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Abstract— This paper addresses the problem of active collab-
orative localization in heterogeneous robot teams with unknown
data association. It involves positioning a small number of
identical unmanned ground vehicles (UGVs) at desired positions
so that an unmanned aerial vehicle (UAV) can, through unla-
belled measurements of UGVs, uniquely determine its global
pose. We model the problem as a sequential two player game,
in which the first player positions the UGVs and the second
identifies the two distinct hypothetical poses of the UAV at
which the sets of measurements to the UGVs differ by as
little as possible. We solve the underlying problem from the
vantage point of the first player for a subclass of measurement
models using a mixture of local optimization and exhaustive
search procedures. Real-world experiments with a team of UAV
and UGVs show that our method can achieve centimeter-level
global localization accuracy. We also show that our method
consistently outperforms random positioning of UGVs by a
large margin, with as much as a 90% reduction in position and
angular estimation error. Our method can tolerate a significant
amount of random as well as non-stochastic measurement noise.
This indicates its potential for reliable state estimation on board
size, weight, and power (SWaP) constrained UAVs. This work
enables robust localization in perceptually-challenged GPS-
denied environments, thus paving the road for large-scale multi-
robot navigation and mapping.

I. INTRODUCTION

Robust localization and place recognition with unknown
data association is a challenging task. Relying purely on
geometric features or landmarks in the environment can
lead to erroneous results due to perceptual aliasing, changes
in lighting conditions, and non-static features. Semantic
landmarks have the potential to alleviate ambiguity in data
association because they are more informative and robust
to viewpoint changes [1]. However, methods relying on
natural semantic landmarks will fail if (1) there are not
enough semantic objects in the field of view, (2) they form
ambiguous configurations, or (3) they become unreliable for
localization purposes (e.g. vehicles and humans may move,
rocks on beaches may disappear with the tide, buildings may
be destroyed by earthquakes). In this work, we consider
actively positioning a small number of UGVs, which can
be viewed as human-controlled semantic landmarks, into the
environment to form constellations UAVs can use for robust
localization. Our previous work [2] addressed a version of
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Fig. 1: UAVs and UGVs used in our experiments. Details
and open-sourced autonomy stack of our UAVs can be found
in [3], and details of our UGVs can be found in [4]. Our
UAVs carry lidars. However, our method can be used directly
for lighter sensor packages such as stereo cameras and IMU.

this problem which assumed known data association and that
all robots can estimate their poses in the same reference
frame. We now relax the former assumption and consider
the active collaborative localization problem without prior
knowledge of the UAVs’ reference frame and with unknown
data association. We propose a maximin approach, in which
the max step selects positions of the UGVs, and the min step
estimates the data association and the pose of the UAV.

We summarize our contributions as follows:
• We propose a game theoretic formulation of the problem

of positioning identical UGVs to enable robust global
pose estimation of UAVs upon taking unlabelled mea-
surements of UGVs.

• We present a hybrid analytic-search-based approach to
solve the underlying nonconvex maximin optimization
problem that uses exhaustive search in a low dimen-
sional space in conjunction with analytic expressions to
speed up computation.

• We show that the number of ground vehicles necessary
for global localization can be strictly larger when they
are indistinguishable as opposed to when they have
discernible perceptual identities.

• Through various experiments in the real world, we
demonstrate that our algorithm (1) consistently out-
performs random positioning of UGVs, (2) achieves
centimeter-level global localization accuracy, and (3)
can tolerate a significant amount of random or non-
stochastic noise.

A picture of the robot team used in our experiments is
shown in Fig. 1. A demo video can be found at https:
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https://www.youtube.com/watch?v=3_gXzmiNrRI


//www.youtube.com/watch?v=3_gXzmiNrRI.

II. RELATED WORK

Examples of data association in robotics abound. They
range from recovering the 3D structure of the environ-
ment with a stereo camera to recognizing regions of space
that can reduce the drift in odometry by e.g. performing
loop closures. Data association can also involve relating
observations captured by different robots. Overall, it is a
challenging problem for several reasons. First, repetitive
patterns together with sensor noise can diminish the effi-
cacy of even the most discriminative feature descriptors,
resulting in a large number of motion hypotheses consistent
with sensory percepts. Second, data association typically
relies on stationarity of some aspect of the environment
(e.g. static objects), and unexpected behaviour may arise
when the environment changes over time. Some existing
methods for data association develop algorithms for inferring
optimal point estimates of the underlying geometry of the
problem, whereas others allow for keeping track of multiple
hypotheses consistent with sensory inputs.

State of the art approaches for recovering optimal point
estimates exploit the invariance in the pairwise geometry of
points inside a point cloud to perform robust data association
and outlier rejection. A score for each pair of associations is
computed based on the similarity of the resulting distances
between the points. A consistency graph is built where each
pair of associations is connected. The edge of the graph
encodes association consistency. The largest set of consistent
associations can then be identified by finding the maximum
clique in this consistency graph. Some work uses techniques
such as thresholding this graph into a binary graph [5]–[7],
which unavoidably leads to loss of information. Other works
utilize a weighted graph [8], [9]. However, this treatment
leads to a violation of the clique constraint and ultimately
leads to incorrect edges being added to the consistency graph
and incorrect data association being chosen. CLIPPER [10]
addresses these limitations by using edge weights while
still maintaining clique constraints by selecting the densest
clique of consistent associations and is shown to main-
tain higher precision than both unweighted and weighted
benchmark methods. Other works also investigate the use
of polygons as descriptors for place recognition and map
merging [11], where Urquhart tessellations are derived based
on the positions of landmarks. Polygons are then computed
and used to generate descriptors of the local neighborhood
of the robot. The matching between current observations and
target observations (e.g., a global map) is then carried out
based on the polygon descriptors. However, point estimates
are sometimes insufficiently expressive for accurate state
estimation in perceptually aliased environments, especially
when the level of sensor noise is high.

To reduce the impact of erroneous data association, state-
of-the-art SLAM approaches incorporate data association
by performing “soft” inference of the state at each step
[1], [12] in the form of a weighted average of different

hypotheses. However, the ambiguity in data association cou-
pled with nonlinear measurement models typically leads to
increasingly inaccurate relative hypothesis weights, which
eventually leads to errors in state estimates. Such errors can
result in unsafe behaviour of highly agile aerial vehicles, and
can degrade the quality of numerous downstream tasks, such
as map merging.

We propose using a small number of carefully positioned
robots as landmarks, and actively navigate them to form
the least ambiguous “constellations”. The problem setting
differs from that of our previous work [2], which assumes
that all robots can estimate their poses in the same reference
frame and that data association is solved. In this work, the
reference frame of the landmark robots is treated as the
global frame. Their teammates do not have prior knowledge
about the relative transformations between their reference
frames and the global frame. They rely on the observation of
the landmark robots to estimate both the data association and
their poses in the global frame. The proposed algorithm also
enables the aerial robot to find loop closures and perform
map merging tasks in GPS-denied environments.

III. DATA ASSOCIATION ANTICIPATIVE POSITIONING

Let L be a set of ground robots with cardinality M =
|L|. Suppose we require global pose estimates of an aerial
vehicle operating in a given region upon taking unlabelled
collections of measurements of agents in L. When estimating
its pose from unlabelled measurements, the aerial agent will
typically perform data association either before or jointly
with its pose estimation. Intuitively, the former links every
measurement to a physical agent (in L) that induced it. In this
way, we recover measurements to distinguishable landmarks,
allowing the agent to readily triangulate its pose using
available algorithms. However, mistakes in data association
can result in gross errors in pose estimates. Our task involves
positioning agents in L in order to maximize the robustness
of data association at any point of the operating space of the
aerial agent. The aerial vehicle is informed of the positions
of the agents in L before deployment.

In particular, suppose we have a function

Q : (R3)M → [0,∞)

Q : (z1:M) 7→ [0,∞)
(1)

that measures the predicted quality of pose estimation with
unlabeled measurements when the L-agents are positioned
at points z1,z2, . . . ,zM . We solve

Problem 1:

max
z1:M
Q(z1:M)

s.t. zi ∈ Fg ∀ i ∈ [M].
(2)

Here, Fg ⊆R3 denotes the region of space in which we can
position ground agents. The function Q, evaluating the merit
of a positioning z1:M , is defined as the value of the following

https://www.youtube.com/watch?v=3_gXzmiNrRI


Fig. 2: Problem illustration. Our goal is to position the
UGVs in Fg (gray area) in such a way that we can distinguish
any pair of distinct, suitably separated, robot poses in Fa
(green region specified by the user) and Fouter ⊃ Fa (blue
region) using unlabelled measurements to the UGVs. Any
UGV in Fg can be observed from any point in Fa - this
assumption needs not hold for Fouter. The red and orange
lines illustrate two sets of measurements from two poses,
red signifying observations from Fa while orange those from
Fouter (not necessarily in Fa).

Problem 2:

Q(z1:M) = min
(gi)i=1,2,Π

||H(z1:M; g1)−ΠH(z1:M; g2)||22

s.t. Π ∈ SM

g1, g2 ∈ SE(3)
||t1− t2||2 ≥ Rres or∣∣∣arccos

1
2
(Tr(RT

1 R2)−1)
∣∣∣≥ βres

t1 ∈ Fa, t2 ∈ Fouter.

(3)

Here, the function H collects the sequence of relative mea-
surements from pose g = (R, t) to points z1,z2, . . . ,zM:

H(z1:M; g) =

h(g,z1)
...

h(g,zM)

 . (4)

The pair g1 = (R1, t1) and g2 = (R2, t2) represents poses of
hypothetical vantage points expressed with respect to the
world frame - the first component representing orientation
and the second position. Π is a (block-)permutation matrix,
Fa is a region which the aerial agent should reach at least
once, and Fouter encloses its operating space. Last but not
least, Rres (βres) roughly encodes the tolerated length scale
of position (angular) uncertainty of the aerial agent when it
is located inside Fa.

In Problem 2, we distinguish between regions Fa and
Fouter for the following reason. Requiring that the UAV
remain in Fa at all times is an overly restrictive requirement.
We therefore allow it to take excursions away from the
latter and into the much larger region Fouter. During such
excursions, the UAV forms an estimate of its global pose
by stitching the odometry estimate accrued while moving
through Fouter with its global pose estimate the last time it
visited Fa. Before its first visit to Fa, we assume the agent

performs state estimation using odometry alone, and follows
a trajectory which guarantees it reaches Fa eventually.

This naturally raises the question: how does an agent infer
whether or not it is located in Fa? To answer this, we
allow the UAV to attempt a “new” global pose estimation
only once it registers measurements to M UGVs (albeit in
unknown order). Tacitly, we assume that all UGVs are within
sensing range at each point of Fa. Once a UAV receives
a sufficient number of such measurements, it computes the
data association and orientation yielding the smallest residual
in the set of fitted measurements. If both the norm of the
residual is small, and the mean position lies in Fa, the
agent keeps the latter as an estimate of its global pose -
and discards it otherwise.

The rationale behind the definition of Q via Problem 2
is to allow the UAV agent (1) to tell whether or not it
is located inside Fa, and if so (2) where in Fa it lies.
The permutation Π and pose g2 try to make measurements
of ground agents at the latter vantage point as “close as
possible” to corresponding measurements at g1. Our goal
thus ends up being to find the positioning z1:M for which
the possibility of “confusing” any such pair of poses, at a
distance at least Rres apart, is as small as possible. Physically,
Q can be interpreted as the maximum amount of sensor noise
which can be tolerated before such ambiguity arises. As a
result, our problem is of a maximin nature.

IV. APPROACH

In this paper, the measurement function h provides relative
position (in the form of range + bearing) measurements to
select objects in the environment. Namely,

h(g,z)≡ h((R, t),z) = RT (z− t)+ ε, (5)

where ε ∈ R3 represents measurement noise. We also make
three assumptions on pose estimates of the UAVs based on
their sensor measurements excluding those modeled by H:

1) they can be used to accurately estimate the pitch and
roll, but not the yaw angle of the vehicle

2) the altitude of the UAV is known at all times.
In particular, the UAV is equipped with a high-quality IMU
[13] that allows it to recover accurate estimates of its pitch
and roll angles. However, the remaining component of its
orientation, the yaw angle, cannot be reliably obtained from
the IMU due to magnetic interference induced by electric
current drawn by the motors. Furthermore, lidar odometry
alone cannot provide the absolute yaw angle of the vehicle
w.r.t. the world frame. The latter remains to be estimated.
Last but not least, we assume the agent can get reliable
estimates of its height, which can be easily acquired from
onboard sensors such as a lidar or an altimeter.

Collecting the latter set of assumptions and performing
suitable relative position transformations using known infor-
mation, we may assume that all agents operate on a fixed
plane parallel to the ground. Therefore, we solve a subfamily
of Problems 1 in which Fa, Fouter, and Fg are planar regions.
We let Fa and Fouter be circles of radii Ra and Router centered
on point Ca. The region Fg is a rectangle centered at Ca with



half-diagonal dsemi that satisfies Ra + dsemi ≤ Rsense. Rsense
represents the sensing range of every UAV agent. The former
inequality ensures that no matter where we place a UGV in
Fg, it will be sensed from a vantage point of the UAV in Fa.

Algorithm 1: Unlabelled UGV Positioning (U2GVP)
Data: Fa, Rres, Fouter, Fg
Result: z1:M ∈ Fg

1 z(0)1:M ← initialize(Fg);
2 z1:M ← ZerothOrder(z(0)1:M , AdPC, Fa,Rres,Fouter,Fg);

Algorithm 2: Adversarial Pose Confounder (AdPC)
Data: Fa, Rres, Fouter, z1:M ∈ Fg
Result: q≥ 0

1 Θ← grid((0, 2π));
2 q←M×R2

res;
3 z̄← 1

M ∑
M
i=1 zi;

4 vaux← 2∑
M
i=1 ||zi||22−2M||z̄||22;

5 for θ ∈Θ do
6 R← R(e3; θ);
7 ρrot ←M×dist(R(Fa− z̄), Fouter− z̄)2;
8 ρmatch← 2×maxσ∈Sym(M) ∑

M
i=1 zT

i Rzσ(i);
9 q←min{q, vaux +2Mz̄T Rz̄−ρmatch +ρrot};

Problem 1 is a computationally challenging task. This is
partially due to the fact that the function Q is specified as
a solution to a non-convex minimization problem. For this
reason, we adopt a hybrid exhaustive-local optimization pro-
cedure. Indeed, our high-level approach given in Algorithm 1
centers on refining a random initial guess of optimal positions
of UGVs using a zeroth order optimization algorithm [14],
as implemented in [15]. The method in [14] requires us to
supply values of the Q function at specified points, which
we compute in Algorithm 2 explained in more detail below.

Due to the non-convex nature of Problem 2, we solve it
using a combination of an exhaustive grid-based procedure
and analytic computations which allow us to bypass further
numerical optimization. Line 1 of Algorithm 2 samples a set
of non-zero angles encoding the relative orientation angle
between g∗1 and g∗2 in an optimal solution (g∗1,g

∗
2) to Problem

2. Line 2 represents the value of the Q function in case
the relative orientation between the latter two poses is the
identity transformation. The loop in line 5 then iterates
through all the possible angles in Θ. At each fixed angle
θ , we analytically determine the pair of positions (t1, t2) in
Fa ×Fouter at which the sets of measurements of UGVs
differ by as little as possible. The distance between a set
of measurements is captured by the solution of a bipartite
maximum weight matching problem in line 8. Even though
the latter can be solved using polynomial time algorithms,
for a small number of agents M =O(1), we can solve it by
iterating through all permutations with low computational
cost.

V. ANALYSIS

A. Analytic Solution

In this section, we provide further details on our analytic
solution of the problem in the loop of Algorithm 2. We define
the stacked vector of UGV positions via Z = [zT

1 ,z
T
2 , . . . ,z

T
M]T ,

and let J = 1M⊗ I3, where 1M ∈RM is a vector consisting of
all ones. The task inside the nested loop therefore involves
solving the following problem:

min
t1∈Fa, t2∈Fouter ;

Π∈Sym(M)

∣∣∣∣(Π⊗ I3)(IM⊗RT )(Z− Jt1)− (Z− Jt2)
∣∣∣∣2

2 .

(6)
We start by noting that Π is orthogonal since it is a
permutation matrix. As a result, we have

(Π⊗ I3)(Π⊗ I3)
T = (ΠΠ

T )⊗ I3 = IM⊗ I3 = I

(IM⊗RT )(IM⊗RT )T = IM⊗ (RT R) = IM⊗ I3 = I.
(7)

The latter relation allows us to simplify the objective in
Equation 6, via the following relations∣∣∣∣(Π⊗ I3)(IM⊗RT )(Z− Jt1)− (Z− Jt2)

∣∣∣∣2
2 =

||Z− Jt1||22 + ||Z− Jt2||22−2(Z− Jt2)T (Π⊗RT )(Z− Jt1) =

||Z||22−2Mz̄T t1 +M||t1||22 + ||Z||22−2Mz̄T t2 +M||t2||22
−2(ZT (Π⊗RT )Z−MtT

2 RT z̄−Mz̄T RT t1 +MtT
2 RT t1) =

2(||Z||22−ZT (Π⊗RT )Z−M||z̄||22 +Mz̄T RT z̄)

+M||t1− z̄||22 +M||t2− z̄||22−2M(t1− z̄)RT (t2− z̄) =

2(||Z||22−ZT (Π⊗RT )Z−M||z̄||22 +Mz̄T RT z̄)

+M||R(t1− z̄)− (t2− z̄)||22.
(8)

To arrive at the second equality, we used

JT Z = Mz̄, JT
Π = JT , ΠJ = J, (9)

and finally in the third equality, we used the fact that R is an
orthogonal (in particular 2-norm preserving) matrix so that

M||t1− z̄||22 +M||t2− z̄||22−2M(t1− z̄)RT (t2− z̄) =

M||t1− z̄||22 +M||RT (t2− z̄)||22−2M(t1− z̄)RT (t2− z̄) =

M||(t1− z̄)−RT (t2− z̄)||22 = M||R(t1− z̄)− (t2− z̄)||22.
(10)

We can therefore read off two things from the last expression
in Equation 8. Firstly when θ = 0, corresponding to the case
R = I3, the expression becomes

2(||Z||22−ZT (Π⊗ I3)Z)+M||t1− t2||22, (11)

which, owing to the fact that Π⊗ I3 is an orthogonal (2-norm
preserving) matrix, is by the Cauchy-Schwartz inequality
minimized by setting Π→ IM , and choosing any t1 ∈Fa, and
t2 ∈Fouter so that ||t1−t2||2 =Rres. The latter observation jus-
tifies the assignment in line 2 of Algorithm 2. Second, when
θ ̸= 0 and letting R = R(θ), the minimum of the objective
in Equation 6 can be obtained by separately minimizing

||R(t1− z̄)− (t2− z̄)||22 (12)



Fig. 3: Illustration of perceptual aliasing with range-only
measurements to three unlabelled UGVs. The set of range
measurements from points P and Q to points A,B, and C
are the same. This follows from the fact that APBQ is a
parallelogram and that △CPQ is isosceles.

over the set (t1, t2) ∈ Fa×Fouter and minimizing

−ZT (Π⊗RT )Z =−
M

∑
i=1

zT
σ(i)Rzi (13)

over the set of all permutations σ ∈ Sym(M). Clearly, the
former is just the squared distance between sets R(Fa− z̄)
and Fouter − z̄, whereas the latter amounts to solving a
maximum weight matching problem, thus justifying lines
7 and 8 of the algorithm. Even though such matching can
be found in polynomial time (in fact O(M3)), here we
use an exhaustive procedure due to the budget-motivated
assumption that M =O(1). The running time of Algorithm
2, as we described, is then O(|Θ|M!).

B. Impossibility Results

In this section, we show that if we remove either bearing or
range information from the set of unlabelled measurements,
M = 3 ground agents no longer suffice. Note that if the UGVs
were perceptually distinguishable, the latter would not be the
case. We believe these are results of independent interest,
summarized as Propositions 1 and 2 with proofs sketched in
Figures 3 and 4, respectively.

Proposition 1: Consider any three points A,B,C in the
plane. Then, there exists a pair of different positions P,Q
at which the sets of unlabelled range (i.e. distance) measure-
ments to A,B, and C are the same.

Proposition 2: Consider any three points A,B,C in the
plane. Then, there exists a pair of different positions P,Q at
which the sets of unlabelled oriented (i.e. counterclockwise)
bearing measurements to A,B, and C are the same.

Finally, we give an intuitive explanation for why M = 3
UGVs for range and bearing suffice even with a priori
unknown yaw information and data association. Indeed,
consider placing the UGVs in an arbitrary scalene triangle.
The unique lengths of its edges allow the agent to correctly
estimate the identity of each of the three UGVs, and therefore
recover its position and yaw with respect to the global frame.

VI. EXPERIMENTS

We evaluate our method’s performance in real-world ex-
periments with a UAV and a team of UGVs as illustrated in
Fig. 1. We carry out three sets of experiments with different

Fig. 4: Illustration of perceptual aliasing with bearing-
only measurements to three unlabelled UGVs. The set of
oriented differential bearing measurements from points P
and Q to points A,B, and C are the same. This follows
from the fact that (1) P and Q have been chosen so that
∡CPB = ∡AQC; and (2) P1 and Q1 have been chosen so
that C̃P1/P̃1B = ĀQ1/Q̄1C.

Fig. 5: Illustration of UGV positioning. Each grid is 1
m × 1 m. The cyan-colored cylinders visualize the optimal
positioning of UGVs, and the magenta-colored cylinders
visualize the random positioning of UGVs. The orange-
colored region indicates the 8 m × 19 m Fg region.

noise regimes: (1) real-world noise, (2) real-world noise
with additional random noise, and (3) real-world noise with
additional non-stochastic perturbation. The goal of (1) is
to evaluate our system’s performance and robustness with
real-world noise, and the performance gain we can obtain
over the random positioning of UGVs. The goal of (2) is
to evaluate our method’s robustness and performance margin
over random positioning when the noise level increases. This
can offer us insights into how our system can benefit robots
with noisy sensors, such as depth cameras. The goal of
(3) is to evaluate the robustness to the perturbation of the
landmarks (i.e., if the UGVs are not positioned precisely at

Fig. 6: Semantic segmentation example on validation set.
Top: lidar range image (color indicates intensity values).
Middle: semantic segmentation (magenta: UGV, yellow:
ground, grey: background). Bottom: ground truth. The UGVs
and ground planes can be reliably segmented.
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Fig. 7: Error in XY position estimates vs intensity of
random noise. The Y axis corresponds to the norm of
the position error. The X axis represents the intensity of
measurement noise σ (in meters), where σs denotes the
level of nominal noise. We assume the UAV has reliable
estimates of height above the ground since it has a lidar
(this information is also readily available when using an
altimeter). See Section VI-C for details on how the noise
is introduced and how “random” is different from “non-
stochastic”. With real-world noise, our method can position
the UGVs in a configuration so as to localize the UAV
accurately, with an error standard deviation of 7 cm and an
error mean of 14 cm. Unlike odometry, our estimation errors
will not accumulate with time since the UAV is localized
w.r.t. a global reference frame instead of its previous pose.
Compared to random positioning, our method consistently
reduces the error mean and standard deviation. Across all
noise levels, the median reduction in error mean and error
standard deviation is 51.63% and 73.70%, respectively.

the places they should be, or if they get displaced by external
forces). This allows us to evaluate how well our method
performs under non-stochastic conditions. The optimal and
random positioning of the UGVs is shown in Fig. 5.

A. Experiment setup

The experiment environment is shown in Fig. 1. Since
the UGVs appear small in lidar scans, we add the same
cylindrical payload to each UGV to augment detection. We
use our modified lightweight version [3] of RangeNet++ [16]
to segment points into multiple classes in real time on board
the UAV.

From the segmented point clouds, we cluster the UGV
points using DBSCAN [17] to generate UGV detection in-
stances. We then track such UGV detection instances across
lidar scans. Once the UGV detection is robust (i.e., it has
been tracked in multiple scans), we generate corresponding
range and bearing measurements derived from this UGV
detection. We estimate the ground plane by fitting a plane to
all ground points.

Note that it is difficult to guarantee that each time step we
can detect all UGVs. If the number of detected UGVs in a
lidar scan is less than the total number of UGVs positioned
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Fig. 8: Error in XY position estimates vs intensity of non-
stochastic noise. This figure follows the axis conventions
of Fig. 7. Compared to random positioning of UGVs, our
method consistently and significantly reduces the error mean
and standard deviation of position estimates of the UAV.
Across all intensities of noise, the median reduction in error
mean and error standard deviation is 58.46% and 56.64%.

in the environment, our method will skip it. The Fa region
is a circle with a diameter of 30m. The trajectory length of
each UAV flight is around 200∼300 meters. We position the
UGVs to the corresponding locations in the global reference
frame based on lidar odometry.

B. Performance metrics

The key metric for evaluating our system’s performance
is the UAV pose estimation accuracy. As explained in Sec-
tion IV, we are concerned about estimating the UAV’s XY
position and yaw angle based on its observations of UGVs.

We use the state-of-the-art lidar-inertial odometry algo-
rithm called faster-lio [18] to collect ground truth on the
UAV poses. The drift of the faster-lio algorithm across all
flights was under 10 cm. During the experiments, we treat
the UAV’s initial take-off pose as the origin of the global
reference frame, and regard the pose estimated by lidar
odometry as the ground truth when evaluating global local-
ization accuracy. We sample key poses at 2-meter intervals.
Across all samples we obtain (100∼150 samples per flight),
we calculate the error statistics between our estimated pose
and the lidar odometry estimated pose. Finally, we calculate
the mean and standard deviation of these errors and use them
as performance metrics.

C. Random vs. non-stochastic noise

As mentioned above, we evaluate the performance of our
system with different levels of noise. To achieve this, we
first consider the effects of real-world noise (caused by noisy
sensing and object detection). Then, in addition to such real-
world noise, we add different levels of Gaussian noise to the
position of each UGV. In other words, all studies have noise
levels no less than than real-world noise. Two sets of studies
are carried out: Random and Non-stochastic.

In both sets of studies, we first detect and localize the
UGVs in the robot body frame. Then we use pose estimates
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Fig. 9: Percentage of reduction in error mean of XY position and yaw estimates v.s. intensity of random noise (left)
and under non-stochastic noise (right). The Y axis is the percentage of reduction (i.e. |ours - random|

random ×100). The X axis is
the noise level σ (in meters). The margin of improvement in random noise is larger than in non-stochastic noise.

from lidar odometry to transform these UGV observations
into the world frame, where we add noise to UGVs’ observed
positions. Finally, we generate the range-bearing measure-
ments based on the relative position of the noisy UGV
observations and the UAV.

In the random case, we add a different Gaussian noise
to each UGV’s position at each time step. Therefore, the
noise added to the positions of the UGVs in the global frame
varies with time. In the non-stochastic case, we first sample
M different Gaussian noise values (M = number of UGVs),
and use this set of noise values for all time steps. Effectively,
this adds a fixed perturbation to each UGV’s position in
the global frame. This can happen when the UAVs fail to
reach the desired positions precisely, or they are displaced
by external forces.

D. Quantitative results and analysis

The results for X-Y position estimation are shown in Fig. 7
and Fig. 8. Those for yaw angle estimation are shown in
Fig. 10 and 11. Fig. 9 illustrates the reduction of errors by
our method. We summarize three significant findings from
these results.

First, with real-world noise, our method outputs robust and
accurate position and orientation estimates. The errors have
a mean of 7 cm for the X-Y location and 0.28 degrees for the
yaw angle, and a standard deviation of 14 cm for the X-Y
location and 0.1 degrees for the yaw angle. This shows that
by using a very small number (three) of unlabeled range
and bearing measurements, we can reliably associate each
measurement with each UGV at various viewing angles and
ranges within the Fa region, and achieve high accuracy.

Second, with real-world as well as increased levels of
noise, positioning of UGVs according to our algorithm
consistently leads to more accurate state estimates than those
derived from random positioning of UGVs. Fig. 7 shows
that across a range of different levels of random noise, the
median reduction of error mean and standard deviation of
XY position estimates is 51.63% and 73.70%, respectively.
Similarly, Fig. 10 shows that the median reduction of error

mean and standard deviation of yaw angle estimation is
83.13% and 71.65%, respectively. The corresponding results
for non-stochastic noise are illustrated in Fig. 8 and Fig. 11.

Last but not least, the performance margin of our method
over the random positioning increases with the level of noise.
This is illustrated in Fig. 9. In practice, the most common
range-bearing sensors, such as lidars, usually have relative
position measurements whose noise standard deviation is
well below 2 m. For robot platforms that cannot afford to
carry accurate, heavy, and expensive sensors such as lidars
but can carry alternative range-bearing sensors such as stereo
cameras, our method will bring even more significant im-
provement to the localization than just relying on randomly
placed features (or natural landmarks). The same is true for
environments with non-stochastic noise.

In summary, results from our real-world experiments show
that our method can accurately estimate the pose. Further-
more, it is robust to significant levels of noise. Through
comparisons against random positioning of UGVs, both the
robustness and accuracy of pose estimation are shown to
be drastically improved by positioning the UGVs using our
method.

VII. CONCLUSION

We address the problem of localizing UAVs in an envi-
ronment without GPS and with very few natural landmarks.
We illustrate the benefit of actively controlling identical
ground robots that can serve as semantic landmarks that
allow a UAV to align its local reference frame to the
world frame. Our game theoretic formulation led us to a
hybrid analytic-exhaustive-search algorithm for positioning
the UGVs in a way that makes the problem of data as-
sociation robust to a high level of noise. Our real-world
experiments showed that our method achieves centimeter-
level global localization accuracy regardless of the trajectory
length, while only relying on observations of three actively
controlled UGVs. Furthermore, our method was able to
accommodate random as well as non-stochastic perturbations
on measurements, indicating its potential for robust state
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Fig. 10: Error in yaw estimates vs intensity of random
noise. The Y axis represents the yaw error (in degrees).
We assume the UAV has reliable estimates of roll and pitch
angles since it runs state-of-the-art lidar odometry and has
an IMU. The X axis is the noise level σ (in meters). With
real-world noise (σs), our method can position the UGVs in a
configuration so as to estimate the UAV’s heading accurately,
with an error standard deviation of 0.27◦ and an error mean
of −0.09◦. This is an order of magnitude more accurate than
high-quality magnetometers. For example, VectorNav’s VN-
100 [13] IMU’s magnetometer can estimate heading up to
2◦ accuracy even in the ideal magnetic environments [19],
which is usually not true for UAVs since they are susceptible
to strong magnetic interference induced by the electric cur-
rent drawn by motors. Meanwhile, the lidar odometry alone
cannot estimate the absolute yaw angle w.r.t. the world frame.
Across all noise levels, the median reduction in error mean
and error standard deviation is 83.13% and 71.65%.

estimation of SWaP-constrained UAVs. This work enables
robust multi-robot collaborative localization and mapping
for multiple aerial robots in perceptually-challenged GPS-
denied environments and without prior knowledge of relative
transformation between the robots. Future work will involve
extending the algorithm to different measurement models,
such as range-only or bearing-only sensors, and allowing
UGVs to complement existing natural object landmarks in
the environment to form a non-ambiguous constellation.
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