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Abstract— The robot exploration task has been widely stud-
ied with applications spanning from novel environment map-
ping to item delivery. For some time-critical tasks, such as res-
cue catastrophes, the agent is required to explore as efficiently
as possible. Recently, Visit Frequency-based map representation
achieved great success in such scenarios by discouraging repeti-
tive visits with a frequency-based penalty. However, its relatively
large size and single-agent settings hinder its further develop-
ment. In this context, we propose Integrated Visit Frequency
Map, which encodes identical information as Visit Frequency
Map with a more compact size, and a visit frequency-based
multi-agent information exchange and control scheme that is
able to accommodate both representations. Through tests in
diverse settings, the results indicate our proposed methods can
achieve a comparable level of performance of VFM with lower
bandwidth requirements and generalize well to different multi-
agent setups including real-world environments.

I. INTRODUCTION

Exploration is a critical task in robotics with applications
ranging from catastrophes rescue to foraging and item deliv-
ery [11, 10, 8]. It requires agents to explore the designated
unknown environment without any prior knowledge. At the
end of a trial of such a task, we expect an accurate map
fully or partially covering the task environment. In time-
sensitive scenarios such as disaster relief and human rescue,
participating agents are tasked to efficiently explore the
environment, namely maximize the area explored within a
unit time. Previous work [19] indicates that to achieve such
an objective, the robot shall reduce the chance of repetitive
exploration, which means revisiting previously seen areas.
Visit Frequency Map (VFM) [19] is a novel state represen-
tation encoding the information of the time every location
has been visited by the robot, which can reduce the chance
of repetitive exploration and avoid the critical no-difference
problem of the traditional occupancy map. Incorporating
spatial action maps [20], a type of action representation
with comparatively large and complete action space than the
typical steering commands, VFM shows strong performance
on efficient novel environment exploration tasks.

Although VFM has solved several vital problems of ex-
ploration tasks, there are still challenges to overcome and
potential to improve efficiency. Firstly, in some scenarios,
a wireless signal is usually weakened by different types of
obstruction. VFM, as the state representation that needs to
be transmitted very frequently, has a relatively large size as it
consists of four different channels of two-dimensional arrays.
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Thus, we believe a smaller size information encoding format
can reduce the latency caused by weak signals and slightly
save the required computational power. Secondly, exploration
progress can be accelerated by deploying multiple agents to
the task environment. As VFM is designed for single-agent
setup, we believe an improvement and adaption for multi-
agent settings is required to improve the potential of VFM
methods.

To resolve the aforementioned problems, in this study,
we propose an Integrated Visit Frequency Map (i-VFM), a
state representation encoding identical information as VFM
with only half of its size, and a multi-agent control scheme
designed for visit frequency class methods (VFM and i-
VFM) that exchange necessary data and discourage inter-
agent repetitive exploration through frequency information.
In conclusion, the contributions of this study can be summa-
rized as follow:
• We propose i-VFM, an informative while compact state

representation format for solving robot exploration tasks.
• We propose a visit frequency-based multi-agent informa-

tion exchange and control scheme that scales to an arbi-
trary number of agents available for exploring unknown
environments.

• We conduct a series of comprehensive sim and real-world
experiments to evaluate the performance and generalization
ability of the proposed framework.

II. RELATED WORK

Environment exploration tasks can be conducted by either
active or passive behavior [6]. Active methods aim to mini-
mize the uncertainty of environments, while passive methods
build environment maps while completing other tasks such
as navigation [7]. This section will focus on introducing
active exploration methods and drawing their relevance to
our proposed framework.

Various types of environment representation have been
proposed to plan exploration actions [21, 14, 9]. For exam-
ple, [21] proposes to use time-varying tensor fields to plan
a smooth path for high-quality environment scanning. Like-
wise, [1] leverage a Bayesian optimization-based predictor to
guide the mobile robot to the location estimated to be most
informative within its current field of view.

Neural network-based methods, especially reinforcement
learning (RL), proposed a new path for such tasks. Some
of them focus on panoramic reconstruction with limited
glimpses. Taking [9] as an example, its reward function
encourages agents to actively complete panoramic natural
scenes with a recurrent neural network-based framework.
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Apart from that, learning the prior environment arrangement
can also enable agents to explore environments effectively.
For example, [16, 2] improve task efficiency by anticipating
unseen environment’s structure given the explored area.
Our framework also anticipates environmental information.
However, instead of predicting explicit structure, our method
predicts action-value maps to plan the task. It is worth
noting that due to the complexity of the environment and
the long duration of the exploration task, planning with
a hierarchical framework that can handle global and local
goals can improve task efficiency, as [2] demonstrated. In
addition, some methods build implicit memory structures
to discourage repetitive visits, such as [17] and [4]. [17]
uses a curiosity method with a novelty bonus reward formed
by episodic memory to encourage exploration, while [4]
proposes the Scene Memory Transformer to complete long-
horizon tasks including exploration. Compared with them,
the VFM and i-VFM directly encode the visit frequency
information to the state representation without building extra
expensive structures. Besides network structures, the reward
function is the key incentive to encourage exploration as
highlighted by prior methods [13, 12, 15, 18, 5].

In addition to the environment anticipation and past visit
encoding advantages, our proposed i-VFM class methods in-
corporate dense action representation for larger action space
and more direct destination assignment. The dense action
representation structure has been applied in many areas. For
example, [23] produces dense probability maps from visual
observations that represent pixel-wise affordances for differ-
ent grasping primitives, and [20] introduces spatial action
maps, a Q-value approximation for dense pixel-wise goal
locations reachable by conventional path planning algorithm.
Building upon this, [19] proposes to Visit Frequency Maps to
reduce redundant explorations during single-agent foraging
tasks.

III. METHODS

In this section, we describe our proposed framework for
multi-agent exploration in unknown environments. We define
a grid-like environment S∈Z2, along with subsets Se⊆ S and
Su = S−Se, which represented explored and unexplored areas
respectively. The ranges of S are defined along the x and y
axes as rx and ry respectively. We define S(i, j) to represent
whether the pixel (i, j) is explored.

S(i, j) =

{
0 (i, j) ∈ Su

1 (i, j) ∈ Se

Let c be a metric that determines the percentage of the
explored region Se over the entire region S.

c(Se,S) =
∑

rx
i ∑

ry
j S(i, j)

rx · ry

Initially, Se = /0 and Su = S. Our setting assumes a driving
robot, equipped with any sensor capable of local observation.
The pose of the robot is defined as p ∈ P, where P ∈ R3 is
defined as the x position, the y position, and the yaw angle

of the robot. The observation of the sensor is defined as
o ∈ O, where O ∈ Rn is defined as some real output of the
sensor. We define a function F(p,o)→ Sn, which takes in a
robot pose and observation and outputs a set of pixels Sn ⊆ S
that were observed. Let a policy π be defined as a function
that takes in the current state representation at time t and
outputs a singular action to follow. The action is outputted as
a single grid coordinate at . We define a function G(at)→ p∈
P, which converts a grid coordinate to a robot pose. A goal
robot pose pt = G(at) is found, and the robot moves from
its current position to the goal, using any suitable navigation
method. As such, we define St+1(at) as a new state in the
next iteration after taking action at . At each iteration, we set
St+1

e = St
e∪St+1

n and St+1
u = S−St+1

e . Our goal is to develop a
policy π that outputs actions to maximize the amount of area
explored while minimizing the number of actions taken. This
is accomplished by maximizing the number of new pixels
found at each iteration, leading to this min-max formulation:

argmax
at∼π

min
T

T−1

∑
t=0

c(St+1
e (at)−St

e,S) (1)

We also introduce multi-agent support for this problem. Each
agent will output its own at , so a set At = ∪n

i=1ai
t can be

defined, where n is the number of agents and ai
t represents

the action agent i takes. We now define St+1(At) to be the
new state representation after all agents have performed an
action. Our new min-max formulation is defined as:

argmax
At∼π

min
T

T−1

∑
t=0

c(St+1
e (At)−St

e,S)

This paper extends the original VFM exploration
method [19], which deploys for single-agent use in standard
environments exploration while optimizing for Eq. 1. VFM
exploration problem is setup as a Reinforcement Learning
problem, where a robot is given a state input at each time
step and learns to select an appropriate action. VFM’s state
representation is a stacked set of local maps, each containing
information about the same spatial region. At each time step,
global maps of information are updated from observations,
and local maps are cropped such that it is oriented north and
centered around the agent. The state contains 4 channels:
• Robot Position Map. It is a binary mask of the robot’s

collision radius where 1 indicates obstacle space and 0
indicates obstacle-free space.

• Overhead Map. It contains information about occupancy
and segmentation of the explored environment.

• Visit Frequency Map. It stores how many times the robot
has observed each pixel.

• Shortest Path Map. It gives the distance to each pixel
from the robot’s given state in the local map.
In the original VFM method, this 4-channel state repre-

sentation is used as the input to a ResNet-based network that
outputs a Spatial Action Map, [20] a dense 2D action space
of target locations relative to the robot. Using DQN training,
the network learns to estimate the Q-value for each target
location, where the highest value serves as the agent’s action.
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Fig. 1. New State Representation channel for i-VFM. The first three channels (overhead map, robot position map, and visit frequency map) are combined
into a single i-VFM channel, which is used with the shortest path map as inputs for the policy.

However, the learning process for VFMs is inefficient, since
they require 4 channel input maps and hence larger networks.
Therefore, this paper optimizes for local communication
bandwidth to efficiently train neural networks for Q-learning.

A. Integrated Visit Frequency Maps (i-VFM)

The original VFM method requires a high input size,
leading to high bandwidth usage. As a result, environments
with unreliable communication are not able to take advantage
of traditional VFM exploration. To combat this, we introduce
Integrated Visit Frequency Maps (i-VFM): a VFM method
that can be utilized in low bandwidth environments.

We observe that an optimal policy is conditioned to
minimize the overall time spent in high value regions of the
VFM, as the re-exploration penalty is proportionally tied to
the local VFM intensity. Thus, we hypothesize that the VFM
serves as an implicit artificial repulsive field, where higher
values are simply interpreted as less desirable, without the
need to differentiate semantic differences between objects.
Similarly, we also observe the optimal policy should never
output a target that is an obstacle. Aiming for an obstacle
is an impossible goal location, so the robot would never
feasibly reach its next location. Lastly, the optimal policy
should also pick locations further away from the robot so
the agent explores faster. Locations close to the robot do not
explore many new pixels, as there will be many overlapping
pixels between the current and previous scan.

An optimal policy will generally learn to avoid exploring
high valued areas from any of the VFM, overhead map, or
robot position map. Therefore, we look to combine these
3 channels into 1 singular channel to save bandwidth for
the policy, as seen in Fig. 1. A simple idea is to combine
all of the maps by summing all of there values. However,
this quickly becomes problematic, because the occupancy
and robot position maps are both binary masks (either 0 or
1), while a VFM value of 1 is relatively small. Scaling the
values of the occupancy and robot position map does not
solve the issue, because the VFM could eventually make the
occupancy and robot position map values insignificant. Any
linear combination of the maps cannot provide the desired
results as the VFM can contain infinitely high values. Instead,
we look to cap the values of the VFM, to combine it with
the occupancy and robot position maps. We apply a sigmoid

function to the VFM values, to bound them between 0 and
a maximum value. Then, we set all pixels of the occupancy
and robot position map to contain values higher than the
capped sigmoid. The function we used for each pixel in the
i-VFM grid is listed below (O - set of occupied pixels, R -
set of pixels close to robot):

i-VFM(i, j) =

{
λ ·σ(VFM(i, j)) (i, j) /∈ O∪R
λ + ε (i, j) ∈ O∪R

Our function contains 2 parameters, λ and ε . λ represents
a scaling factor for the sigmoid function, and ε represents
a constant value of how much greater the occupancy and
robot position maps values should be compared to the VFM
values. The occupancy and robot position map values are set
to be ε higher than any possible VFM value, since it better
to re-explore an area than run into an obstacle or not move.
For our case, we set λ = 10 and ε = 2. After creating the i-
VFM, a new policy is trained with the new map and Shortest
Path map, reducing the number of channels used from 4 to
2.

B. Multi-Agent Visit Frequency Maps

Large areas can be difficult to explore efficiently for a
single agent, regardless of how effective the exploration
method is. A common solution is to deploy multiple robots in
the same area to speed up exploration time. To extend VFM
methods to be used in larger areas, we develop a multi-agent
VFM exploration.

The simplest way to implement a multi-agent VFM is to
run VFM on each individual agent until the target object
is found. However, this idea is flawed because there is no
collaboration between the robots. If an agent explores a
certain region of the map, it is not communicated with the
rest of the agents, so they will re-explore the already visited
area.

We incorporate communication between the agents to
provide an efficient multi-agent exploration method. The
agents implicitly communicate information with each other
through the use of shared global maps. Specifically, the
robots exchange information through a shared VFM. Instead
of each agent storing its own VFM information, all agents
update a single VFM, which is equivalent to the sum of
the individual VFMs displayed in Fig. 3. A local crop of the
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Fig. 2. Steps of multi-agent i-VFM: Each robot locally scans its environment. The global maps are updated from observations, and local maps are
extracted. The maps are compressed into i-VFM and passed into a policy to select the next robot location, indicated by the stars, for exploration. The heat
map range from blue (min) to yellow (max).

Robot 1 VFM Robot 2 VFM Combined VFM

Fig. 3. Combined VFM representation for Multi-agent setup. The combined
VFM is calculated as the sum of the individual VFM.

shared VFM is taken for each individual agent for the policy.
The implicit communication through a shared map is able to
effectively prevent agents from re-exploring areas observed
by other agents. If a robot explores an area already observed
by another robot, the local VFM will show that area as ex-
plored, since the global VFM was previously updated at that
position. The global overhead map is also shared among all
the agents, so agents also have information about obstacles.
However, the shortest path map is generated individually for
each agent, as each map is relative to the agent’s position.
Using this method, a multi-agent VFM can be employed
without training a new policy, since the representation is built
in a way where all explored areas appear as areas explored
by the singular agent to the policy. Furthermore, our multi-
agent method can be combined with i-VFM because the local
map compression works independent of global map sharing,
enabling VFM to be used for multi-agent exploration in low
bandwidth environments.

Algorithm 1 and Fig. 2 outlines our multi-agent VFM
exploration method. All of the maps are initialized to be
empty, as we have no prior information of the environment.
At each time step, every robot receives an observation. If
any of the robots observed the target object, we end the
exploration. Then, the global maps are updated from all
observations. After the maps are updated, each robot takes
a local crop of the global maps, inputs the local maps into
the policy, and receives an action. Each robot follows its
corresponding action and keeps exploring until the target
object is found.

Algorithm 1 Multi-agent VFM-based exploration algorithm
1: procedure MULTI-AGENT VFM
2: finit(S) ▷ Initialize empty global Map
3: while target not found do
4: for i← 1 to n do ▷ Updating n agents
5: p ← Fp(roboti) ▷ Get robot pose
6: o ← Fobs(roboti,rgbd) ▷ Get RGB-D obs
7: if target found then
8: break
9: end if

10: S ← Fupdate(p,o,S) ▷ Update global map
11: end for
12: for i← 1 to n do
13: p ← Fp(roboti)
14: Slocal ← Fcrop(S, p) ▷ Get local map
15: at ← π(Slocal) ▷ Get command from policy
16: Fmove(at) ▷ Execute command
17: end for
18: end while
19: end procedure

IV. EXPERIMENTS

To comprehensively evaluate the performance of our pro-
posed methods, we conducted experiments in both simulated
and real environments with single and multi-agent setup.
The simulated environment and task setup are introduced
in IV-A. The methods served as baselines are introduced
in IV-B. IV-C explains the metrics we employ for quanti-
tative quality measurements. The results of our simulated
experiment and analysis are reported in IV-D. In addition,
an experiment to demonstrate our method’s real-world task
ability is included in IV-E.

A. Experiment Setup

1) Simulated Environments: We employ a simulated Py-
Bullet [3] scene to serve as our training and evaluation
environments. This environment is a square arena bordered
by walls that keep the agent within a defined arena. Obstacles



Fig. 4. The left image shows the divider arena, containing a randomly
placed dividing obstacle at the center. The right image shows an example
2x arena with randomly placed columns.

are placed within the arena (1) to simulate the unpredictabil-
ity of navigating unknown regions and (2) to encourage the
learning of robust behaviors by reducing the feasibility of
straight-line trajectories. The variants of this arena, differing
in the overall size and the type of obstacles, are described
below.

1X Arena: The 1x arena is the only environment used
for policy training. It is a square 3m x 3m arena with
up to 25 square columns, each 0.1m in width, randomly
placed throughout. The number of columns was randomly
selected for each episode. Agents’ performance on this 1x
arena serves as a control upon which the effects of other
modifications can be compared. 2X arena: The 2x arena is
sized at 4.2m x 4.2m, or twice the area of the 1x arena,
and the number of columns has been increased to 50. The
2x environment measures agents’ ability to generalize to
differently sized environments. Divider: The divider is a 3m
x 3m arena with no columns and is instead bisected by a 0.8m
x 0.05m strip that agents cannot cross. The strip is centered
on the Y axis, but its X position is randomly initialized. Fig.
4 shows examples of Divider and 2x arenas.

2) Task Objectives and Setups: In the above environment
setups, the algorithms solve a foraging task where they
must explore the arena to locate a randomly placed cube.
Upon its discovery, the episode is terminated. For each
method, we evaluated 200 episodes. An episode is considered
successful if the objective is reached within 5 minutes. Trials
exceeding 5 minutes fall into a trend of regressive behavior,
and including them would heavily skew the existing metrics.
Thus they are excluded from the final calculations. We
consider two task setups in those settings:

Single Agent Task experiments are conducted in the 1x
arena. In this experiment setup, We aim to test the ability of
i-VFM and other baselines and evaluate the trade-off between
performance by comparing the result of VFM and i-VFM.

Multi-Agent task examines the feasibility of a multi-
agent exploration setup, where agents jointly participate in a
cooperative foraging task where the episode is terminated
when any agent discovers the cube. All policies used in
this task are conditioned purely on the single agent scenario
but share a common global VFM and occupancy map. This
means of implicit communication serves as the only medium
for cooperation in these trials.

Both single and multi-agent trials begin with the agents
initialized at random non-colliding points in the arena. This

uniform allocation leads to the possibility of disadvantageous
initial positions, where agents may be clustered in a small
region and be unable to subdivide the arena. Both positive
and disadvantageous situations are accounted for in the final
metrics presented for evaluation. Furthermore, each agent has
a virtual RGBD camera with a 60-degree field-of-view that
allows it to differentiate columns, cubes, and walls, and fully
compute the state representation.

B. Baselines

Random: The Random baseline uniformly samples goal
points from the same action space as i-VFM. This baseline
was not evaluated in larger environments due to high time
consumption caused by the extremely high failure rate. In
addition, since the random policy does not take into account
other agents of the VFM, we feel that the multi-agent results
were unnecessary.

Frontier Exploration: We evaluate a Frontier Exploration
(FE) policy as benchmark against the performance of our
trained agents. The FE policy is evaluated on the single agent
foraging task and produces the same metrics as the other
trials. Frontier Exploration [22] is a grid-based algorithm
that involves detecting the boundaries between explored and
unexplored regions and moving towards them. Frontiers are
naturally updated to reflect newly explored regions. The
openness of our simulation environment often leads to the
generation of a single closed frontier. While the original
implementation used centroids as the target position, such
would lead to deadlocks for our environment as the centroid
of a closed frontier is often far from its border. Taking care to
retain as much of the base algorithm as possible, we replaced
centroids with medians instead. Due to its low efficiency,
this baseline was not evaluated on larger environments in
the interest of time.

C. Evaluation Metrics

The following metrics are used to access the performance
of all methods.

Repetitive Exploration Rate (RER) The RER measures
the efficiency of the policy during exploration. RER is
computed as the average number of visits to a unit area:

RER =
∑

size(S) S− J
size(S)

,

where size(S) is the size of the VFM, J is a matrix of all
ones with the same dimension as S.

Path Efficiency (PE). The PE measures the efficiency of
an average path. It is computed as the average area explored
per distance traveled.

PE =
size(E)

length(D)
,

where E is the total area explored, and length(D) represents
the cumulative distance the agent traveled before the termi-
nation condition.



Fig. 5. The left image shows the real-world setup with the robot locations
(circle) and next goals (star). The middle image shows the VFM overlay
with the ground truth map, the current robot positions, and goals. The right
image shows both the full robot trajectories after 50% of the area is explored.

Overlap Ratio: The Overlap Ratio is a measure of multi-
agent exploration efficiency. It is the ratio of area explored
by more than one agent per the total current area explored.

o(Se,S) =
∏

A
i Si > 0

∑
size(S) S > 0

,

where Si is the individual visit frequency map for agent i,
A is the total number of agents, and size(S) is the region
bounding the global visit frequency map.

Coverage: The ratio of area explored collectively by all
agents over the total explorable area.

v(Se,S) =
∑

size(S) S(i, j)
E

,

where size(S) is the region bounding the global visit fre-
quency map and E is the size of the total explorable area.

Bandwidth (BW): During our experiments, we simulate
the bandwidth usage of agents by tracking the size of the
data exchanged between a central server and each agent. This
metric sums the total transmitted bytes for all agents and is
displayed in MiB.

The total bandwidth includes the size of transmitted state
representations. VFM uses a 4-channel state representation of
size M4·size(S) whereas the i-VFM policy uses a compressed
state of size M2·size(S). Both representations are expressed
in uint16. Agents send newly observed obstacles ∆O and
VFM updates ∆S to the central server as they explore. As
the non-zero portions of these updates are usually sparse
in relation to the global map size, agents only transmit the
minimum bounding rectangles MBR(∆O) and MBR(∆S).
Since the Minimum Bounding Rectangles sent in step 2 lack
fixed positions, additional (x,y,θ) poses of type float16
give the server context for where the data is positioned on
the global map.

Step Count: The average number of steps taken per
episode summed over all agents.

Not Found: The number of episodes in which the termi-
nation condition was not reached within 5 minutes.

D. Results and Analysis

1) 1x Arena Experiments: We report the results of all
trials evaluated on the 1x arena in Table I. According to
the results, we have the following analysis:

Performance of i-VFM compared to VFM Comparing
the metrics between VFM and i-VFM, i-VFM consistently
demonstrates slightly worse RER and PE metrics. However,
the reduction in state size consistently saves about 35%
bandwidth overall. Single agent scenarios favor the use of

VFM, but i-VFM is clearly preferable multi-agent configu-
rations where bandwidth is in demand or communication is
unreliable.

The combined two channel state representation sacrifices
a small amount of semantic information that is otherwise
available to the VFM policy. We had speculated that the Visit
Frequency Map and the obstacles were viewed by the policy
as ‘undesirable’ regions without differentiation. We believe
this assumption is generally correct, as the i-VFM efficiency
is close to that of VFM.

The RER, PE, and Step Count metrics appear to be tightly
correlated. Agents with a better RER tend to have a higher
rate of exploration and thus higher PE. Agents with a faster
rate of exploration tend to discover the target cube in less
steps, which reflects in the step count metric.

Performance of VFM and i-VFM compared to Base-
lines The Random Action and Frontier Exploration policies
show significant inefficiencies and higher step costs. From
the large disparity in RER, we can infer that VFM and i-VFM
policies are able to reduce re-explorations in a large part by
using information in the Visit Frequency Map during action
selection. Unexpectedly, the Frontier benchmark outperforms
the VFM/i-VFM trials in the PE metric twofold. This is
because the Frontier Exploration algorithm can select target
positions from the whole arena, while the VFM/i-VFM
policy is limited to a fixed action space. As expected, Frontier
Exploration requires much higher bandwidth to transmit the
complete global map and has a higher failure rate.

2) 2x and Divider Generalization Experiments: In this
series of evaluation, we test the generalization ability to
large size environment and multi-agent setup of our proposed
framework. The results of trials conducted in 2x and Divider
arenas are reported in Table II. The analysis of the related
results are:

Performance of i-VFM and VFM in Divider and Large
Environments

VFM and i-VFM exploration performance in the 2x arena
is comparable to that of the 1x arena. Agents often move in
a spiral pattern, starting from the boundaries of the arena and
working their way in. This way, the VFM forms a ring that
guides the agent as it successively explores more of the edges
of the arena. This strategy is adaptable to arenas of arbitrary
size, but we note that the step count increases proportionally
to the area explored.

Although our policies perform well in the 2x arena, it
is possible they may not generalize to environments with
different types of obstacles. The divider arena introduces a
central obstacle that is much larger than seen in the training
environment. Moreover, unlike the columns, agents cannot
easily move around the divider. However, both VFM and i-
VFM only show minor performance degradation compared
to the 1x arena. We conclude that VFM and i-VFM are also
able to generalize to unseen obstacles that are difficult to
navigate around.

Multi-Agent Generalization Experiment Overall, indi-
vidual agents perform better as the swarm size is increased,
requiring less steps and exploring new regions more effi-



TABLE I
EVALUATION PERFORMANCE IN 1X SIZED ARENA

Policy Agents RER ↓ PE ↑ Steps ↓ Overlap ↓ Bandwidth ↓ Coverage ↑ Not Found ↓

Random Action One 3.083 ± 2.551 2972 ± 1924 145.5 ± 161.4 N/A N/A 0.490 ± 0.327 3 / 200

Frontier Exploration One 1.957 ± 2.074 12469 ± 12792 44.7 ± 50.4 N/A > 36 0.487 ± 0.306 8 / 200

VFM
One 0.488 ± 0.597 6252 ± 2259 33.9 ± 41.6 N/A 4.6 ± 5.6 0.501 ± 0.325 0 / 200
Two 0.457 ± 0.426 6033 ± 2157 32.7 ± 32.2 0.1 ± 0.1 4.4 ± 4.3 0.503 ± 0.306 0 / 200
Four 0.387 ± 0.306 5930 ± 2481 30.8 ± 24.4 0.1 ± 0.1 4.2 ± 3.3 0.478 ± 0.305 0 / 200

i-VFM
One 0.622 ± 0.639 5827 ± 2157 40.0 ± 43.7 N/A 2.9 ± 3.1 0.525 ± 0.322 0 / 200
Two 0.612 ± 0.609 5607 ± 2301 39.9 ± 39.5 0.1 ± 0.1 2.9 ± 2.8 0.508 ± 0.309 2 / 200
Four 0.484 ± 0.480 6086 ± 2468 36.3 ± 34.5 0.1 ± 0.1 2.6 ± 2.5 0.467 ± 0.309 0 / 200

TABLE II
EVALUATION PERFORMANCE IN DIVIDER AND 2X SIZED ARENAS

Trial Policy Agents RER ↓ PE ↑ Steps ↓ Overlap ↓ Bandwidth ↓ Coverage ↑ Not Found ↓

Divider

VFM
One 0.492 ± 0.517 5914 ± 2250 31.8 ± 34.3 N/A 4.3 ± 4.6 0.480 ± 0.308 6 / 200
Two 0.477 ± 0.473 5601 ± 2353 32.3 ± 33.0 0.1 ± 0.1 4.4 ± 4.4 0.466 ± 0.316 0 / 200
Four 0.502 ± 0.496 5574 ± 2626 35.5 ± 35.6 0.2 ± 0.1 4.8 ± 4.7 0.473 ± 0.319 0 / 200

i-VFM
One 0.584 ± 0.424 5524 ± 2305 33.6 ± 30.0 N/A 2.4 ± 2.1 0.460 ± 0.302 5 / 200
Two 0.577 ± 0.529 5529 ± 2376 32.7 ± 30.8 0.1 ± 0.1 2.4 ± 2.2 0.443 ± 0.293 1 / 200
Four 0.602 ± 0.651 5664 ± 2519 39.3 ± 41.8 0.2 ± 0.2 2.8 ± 3.0 0.472 ± 0.289 0 / 200

2x Arena

VFM

One 0.484 ± 0.471 6136 ± 1961 59.3 ± 62.9 N/A 8.1 ± 8.5 0.477 ± 0.315 1 / 200
Two 0.507 ± 0.522 6206 ± 1909 62.4 ± 67.9 0.1 ± 0.1 8.5 ± 9.1 0.473 ± 0.319 1 / 200

Three 0.422 ± 0.401 5995 ± 2223 54.4 ± 54.2 0.1 ± 0.1 7.4 ± 7.3 0.444 ± 0.297 1 / 200
Four 0.419 ± 0.343 6230 ± 2078 54.8 ± 49.6 0.1 ± 0.1 7.5 ± 6.7 0.453 ± 0.306 1 / 200
Five 0.375 ± 0.303 6867 ± 1804 49.9 ± 44.9 0.1 ± 0.1 6.8 ± 6.1 0.440 ± 0.290 3 / 200

i-VFM

One 0.575 ± 0.427 5957 ± 1696 66.5 ± 59.5 N/A 4.8 ± 4.3 0.485 ± 0.287 1 / 200
Two 0.550 ± 0.409 5735 ± 2084 66.8 ± 58.6 0.1 ± 0.1 4.8 ± 4.2 0.477 ± 0.310 1 / 200

Three 0.494 ± 0.370 6072 ± 2062 61.8 ± 52.8 0.1 ± 0.1 4.5 ± 3.8 0.452 ± 0.293 0 / 200
Four 0.491 ± 0.366 6083 ± 1992 61.9 ± 51.1 0.1 ± 0.1 4.5 ± 3.7 0.461 ± 0.290 3 / 200
Five 0.420 ± 0.354 6421 ± 2188 56.1 ± 51.5 0.1 ± 0.1 4.1 ± 3.7 0.406 ± 0.292 3 / 200

ciently. We speculate that when agents share the arena with
others, they each individually divide and conquer the space
inside the arena, independently exploring smaller regions. A
single agent is less efficient because it may need to cross
over previously seen areas. However, for the multi-agent
case, agents use the VFM to avoid areas already being
explored by others. Since we do not employ any inter-
agent communication, scaling by agents only increases the
bandwidth linearly.

The results illustrate that the total step count and band-
width among all agents are proportional to the explorable
area but remarkably invariant to the number of agents. Our
state formulation, combined with the limited horizon of DQN
training, restricts the network from understanding the greater
structure of the environment. Instead, it learns emergent
exploration behaviors that are agnostic from the configuration
of global features.

E. Real World Generalization Experiment

A real-world experiment is conducted with the policy
trained in a simulated environment to evaluate the sim-to-real
transfer ability of our proposed framework. We deployed 2
Turtlebot3 robots in the corridor of a large building as Fig. 5
shows. These robots were equipped with an RPLIDAR-
A1 and ran ROS. We were interested in how exploration

performance was influenced by sensor noise, odometry drift,
and the length of the corridor which deviated from the
squareness of our simulated arenas. We obtained a ground
truth map of the corridor beforehand with the ROS gmapping
package. We initialized both robots at random configurations
and allowed the policy to run until it explored 50% of the
environment.

According to the results reported in Table III, our multi-
agent control scheme generalizes well to the real world
without retraining or reconfiguration. While the performance
is slightly worse than the simulated trials, it is expected as
the policy must account for sensor and localization noise
in a real-world setting. Additionally, since our environment
is a narrow corridor with defined ends, the agents may
reach a corner and be forced to backtrack in order to find
fresh unexplored areas. The agents perform backtracking
successfully but at the penalty of slightly higher RER and
lower PE.

TABLE III
EVALUATION PERFORMANCE IN REAL WORLD ENVIRONMENT

RER ↓ PE↑ Steps ↓ Coverage ↑

0.626 ± 0.135 4533 ± 410 42.5 ± 26.2 0.514 ± 0.008



V. CONCLUSION

In this paper, we proposed i-VFM and a frequency-
based multi-agent information exchange and control scheme.
According to the result of our evaluation, we believe the
high encoding density of i-VFM and scalability of our multi-
agent framework enable more efficient exploration under
constrained environments. In the future, possible directions
to improve our proposed framework are (1) integrating the
path representation into i-VFM to further compress its size
and (2) lifting the application scenario from 2D to 3D for
challenging environment modeling and exploration.
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