a single ground-truth track is often
observed by multiple other agents at once, although with
different possible FPV errors and 3D detection locations.
These statistics indicate the diversity between the different
folds as testing sets, as they have significantly varying scene
densities (i.e. detections per ego agents), as well as rate of
FPV errors (i.e. number of points needing to be imputed
downstream) and difficulty of imputation.

V. PROPOSED METHOD: CoFE
A. Motivation

As noted in Section [l existing imputation approaches
have two primary deficits when being applied to the field
of human trajectory prediction. First, approaches largely use
a missing-completely-at-random (MCAR) treatment of the
points to be imputed. This assumption does not hold in a
setting with FPV errors, as data is missing in a manner
pathological to the detection and tracking approach being
used as well as compulsory to occlusion and FOV limitations
from the ego camera. Second, approaches have full trust in
the accuracy of the points around the missing data. This
assumption clearly also does not hold in the FPV setting, as
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Fig. 2: CoFE Approach: CoFE has an encoder-decoder architecture that refines the imputed trajectories to better account
for FPV errors. The corrected trajectories are then passed into a trajectory prediction algorithm.

the positions of observations are estimated from our approach
described in Section [V-Bl

Therefore, we propose to incorporate a correction mod-
ule, Correction of FPV Errors (CoFE), between existing
imputation approaches and downstream trajectory prediction
approach, as shown in Figure To make the correction
consistent with the trajectory prediction task, we thus train
a neural network for both the imputation refinement and the
trajectory prediction algorithm itself in an end-to-end (E2E)
manner.

B. CoFE Architecture

As shown in Figure 2] our architecture is similar to
many RNN-based trajectory forecasting approaches, such as
VRNN [27]. Our main insight is to use an encoder RNN
and decoder RNN back to back. The accumulated hidden
state after processing the input then feeds into the decoder
to output a “corrected” version of the input. We utilize
two different Gated Recurrent Unit (GRU) modules for this
purpose.

For a detected agent d, each missing point of XgiiSt is
imputed via the given approach, e.g., NAOMI [16]. Then,
each point is transformed into its relative motion from the
previous point, in order to be agnostic to absolute coordinates
in the given scene. Next, these relative motions are feature
extracted with a Multilayer Perceptron (MLP), labeled MLP 1
in our diagram. These features are concatenated with the
hidden state h' at each time step in T,p,, then fed into
MLP2 and the encoding GRU cell to obtain the next hidden
state, h!T1. After processing the entire input, we then switch
to decoding with the last hidden state, h7ovs*1. We output
X(lii as a prediction for X}, via MLP3. We then apply
the same feature extractor (i.e., same weights) MLP1 to this
prediction to then feed back into the decoding GRU cell, and
repeat this process for all T, points. Finally, we convert the
predicted points back into absolute coordinates. The exact
details of this architecture, including the number of layers
and hidden units in each MLP, can be seen in our open-
sourced implementation.

C. End-to-End (E2E) Training

We introduce a simple MSE Loss objective to train CoFE
itself, between the ground truth XgiiSt and corrected es-
timations X%st. Given the original estimated points with
imputation X4t and also the refinements X}jit, we then
update the points in Xﬁii with Xgi for timesteps ¢ where
imputation is not required. This final Xgi is then used to
train the downstream prediction method (e.g., SGNet [30]) in
an end-to-end (E2E) manner, where the Loss function being
optimized is the sum of the CoFE Loss objective and the
prediction method’s original objective.

VI. EXPERIMENTS
A. Experimental Setup

We implemented several representative approaches on
the ETH/UCY trajectory prediction task. We selected these
algorithms as they stood out along several key techniques
common in human trajectory prediction: variational predic-
tion (VRNN [27]), social awareness (A-VRNN [12]), and
goal conditioning (SGNet [30]).

For data imputation, we incorporated three commonly
used approaches. We selected linear interpolation (“Linear-
interp”), a simple but powerful approach used as part of
many recent works, such as [14]. We also selected double
exponential smoothing (“Smooth”), used in [13], a more
complex baseline that better handles dynamic trends in the
sequence. Finally, we incorporated NAOMI [16], which is a
recent SOTA approach leveraging deep learning.

B. Evaluation Procedure

As in Social GAN [2], we evaluate trajectory predictions
using a leave-one-out approach. For each of the five folds,
models are trained and validated on data from four of them
at a time. Then, the best model according to validation
performance is tested on the entirety of the held-out fold.

We train NAOMI [16] separately, following the author’s
procedure, once per fold. Then, for each combination of
imputation techniques and prediction algorithms, we train
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one prediction model utilizing CoFE and one model without
(i.e., just using the 5(3:“ outputs from the imputation).

In the field of trajectory prediction, and especially for
ETH/UCY, the most commonly used metrics are Average
Displacement Error (ADE) and Final Displacement Error
(FDE). These metrics can be easily computed on a per-agent
basis, for ground truth future track Xif“t and predicted future
track Xif“t, for each agent 7 in the scene. The L2-distance at
each time ¢ from ¢t = Tps41 to t = Tpreq is taken between
X!t and X¥; ADE is the average of these distances, while
FDE is the final distance.

We note that there are other metrics which could be
utilized, including collision rate, social comfort level, path
complexity, and many more [40]. We chose to focus on the
core metrics of the tasks at hand, but suggest that future work
in applying these metrics could provide helpful new insight.

C. Results

We conducted extensive experimentation to assess CoFE’s
performance when combined with the various imputation
and prediction approaches. As shown in Table [T, adding
the CoFE module is quite effective. When considering the

average performance over all dataset folds, all combinations
of imputation and prediction algorithms which use CoFE
are better than the corresponding versions which bypass
it. Furthermore, without CoFE, the average performance
is highly variable, dependent on the choice of imputation
approach and prediction method. However, with CoFE, these
differences become much less pronounced. Note that al-
though performance on most folds in most cases is quite
good, CoFE appears to not be as effective on ETH. We
suspect that this is because, as shown in Table |H[, there are
only a small number of detected tracks in the first place
(60), so performance is more variable and sensitive to any
individual prediction’s error.

To gain further insight into CoFE’s performance, we
performed qualitative analyses. As seen in Figure [3H(b),
the imputation approach (NAOMI [16]) trusts surrounding
points in the data, performing an extrapolation and thus, does
not effectively capture the FPV errors. When paired with
CoFE, the approach is more effective at capturing underlying
temporal and spatial patterns in the data, correcting the FPV
errors which results in better downstream prediction.



TABLE III: ADE / FDE for each fold and approach tested on T2FPV-ETH dataset. The better result between using CoFE
and not is bolded and the overall best performance for each prediction method is green. Lower is better.

Unit: meter
Traj. Prediction ‘ Imputation CoFE (ours) ‘ ETH Hotel Univ Zaral Zara2 Avg
Linear-interp - 1357200 130/173 224/289 1.14/1.68 154/2.10 | 1.51/2.08
Linear-interp v 1.52/235 1.06/153 1.65/210 1.06/1.63 1.27/1.62 | 1.31/1.84
VRNN [27] Smooth [13] - 2257375 1.53/236 217/300 126/195 1.58/222 | 1.76/2.65
Smooth [13] v 157/246 1.08/155 1.77/231 1.00/144 131/1.68 | 1.35/1.89
NAOMI [16] - 146 /229 159/217 1.83/231 096/157 1.13/149 | 1.39/1.97
NAOMI [16] v 1.54/234 1.09/155 158/197 092/139 1.11/139 | 1.25/1.73
Linear-interp - 1.39/2.04 131/175 226/3.00 1.04/140 1.47/193 | 1.49/2.03
Linear-interp v 1477218 116/172 154/188 1.03/148 131/1.69 | 1.30/1.79
A-VRNN [12] Smooth [13] - 1.77/3.11 136/181 227/334 1.18/172 159/2.07 | 1.63 /241
Smooth [13] v 1.69/271 110/159 1.76/238 1.06/1.59 1.28/1.62 | 1.38/1.98
NAOMI [16] - 144/217 1.66/230 1.82/225 0.83/124 1.09/139 | 1.37/1.87
NAOMI [16] v 1.49/2.18 116/1.66 1.54/191 088/131 1.16/149 | 1.25/1.71
Linear-interp - 1.43/197 072/100 148/173 058/0.79 0.78/091 | 1.00/1.28
Linear-interp v 098/132 059/0.76 123/148 055/0.76 0.73/0.86 | 0.82/1.04
SGNet [30] Smooth [13] - 1.06/145 0.73/1.04 145/168 057/0.78 0.79/093 | 0.92/1.18
Smooth [13] v 1.03/141 0.61/0.80 1.28/1.54 0.56/0.77 0.74/0.86 | 0.84 / 1.08
NAOMI [16] - 090/128 0.78/097 121/143 0.50/069 0.72/0.84 | 0.82/1.04
NAOMI [16] v 099/140 059/0.78 116/139 051/070 0.67/0.79 | 0.78 /1.01

TABLE IV: Ablation study on CoFE applied to SGNet with
linear interpolation.

Algorithm | CoFE | Train E2E  Impute Only | ADE /FDE

|- - - | 1.00/1.28

v No No 1.11/1.43

SGNet [30] v No Yes 0.98 / 1.27
v Yes No 0.94 /122

v Yes Yes 0.82 / 1.04

We also performed an ablation study, shown in Table
[Vl to assess aspects of our design choices. We focused
on SGNet [30] combined with linear interpolation for the
study, and found clearly that the E2E training was vital in
obtaining top performance. We further find that focusing on
imputation only in the prediction phase (i.e., replacing non-
imputed points in X}t as described in Section also
has a significant effect in improving performance.

VII. FUTURE WORK

Although SEANavBench is a high-fidelity environment,
we do note that further effort in improving its realism could
be useful. Realism could be enhanced not just by increasing
the 3D-modeling asset and animation qualities, but also by
further improving alignment between the reproduced scenery
and the original locations.

Additionally, for associating D&T tracks with their cor-
responding GT tracks, we relied on Hungarian matching
on our tracking output directly. This decreased the number
of correctly matched trajectories, due to identity association
errors of detections. Incorporating affinity-based techniques
from [14] or performing the full re-tracking algorithm from

[13] could be a promising way to even further reduce FPV
errors.

VIII. CONCLUSION

In existing work, pedestrian trajectory prediction has been
mainly studied under a complete information assumption.
In this paper, we introduce a first-person view trajectory
prediction problem where agents need to make predictions
based on partial, imprecise information. To promote this
research direction, we present T2FPV, a method for generat-
ing high-fidelity egocentric datasets for pedestrian navigation
by leveraging existing real-world trajectory datasets. In this
setting, FPV-specific errors arise due to imperfect detection
and tracking, occlusions, and FOV limitations of the camera.
To address these errors, we propose CoFE, a module that
further refines imputation of missing data in an end-to-end
manner with trajectory forecasting algorithms. Our method
reduces the impact of such FPV errors on downstream
prediction performance, decreasing displacement error by
11.73%, averaging over all combinations of imputation tech-
niques and prediction approaches tested. We also show
that E2E training of CoFE is essential in achieving this
performance increase. Our constructed T2FPV-ETH dataset
provides a benchmark for human trajectory prediction from
detection and tracking results, which is a more natural and
realistic setting. Therefore, we argue that incorporating such
realism throughout the perception pipeline is an important
direction to move toward in enabling robots to navigate in
the real world.
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