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Abstract— Fiducial markers can encode rich information
about the environment and can aid Visual SLAM (VSLAM)
approaches in reconstructing maps with practical semantic in-
formation. Current marker-based VSLAM approaches mainly
utilize markers for improving feature detections in low-feature
environments and/or for incorporating loop closure constraints,
generating only low-level geometric maps of the environment
prone to inaccuracies in complex environments. To bridge
this gap, this paper presents a VSLAM approach utilizing a
monocular camera along with fiducial markers to generate hier-
archical representations of the environment while improving the
camera pose estimate. The proposed approach detects semantic
entities from the surroundings, including walls, corridors,
and rooms encoded within markers, and appropriately adds
topological constraints among them. Experimental results on
a real-world dataset collected with a robot demonstrate that
the proposed approach outperforms a traditional marker-based
VSLAM baseline in terms of accuracy, given the addition of
new constraints while creating enhanced map representations.
Furthermore, it shows satisfactory results when comparing the
reconstructed map quality to the one reconstructed using a
LiDAR SLAM approach.

I. INTRODUCTION

Visual SLAM (VSLAM) systems can employ a wide
range of vision sensors, such as monocular, stereo, Red
Green Blue-Depth (RGB-D), omnidirectional, and event-
based cameras to estimate the environmental map while
localizing the camera [1]. The primary advantage of vi-
sion sensors is that they need low-cost hardware to supply
rich visual and semantic information from surroundings for
various tasks [2]. Semantic data, which refers to high-level
information acquired from the environment, make VSLAM
tasks more robust and expand the range of applications
that can employ the reconstructed maps [1], [3]. For in-
stance, robots may need to identify objects in the scene
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Fig. 1: The final reconstructed map of the environment
using the proposed method in a hierarchical representation.
Accordingly, the primary map entities are detected 3D points
extracted from the environment and visited ArUco markers.
Various colors of the 3D points refer to distinct walls, and
the line connecting them to the cubes shows their belonging
to rooms, including corridors or four-wall rooms: a) the
top view of the reconstructed map represented in 2D, b)
keypoints and robot trajectory records that lead to map
reconstruction.

for path planning and dynamic object removal, which can
be resolved using semantic data [4]. In this regard, utiliz-
ing fiducial markers is one of the possible approaches to
encoding semantic information into the environment due to
their rich and better-defined features [5]. In addition, they
can assist VSLAM frameworks by providing accurate pose
estimation due to their unique patterns, supplying reliable
features in low-texture environments, and enabling loop
closure detection based on marker identifiers. While most
fiducial markers are visible to humans and, thus, visually
polluting the environment, we have recently proposed novel
invisible fiducial markers [6] that have the potential to be
seamlessly integrated into the environment. Nevertheless, for
the sake of simplicity, in this work, we use visible fiducial
markers, leaving the use of invisible fiducial markers as
future works. Recent works such as [7] and [8] propose
VSLAM approaches using fiducial markers but do not en-
code them with meaningful semantic information, creating
purely geometric map representations leading to inaccuracies
in camera pose estimates and the generated environmental
map in the presence of complex environments.

To fully leverage the potential of fiducial markers in accu-
rately identifying both the semantic elements and their topo-
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logical relationships while generating accurate and mean-
ingful maps, this paper proposes a VSLAM framework for
monocular cameras that utilizes the data encoded in fiducial
markers for enhanced map reconstruction, adding abstract se-
mantic elements to the final map along with their topological
relationships. The system is built upon UcoSLAM [7], which
employs ArUco [9] markers and visual keypoints extracted
from natural landmarks reconstructing the geometric map of
the environment using keypoints and markers. Additionally,
inspired by S-Graphs [10], [11], leveraging high-level hi-
erarchical representations for localization and mapping, the
proposed approach adds extraordinary information in the
form of walls, corridors, and rooms considering the data
encoded in the ArUco markers attached to the environment.
A sample map reconstructed by the proposed approach and
its hierarchical representation is demonstrated in Fig. 1.

Herewith, the main contributions of the paper are summa-
rized below:

• An extension of marker-based VSLAM to reconstruct
environmental maps with high-level semantic features,
including walls, corridors, and rooms, encoded within
the markers,

• The design of novel geometric constraints, namely
marker-to-wall and wall-to-room, to improve the map
quality and reduce camera localization errors,

• Validation of the proposed method using a real-world
indoor dataset showing improved performance over
marker-based VSLAM baseline.

The rest of the paper is organized as follows: Section II
explores previous efforts in the VSLAM domain, targeting
the usage of semantic data for improved reconstructed maps.
Section III introduces the proposed approach and its various
modules in detail. In Section IV, the evaluation criteria and
discussions over the effectiveness of the proposed method
are provided. The paper finally concludes in Section V.

II. RELATED WORKS

VSLAM approaches have matured over the past years and
many researchers contributed to this community by propos-
ing efficient solutions to unresolved challenges in this area.
The authors of this paper also presented a comprehensive
survey on diverse VSLAM state-of-the-art works and studied
their trade-offs in [12]. Accordingly, many recent approaches
focus on improving the front-end thread of the VSLAM
systems for better pose estimation and visual odometry [13].
Authors in [7] proposed UcoSLAM that employs both natural
and artificial landmarks in the environment to reconstruct the
map. It works in keypoints-only, markers-only, and mixed
modes and improves the global map builder and loop closure
detector modules in case ArUco markers are found in the
camera’s field of view. Another marker-based approach titled
TagSLAM [8] was proposed by Pfrommer and Daniilidis,
which uses the capability of AprilTag [14] fiducial markers
for SLAM tasks. Although the proposed approaches perform
well in many scenarios, they cannot obtain any semantic
information from the environment for an improved map

representation. Gomez-Ojeda et al. [15] introduced PL-
SLAM, which uses Oriented FAST and Rotated BRIEF
(ORB) and Line Segment Detector (LSD) algorithms to
extract visual features of points and lines in stereo vision
cameras. However, this approach is computationally intensive
in feature tracking and extracting data from structural lines.
Bruno and Colombini [16] proposed LIFT-SLAM, which
integrates deep learning-based and conventional geometry-
based feature descriptors. Despite the robust feature detection
and tracking performance, the method uses an un-optimized
Convolutional Neural Network (CNN), which leads to almost
real-time execution.

Utilizing semantic data is another topic that attracted great
attention in recent years. Gonzalez et al. [17] presented
S3LAM, a monocular approach based on ORB-SLAM 2.0
[18] that uses semantic segmentation of generic objects
and structures. Their approach fits a plane using the tri-
angulated 3D points for each a priori planar cluster and
uses a CNN-based panoptic segmentation framework titled
Detectron2 [19]. Likewise, YOLO-SLAM [20] is another
CNN-based approach that couples geometric constraints with
the Darknet19-YOLOv3 object detector to generate semantic
information. However, these solutions may suffer from per-
formance degradation in recognizing small or non-regular
objects and planes. QuadricSLAM [21] is another approach
that models objects found in the environment by employing
quadric representations as object descriptions and estimates
quadric parameters using object detection bounding boxes.
This monocular VSLAM represents an object’s size, position,
and orientation for map reconstruction. The main challenge
of QuadricSLAM is the initialization stage, where a variety
of viewing angles of the object is required. Hosseinzadeh et
al. [22] proposed another monocular VSLAM system that
inserts visited objects detected by a deep learning-based
object detector and the dominant structure of the scene
using a planar landmark detector to the map. Despite the
robust performance, estimating the prior shape of the objects
leads to high computational complexity. Another semantic
VSLAM approach titled Blitz-SLAM [23] combines the
original masks and depth information of the objects and
eliminates noise blocks formed by dynamic objects. Authors
in [24] proposed a parallel framework titled SOLO-SLAM,
which uses semantic attributes of map points and geometric
constraints to filter dynamic objects and reconstruct an im-
proved map. The main challenge here is losing a great deal of
information in low-dynamic scenarios. MISD-SLAM [25] is
another semantic approach equipped with real-time instance
segmentation based on a pre-trained CNN and dynamic
feature removal. However, the algorithm removes objects that
are static only in some frames.

In contrast with the mentioned works, the proposed ap-
proach creates a map of the environment by utilizing seman-
tic data encoded within makers instead of employing any
object detector. Accordingly, walls and room constraints are
estimated based on mathematical modeling obtained from
keypoints and markers data, which does not significantly
affect the performance of the system. Additionally, the



Fig. 2: The overall pipeline of the proposed approach. The
main contributions of the proposed method are adding the
Semantic Analyzer module and modifying the output of
the Tracker to provide proper feed to it. Moreover, the
Global/Local Optimizer modules have also been modified
for better map reconstruction.

accuracy of the final reconstructed map of the environment
is comparable with the one from Light Detection And Rang-
ing (LiDAR)-based approaches, demonstrating the proposed
method’s potential.

III. PROPOSED METHOD

The pipeline of the proposed method is depicted in
Fig. 2. Accordingly, the frames captured by a monocular
camera are passed to the system for processing. The tracker
module detects ORB visual features and ArUco markers as
the primary inputs of the system. Keyframes are selected
and tracked over time, and the output contains 3D points,
detected markers, walls, and rooms visited in the scene. The
semantic analyzer module performs wall and room detection
tasks using the pose of the markers detected in the tracking
stage. Additionally, a mapper module handles adding new
vertices and edges to the map and improves the final map
for an optimized reconstruction. Finally, a marker-based loop
detector module checks whether the markers in the current
frame have been seen before and triggers the global optimizer
to enhance the reconstructed map.

In order to develop a VSLAM framework with richer re-
constructed maps, the proposed approach utilizes UcoSLAM
as the baseline and modifies its components to be empowered
with a semantic data analysis procedure. The mentioned
modifications enable the detection of walls and different
types of rooms as two semantic concepts in the environment
using ArUco markers. Furthermore, as these fiducial markers
are used for camera pose estimation, they can store additional
encoded semantic data, which makes them an ideal alterna-
tive according to their unique identification properties. This
method also aspires to employ visual data to represent the en-
vironment and the robot’s pose in a single optimizable graph
with an approach comparable to S-Graphs [26]. Thus, instead
of odometry readings and extracting planar surfaces using
LiDAR scans introduced by S-Graphs and S-Graphs+ [11],
the proposed approach calculates the location of walls and

room variations using the fiducial markers attached to them.

A. Overview

The pipeline of the proposed method at time t can be
referred to four main coordinate systems: the odometry frame
of reference O, the camera coordinate system Ct, the marker
coordinate system Mt, and the global coordinate system Gt.
As the primary sensor of the system, a monocular camera
acquires a set F = {f} of frames f = {t,T, δ}, where T ∈
SE(3) is the camera’s pose obtained from the transformation
of Ct to Gt, and δ is the set of camera intrinsic parameters.
By processing each camera frame using ORB keypoint de-
tector and feature extractor, a set of keypoints g = {l, u,d}
are extracted in which l is the subsampling level of the
image, u is the pixel coordinates for upsampling w.r.t. the
first level, and d = (d1...dn)|di ∈ [0, 1] is the descriptor
vector with length n. Accordingly, the final constructed map
of the environment E will be represented as:

E = {K,P,M,W,R} (1)

where K = {k} ⊂ F is the set of keyframes and P = {p}
represents the set of feature points p = {x,v, d̂} extracted
from the environment with their corresponding 3D positions
x ∈ R3, viewing direction v ∈ R3, and descriptor d̂.
Additionally, M = {m} is the set of ArUco markers detected
in the environment, in which each marker m = {s,p, cc}
holds marker size (i.e., length) s ∈ R, marker pose p ∈
SE(3) calculated from Mt to Gt, and corner coordinates
cc = (c1...c4)|ci ∈ R3 values. The set of walls detected from
the environment is represented by W = {w}, in which each
wall w = {q,mw} holds the wall equation q ∈ R4 and the
attached markers list mw ⊂M = (m1...mn)|mi ∈ N where
mi represents ArUco marker-id. Similarly, R = {r} refers to
the set of rooms found in the environment, where each room
r = {rc, rw} contains the room center point rc ∈ R3 and
the wall list rw ⊂ W = (w1...wn)|wi ∈ N that comprise
the room.

B. Semantic Entities

The proposed approach adds two semantic entities to
construct a richer map, including walls and rooms. As
detecting the mentioned entities is accomplished differently,
the procedures are discussed in detail in this section.

Walls. The procedure to find the walls as plane-shaped
entities on which the markers and their surrounding features
are located is predominantly done using the pose information
provided by detected ArUco markers. This approach assumes
all fiducial markers are placed directly on the walls, not
other elements such as radiators or drawer units. Thus, the
equations of the walls are obtained based on the attached
markers’ poses. The process of detecting walls in the scene
occurs whenever a marker is being visited in a recent
keyframe, making detecting and mapping the walls at a given
time more efficient.

To add walls to the final map, each wall plane wi is
extracted in the global coordinate system Gwi =

[
Gni

Gd
]



with a normal vector Gni =
[
nx ny nz

]T
. The vertex

node of the wall is factored in the graph as Gwi =
[Gφ,G θ,Gd], where Mφ and Mθ refer to the azimuth and
elevation of the wall in Gt. For each marker Gmi attached
to the wall Gwi cost function can be defined as:

cwi
(Gwi,

Gmi) = ‖[Mδφwimi
,M δθwimi

,M dwi
]T ‖2Λw̃i

(2)
where Mδφwimi

difference between the azimuth angle of
the wall wi and its marker mi converted to its marker frame
Mi, Mδθwimi

is the difference in the elevation angles, while
Mdwi

being the perpendicular distance between the wall and
the marker, which should be zero the given marker-wall pair.

Rooms. Another semantic entity that has been considered
in this work is the room. Since perceiving a room can
be difficult due to various configurations and structures,
the proposed approach employs the data encoded in
ArUco markers attached to the room’s walls to detect the
mentioned semantic entity. In this regard, a dictionary
containing the rooms in the environment and the fiducial
markers attached to their walls are provided to feed the
framework. Note that the only information encoded in the
dictionary is the marker-ids corresponding to a room, and
no additional pose information is required to be encoded.
The proposed approach presents a modified version of the
room segmentation process introduced in S-Graphs+ [11],
where the markers play a vital role. Hence, two room types
titled ”two-wall room” and ”four-wall room” have been
considered in this work:

Two-wall Rooms (Corridors): In this case, only two
parallel walls of a room are labeled with fiducial markers.
This scenario is proper for detecting corridors or rooms with
undetectable/unreachable walls in the scene. Consequently, a
room Grx = [Gwxa1

,Gwxb1
] contains x-wall planes parallel

to the x-axis while Gry = [Gwya1
,Gwyb1

] contains y-wall
planes parallel planes to y-axis.

To compute the center of a two-wall room Grxi
, the two x-

wall plane equations are utilized along with the center point
Gci of the marker mi as follows:

Gkxi
= 1

2

[
|Gdxa1

| · Gnxa1
− |Gdxb1

| · Gnxb1

]
+ |Gdxb1

| · Gnxb1

Gηxi
= Gk̂xi

+
[
Gci − [ Gci · Gk̂xi

] · ˆGkxi

]
(3)

where Gηxi
is the center point of the two-wall room Grxi

and Gk̂xi
is acquired from Gk̂xi

= Gkxi
/‖Gkxi

‖. The
center point Gci of the marker is obtained using the marker
pose in frame G. It should be noted that a two-wall room
center in the y direction can be calculated analogously.

A two-wall room node is initialized using the room center,
and the cost function to minimize the two-wall room node
and their corresponding wall planes are defined below:

crxi
(Grxi ,

[
Gwxa1

,Gwxb1
,Gci

]
)

=

T,K∑
t=1,i=1

‖Gη̂xi
− f(Gw̃xa1

,Gw̃xb1
,Gci)‖2Λr̃i,t (4)

where f(Gw̃xa1
,Gw̃xb1

,Gci) maps the wall planes to the
center point of the room using Eq. 3.

Four-wall Rooms: This scenario refers to rooms with
four walls labeled with fiducial markers. In this regard,
a four-wall room contains four wall planes as Gri =
[Gwxa1

Gwxb1

Gwya1

Gwyb1
] forming the room. The center

point of this variant of rooms can be computed using the
equation below:

Gqxi =
1
2

[
|Gdxa1

| · Gnxa1
− |Gdxb1

| · Gnxb1

]
+ |Gdxb1

| · Gnxb1

Gqyi
= 1

2

[
|Gdya1

| · Gnya1
− |Gdyb1

| · Gnyb1

]
+ |Gdyb1

| · Gnyb1

Gρi =
Gqxi

+ Gqyi
(5)

where Gρi is the center point of the four-wall room Gri. It
should also be noted that Eq. 5 holds true when |dx1

| > |dx2
|.

The cost function to minimize four-wall room nodes and their
corresponding wall plane set is similar to a two-wall room
but with minor differences:

cρ(
Gρ,

[
Gwxai

,Gwxbi
,Gwyai

,Gwybi

]
)

=

T,S∑
t=1,i=1

‖Gρ̂i− f(Gw̃xai
,Gw̃xbi

,Gw̃yai
,Gw̃ybi

)‖2Λρ̃i,t

(6)

where f(Gw̃xai
,Gw̃xbi

,Gw̃yai
,Gw̃ybi

) maps the four esti-
mated wall planes to the center point of the four-wall room
using Eq. 5. The above cost function maintains the structural
consistency among the four walls forming the room.

C. Final Graph

Fig. 3 depicts the structure of the final semantic graph pro-
duced by the proposed approach. Accordingly, the keyframes
extracted by the system are the primary sources of infor-
mation that contain both visual feature points with their
corresponding 3D coordinates and visited ArUco markers
in the scene. It should be noted that the constraint defined
among the keyframes, feature points, and fiducial markers is
utilized for computing the odometry and for detecting loop
closure. The wall-marker constraints are incorporated using
Eq. 2. The topmost level of the graph retains rooms detected
in the environment using the marker-ids and the walls that
hold those markers with constraints obtained following Eq. 4
for two-wall rooms and Eq. 6 for four-wall rooms.

IV. EVALUATION

This section presents the proposed method’s evaluation
procedure in terms of accuracy and performance compared
to the state-of-the-art approaches. In this respect, various
real-world scenario tests were performed using the proposed



Fig. 3: The graph representation of the hierarchical ar-
chitecture of the proposed approach. In this regard, the
map employs new semantic constraints, including walls and
rooms, along with geometrical constraints for better map
reconstruction.

Fig. 4: Collected dataset for evaluation of the method: a) the
legged robot used for data collection, b) some instances of
the dataset.

method, UcoSLAM [7] as the baseline methodology, and
S-Graph+ [11] as a LiDAR-based approach for providing
ground truth measurements. As LiDAR sensor has less noise
when compared with the monocular vision-based sensor, it
can be safely considered as ground truth.

A. Evaluation Setup

In order to evaluate the performance of the proposed
approach in real-world circumstances, we mounted a Intel®
RealSense™ Depth Camera D435 as the monocular sensor
on a Boston Dynamics Spot® robot and collected data from
an indoor environment. The robot functioned in different
office zones of two different university buildings with various
corridor and room setups, where the walls were labeled with
printed 17cm × 17cm ArUco markers. Marker-ids of the
ArUco markers placed in the environment, along with the
room unique labels, were also stored in a database file and
fed to the system. Fig. 4 demonstrates the robot employed for
collecting data and some instances of the collected dataset.
Additionally, the characteristics of the dataset are presented
in Table I.

Evaluations have been conducted using a computer
equipped with an 11th Gen. Intel® Core™ i9 @2.60GHz

TABLE I: The characteristics of the collected indoors dataset.

Sequence∗ Duration #Markers Description

Seq-01 08m 53s 35 Two corridors connected via a
landing without robot rotation

Seq-02 09m 29s 35 Two corridors connected via a
landing with robot rotation

Seq-03 16m 05s 26 One corridor and five rooms
Seq-04 10m 25s 14 One corridor and a two-doors

room
Seq-05 09m 37s 20 Four aisles connected to a main

corridor
Seq-06 23m 34s 22 Three corridors and three rooms
∗data were stored as packages of rosbag files.

processor and 32 GigaBytes of memory. Moreover, to better
visualize the detected objects in the environment, including
3D points, ArUco markers, walls, and rooms, and provide a
more accurate evaluation to compare the proposed method
with other state-of-the-art approaches, a set of Robot Oper-
ating System (ROS) tools have been employed.

B. Experimental Results

In order to demonstrate the accuracy of the proposed
method compared to its baseline and ground truth, Absolute
Trajectory Error (ATE) measurements have been employed
in this paper. Accordingly, the Root Mean Square Deviation
(RMSE) and Standard Deviation (STD) values of the pro-
posed and baseline approaches were compared to the ground
truth, and the approach with less value is assumed to perform
more accurately.

According to the evaluation results presented in Table II,
the proposed approach works better than its baseline in most
of the cases. The main reason for such improvement is the
ability of the proposed method to add new constraints to
the map and employ the association of semantic entities to
enhance the reconstruction of the final map. The mentioned
improvement can also be seen in Fig. 6. Moreover, the pro-
posed approach utilizes data association results and performs
a local semantic loop closure in addition to the marker-based
loop closure detection when visiting a previously observed
wall. In this regard, if the equation of the currently visible
wall was previously measured, i.e., the wall was previously
detected, a global optimization runs again to improve the
reconstructed map.

The above-mentioned impact is more obvious in cases
such as Seq-04 where the robot starts in a corridor, enters
from one of the two doors of a room and exits from the other
door to continue in the same corridor, and as a result, no loop
closure using keypoints and markers is performed. While our
method, which creates wall and room constraints, correctly
identifies the corridor and its walls to provide better results.
This improvement can be clearly seen in Fig. 5, where our
method is able to reconstruct a more accurate map of the
environment when compared with the baseline. Moreover,
it is able to extract meaningful semantic and topological
information from the environment.

Limitations. The proposed method, when testing in an en-
vironment where marker-based loop closure is triggered sev-
eral times, can show similar results to baseline UcoSLAM.



(a) S-Graphs+ on Seq-04 (b) UcoSLAM [7] on Seq-04 (c) Proposed method on Seq-04 (d) Proposed method on Seq-04
showing only wall 3D points

(e) S-Graphs+ on Seq-06 (f) UcoSLAM [7] on Seq-06 (g) Proposed method on Seq-06 (h) Proposed method on Seq-06
showing only wall 3D points

Fig. 5: Reconstructed maps using the proposed method, the baseline, and the ground truth. It can be seen that the proposed
approach is able to generate more precise maps similar to the ground truth in detailed and with high-level semantic entities.

TABLE II: Evaluation results of the proposed method on the
collected dataset using Root Mean Square Deviation (RMSE)
error in meters and Standard Deviation (STD). The best
results are boldfaced.

Method

Proposed UcoSLAM [7]

Sequence RMSE STD RMSE STD

Seq-01 8.038 3.058 8.130 3.035
Seq-02 6.883 3.598 6.930 3.633
Seq-03 2.266 0.894 2.687 1.335
Seq-04 3.787 1.848 5.822 2.726
Seq-05 1.255 0.763 1.238 0.751
Seq-06 2.676 1.524 2.720 1.536

Seq-06 in Fig. 5 shows an example of the final map show-
casing similar map quality results generated by the proposed
method and UcoSLAM for an environment where the robot
revisits the places (thus the markers) several times. Even
with the given limitation for such scenarios, our approach
is able to extract more meaningful information from the
environment while maintaining similar accuracy with respect
to the baseline.

V. CONCLUSIONS

This paper presented a Visual SLAM approach that em-
ploys a monocular camera as the sensor and the data en-
coded within fiducial markers placed in the surroundings
for accurate pose estimation and semantic segmentation. The
proposed method can detect three practical semantic entities
in the environment, including walls, corridors, and rooms,
and provide a hierarchical graph with high-level semantic
data. Additionally, it can reconstruct a more accurate map
of the environment by adding more topological constraints
and employing the relations among mentioned semantic

(a) Proposed (b) UcoSLAM [7]

Fig. 6: Absolute Trajectory Error (ATE) w.r.t. translation part
in meters on Seq-04 using different approaches. It can be
seen that the room created by the proposed approach is more
similar to the ground truth.

entities found in the scene. Evaluations performed on a
dataset collected by a legged robot in real-world conditions
demonstrated an accuracy improvement compared to the
baseline and satisfactory results compared to a LiDAR-based
state-of-the-art techniques.

The approach proposed in this paper is part of a project
which utilizes the advantages of fiducial markers for various
tasks while keeping these markers invisible to human eyes
but recognizable to robots. As for future works, the authors
plan to encode the environment with the mentioned invisible
fiducial markers introduced in [6] and equip the robot with a
proper sensor setup to interpret them, making the improved
version of the proposed approach able to accomplish Simul-
taneous Localization and Mapping tasks with the new type
of markers. Additionally, improving the performance of the
proposed system to work online and in real-time is another



target for future work.
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