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Abstract— This paper proposes an illumination-robust visual
odometry (VO) system that incorporates both accelerated
learning-based corner point algorithms and an extended line
feature algorithm. To be robust to dynamic illumination, the
proposed system employs the convolutional neural network
(CNN) and graph neural network (GNN) to detect and match
reliable and informative corner points. Then point feature
matching results and the distribution of point and line features
are utilized to match and triangulate lines. By accelerating
CNN and GNN parts and optimizing the pipeline, the proposed
system is able to run in real-time on low-power embedded
platforms. The proposed VO was evaluated on several datasets
with varying illumination conditions, and the results show that
it outperforms other state-of-the-art VO systems in terms of
accuracy and robustness. The open-source nature of the proposed
system allows for easy implementation and customization by
the research community, enabling further development and
improvement of VO for various applications.

I. INTRODUCTION

Due to the good balance in cost and accuracy, VO has
been used in an extensive range of applications, especially in
the domain of augmented reality and robotics [1]. Despite the
existence of numerous well-known works, such as MSCKF
[2], VINS-Mono [3] and OKVIS [4], the existing solutions are
not robust enough for illumination-challenging conditions [5].
For example, in dynamic illumination environments, visual
tracking becomes more challenging and thus the quality of
the estimated trajectory is severely affected [6].

On the other hand, deep learning technology has made great
progress in many computer vision tasks, which has triggered
another research trend [7]. A lot of learning-based feature
extraction and matching methods have been proposed and they
have been proven to be more robust than handcrafted methods
in illumination-challenging environments [8]–[10]. However,
they often require huge computational resources and thus
are impractical for real-time applications with lightweight
robotics platforms such as unmanned aerial vehicles.

Therefore, in this paper, we propose AirVO, an illumination-
robust stereo visual odometry. We employ both learning-based
feature extraction and matching methods to make our system
robust enough in illumination-challenging environments. To
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Fig. 1: AirVO is an accurate and robust stereo visual odometry
in illumination-challenging environments. More demos are
available at https://youtu.be/YfOCLll_PfU.

achieve real-time and cost-effective performance, we accel-
erate the CNN and GNN parts and optimize the pipeline,
making the feature extraction and tracking five times faster
than the original work and the whole system able to run at a
rate of about 15Hz on a low-power embedded device.

To improve the accuracy, we also introduce line features
into our system. We argue that long lines can provide more
stable and accurate constraints, so we merge the short lines
detected by LSD [11]. However, line detection is usually
unstable in dynamic illumination environments, which makes
line tracking and matching more difficult than in good lighting
conditions. Besides, line feature triangulation is more difficult
than point feature triangulation, because it suffers more from
degenerate motion [12]. Therefore, we also propose a fast
and efficient illumination-robust line processing pipeline in
this paper. Observing that the point tracking in our system
is very robust, we associate points with lines according to
their distances. Then lines can be matched and triangulated
using the matching and triangulation results of related points.
The proposed line processing method is shown to be very
robust even when the line detection is not stable and the
lighting conditions are challenging. It is also very fast due
to that it does not need to extract line descriptors. Overall,
our contributions are as follows:

• The key contribution in this paper is that we propose
a novel hybrid VO system that can effectively handle
varying illumination conditions. Our proposed system
combines the efficiency of traditional optimization tech-
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niques with the robustness of learning-based methods. To
our best knowledge, AirVO is the first visual odometry
that employs both learning-based feature detection and
matching algorithms and can run in real-time on low-
power embedded platforms.

• We propose a new line processing pipeline for VO in this
paper. Our approach associates 2D lines with learning-
based 2D points on the image, leading to more robust
feature matching and triangulation. This novel method
enhances the accuracy and reliability of VO, especially
in illumination-challenging environments.

• We perform extensive experiments that prove the effi-
ciency and effectiveness of the proposed methods. The
results show that AirVO outperforms other state-of-the-
art VO and visual-inertial odometry (VIO) systems, espe-
cially in illumination-challenging environments. Through
optimization and acceleration of the relevant parts, our
point feature detection and matching achieve more than
5× faster than the original work. Additionally, the
system can run at a rate of about 15Hz on a low-
power embedded device and 40Hz on a notebook PC.
We release source code at https://github.com/
sair-lab/AirVO to benefit the community.

II. RELATED WORKS

A. Feature Extraction and Tracking for Visual SLAM

Various key-point features have been proposed and applied
to different computer vision tasks. Many of these features,
e.g., ORB [13], FAST [14], and BRISK [15] are applied to
VO and SLAM systems, e.g., ORB-SLAM [16], VINS-Mono
[3], because of their balanced effectiveness and efficiency.
Two methods are widely used to track the feature points. The
first is to use optical flow [3], and the other is matching
by descriptor [2], [17]. However, most of the current visual
SLAM systems based on the above methods are evaluated in
well-lighted environments and make a brightness consistency
assumption. Thereby, their performances are significantly
affected by challenging lighting conditions, such as dark,
over-bright or dynamic illumination conditions.

With the development of deep learning techniques, many
learning-based feature extraction and matching methods have
been proposed and started to be applied to visual SLAM. Kang
et al. [18] introduce TFeat network [19] to extract descriptors
for FAST corners in a traditional VSLAM pipeline. Tang et
al. [20] use a neural network to extract robust key-points and
binary feature descriptors with the same shape of the ORB.
Han et al. [21] combine SuperPoint [9] feature extractor with
a traditional back-end. Bruno et al. proposed LIFT-SLAM
[22], where they use LIFT [8] to extract features. Li et al. [23]
replace ORB feature with SuperPoint in ORB-SLAM2 and
optimize the feature extraction with Intel OpenVINO toolkit.
However, the above methods still adopt traditional methods
to track or match these learning-based features, making
them not robust enough to changing illumination. Sarlin et
al. propose HF-Net [24], where they integrate SuperPoint and
SuperGlue [10] into COLMAP [25], a structure from motion

software. HF-Net achieves good performance for visual place
recognition tasks but requires huge computing resources and
is unable to build maps in real-time.

Unlike current methods, AirVO introduces both learning-
based feature extraction and matching methods in the VO sys-
tem, which makes our system robust enough in illumination-
challenging environments. By accelerating the CNN and GNN
parts, our system can perform pose estimation and build maps
in real-time on low-power platforms.

B. Line Matching for Visual SLAM

Line features widely exist in man-made environments,
which can provide additional constraints. One of the chal-
lenges of using lines in visual SLAM is to perform line
matching. A method used in many current SLAM systems
[12], [26]–[28] is to match lines through LBD [29] descriptor.
This method may make the line matching fail as the traditional
line detection method, such as LSD [11], may be unstable. To
overcome this, some systems [30]–[32] sample some points
on a line, and then track the line by tracking these points.
However, using either minimizing photometric error along
the epipolar line or zero-normalized cross-correlation (ZNCC)
matching method [33] cannot ensure robust line tracking in
dynamic illumination environments.

C. Visual SLAM for Dynamic Illumination

Several methods have been proposed to improve the robust-
ness of VO and Visual SLAM to illumination changes. DSO
[34] models brightness changes and jointly optimizes camera
poses and photometric parameters. DRMS [35] and AFE-
ORB-SLAM [36] utilize various image enhancements. Some
systems try different methods, such as ZNCC, locally-scaled
sum of squared differences (LSSD) and dense descriptor
computation, to achieve robust tracking [37]–[39]. These
methods mainly focus on either global or local illumination
change for all kinds of images, however, lighting conditions
often affect the scene differently in different areas [40].

Other related methods include that of Huang and Liu
[41], which presents a multi-feature extraction algorithm
to extract two kinds of image features when a single-feature
algorithm fails to extract enough feature points. Kim et
al. [42] employ a patch-based affine illumination model
during direct motion estimation. Chen et al. [43] minimize
the normalized information distance (NID) with nonlinear
least square optimization for image registration. Alismail et
al. propose a binary feature descriptor using a descriptor
assumption to avoid the brightness constancy [44].

III. METHODOLOGY

A. System Overview

The proposed framework is shown in Fig. 2. It is a
hybrid VO system where we utilize both the learning-based
front end and the traditional optimization backend. For each
stereo image pair, we first employ SuperPoint [9] to extract
feature points on the left image and match them with the
last keyframe using SuperGlue [10], and in parallel, we
also extract line features. Then the two kinds of features

https://github.com/sair-lab/AirVO
https://github.com/sair-lab/AirVO
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Fig. 2: The framework of AirVO. The system is split into two main threads, which are represented by two different colored
regions. The modules in the red dotted box and green dotted box run on the CPU and GPU, respectively.

are associated according to their distances and line features
are matched using the matching results of associated points.
After that, we perform an initial pose estimation and reject
outliers. Based on the results, we select keyframes, extract
features on the right image and triangulate 2D points and
lines of keyframes. Finally, the local bundle adjustment will
be performed to optimize points, lines and keyframe poses.

To improve system efficiency, We replace the 32-bit
floating-point arithmetic of CNNs and GNNs in our system
with 16-bit floating-point arithmetic, which makes feature
extraction and tracking more than five times faster than the
original code on the embedded device. We also design a multi-
thread pipeline that utilizes both CPU and GPU resources.
A producer-consumer model is used to split the system into
two main threads, i.e., the feature thread and the optimization
thread. In the feature thread, we use two sub-threads to
process point features and line features separately. In one
sub-thread, the point feature extraction and matching with
the last frame are put on the GPU while in parallel, the other
sub-thread is used to extract line features on the CPU. In the
optimization thread, we perform initial pose estimation and
keyframe decision. If a new keyframe is selected, we extract
both point and line features on its right image and optimize
its pose with a local map.

B. 2D Line Processing

We first give the details of 2D line processing in our system,
which includes line segment detection and matching.

1) Detection: Line detection of AirVO is based on a
traditional method (i.e., LSD [11]) for efficiency. LSD is a
popular line detection algorithm. However, it suffers from the
problem of dividing a line into multiple segments. Therefore,
we improve it by merging two line segments l1 and l2 if the
following conditions are satisfied:

• The angle between l1 and l2 is less than a threshold δθ .
• The distance between the midpoint of one line and the

other line is not greater than a certain value δd.
• If projections of l1 and l2 on X-coordinate axis and

Y-coordinate axis do not have overlap, the distance of
the two closest endpoints is smaller than a threshold δep.

Fig. 3: Lines detected by LSD (left) and by AirVO (right).
We merge unstable short lines into stable longer lines.

The line features detected in our system and comparison
with LSD are shown in Fig. 3. We argue that long line
segments are more repetitive and less affected by noise than
the short ones, so after the merger, line segments whose
lengths are less than a preset threshold will be filtered out so
that only long line segments are used in the following stages.

2) Matching: Most of the current VO and SLAM systems
use LBD algorithm or tracking sample points to match or
track lines. LBD algorithm extracts the descriptor from a
local band region of the line, so it suffers from unstable line
detection in dynamic illumination environments where the
line length may change and thus the local band region would
be different between two frames. Tracking sample points can
track the line which has different lengths in two frames, but
current SLAM systems usually use optical flow to track the
sample points, which have a bad performance when the light
conditions change rapidly or violently. Some learning-based
line feature matching methods [45], [46] are also proposed,
however, they are rarely used in current SLAM systems as a
result of the requirement for huge computational resources.
We do not employ them either because it is difficult to make
the system run in real-time on low-power embedded platforms
if both learning-based point features and learning-based line
features are used simultaneously.

Therefore, to address both the effectiveness problem and
efficiency problem, we design a fast and robust line-matching
method for dynamic illumination environments. First, we as-
sociate point features with line segments through the distances
between points and lines. Assume that M key-points and N
line segments are detected on the image, where each point is
denoted as pi = (xi,yi) and each line segment is denoted as



l j = (A j,B j,C j,x j,1,y j,1,x j,2,y j,2), where (A j,B j,C j) are line
parameters of l j and (x j,1,y j,1,x j,2,y j,2) are the endpoints.
We first compute the distance between pi and l j through:

di j = d (pi, l j) =
|A j ·xi +B j ·yi +C j|√

A2
j +B2

j

. (1)

If di j < 3 and the projection of pi on the coordinate axis
lies within the projections of line segment endpoints, i.e.,
min(x j,1,x j,2) ≤ xi ≤ max(x j,1,x j,2) or min(y j,1,y j,2) ≤ yi ≤
max(y j,1,y j,2), we will say pi belongs to l j. Then the line
segments on two images can be matched based on the point-
matching result of these two images. For klm on image k and
k+1ln on image k+1, we compute a score to represent the
confidence of that they are the same line:

Smn =
Npm

min(kNm, k+1Nn)
, (2)

where Npm is the matching number between point features
belonging to klm and point features belonging to k+1ln. kNm
and k+1Nn are the numbers of point features belonging to
klm and k+1ln, respectively. Then if Smn > δS and Npm > δN ,
where δS and δN are two preset thresholds, we will regard
klm and k+1ln as the same line.

Because the point matching is illumination-robust and
feature association is not affected by lighting changes, the
proposed line tracking method is very robust to dynamic
illumination environments, as shown in Fig. 4.

C. 3D Line Processing

In this part, we will introduce our 3D line processing
methods. Compared with 3D points, 3D lines have more
degrees of freedom, so we first introduce their representations
in different stages. Then the methods of line triangulation,
i.e., constructing a 3D line from some 2D line segments, and
line re-projection, i.e., projecting the 3D line to the image
plane, will be illustrated in detail.

1) Representation: We use Plücker coordinates [47] to
represent a 3D spatial line:

L =

[
n
v

]
∈ R6, (3)

where v is the direction vector of the line and n is the
normal vector of the plane determined by the line and the
origin. Plücker coordinates are used for 3D line triangulation,
transformation, and projection to the image. It is over-
parameterized because it is a 6-dimensional vector, but a
3D line has only four degrees of freedom. In the graph
optimization stage, the extra degrees of freedom will increase
the computational cost and cause the numerical instability
of the system [27]. Therefore, we also use orthonormal
representation [47] to represent a 3D line:

(U,W) ∈ SO(3)×SO(2) (4)

The relationship between Plücker coordinates and orthonor-
mal representation is similar to SO(3) and so(3). Orthonormal

Fig. 4: Line matching of AirVO in challenging scenes.
Matched lines are drawn in the same color. Circles on a
line are the points associated with the line. A larger radius
indicates that the point is associated with more lines.

representation can be obtained from Plücker coordinates by:

L = [n | v] =
[

n
∥n∥

v
∥v∥

n×v
∥n×v∥

]
︸ ︷︷ ︸

U∈SO(3)

 ∥n∥
∥v∥


︸ ︷︷ ︸

Σ3×2

, (5)

where Σ3×2 is a diagonal matrix and its two non-zero entries
defined up to scale can be represented by an SO(2) matrix,
i.e., W. In practice, this conversion can be done simply and
quickly with the QR decomposition.

2) Triangulation: Triangulation is to initialize a 3D line
from two or more 2D line observations. Two methods are
used to triangulate a 3D line in our system. The first is similar
to the line triangulation algorithm B in [12], where a 3D line
can be computed from two planes. To achieve this, we select
two line segments, l1 and l2, on two images, which are two
observations of a 3D line. l1 and l2 can be back-projected
and construct two 3D planes, π1 and π2. Then the 3D line
can be regarded as the intersection of π1 and π2.

However, triangulating a 3D line is more difficult than
triangulating a 3D point, because it suffers more from
degenerate motions [12]. Therefore, we also employ a second
line triangulation method if the above method fails, where
points are utilized to compute the 3D line. In Section III-
B.2, we have associated point features with line features. So
to initialize a 3D line, two triangulated points X1 and X2,
which belong to this line and have the shortest distance from
this line on the image plane are selected. Then the Plücker
coordinates of this line can be obtained through:

L =

[
n
v

]
=

[
X1 ×X2

X1−X2
∥X1−X2∥

]
. (6)

Because the selected 3D points have been triangulated in
the point triangulating stage, this method requires little extra
computation. It is very efficient and robust.

3) Re-projection: We use Plücker coordinates to transform
and re-project 3D lines. First, we convert the 3D line from



TABLE I: Translational error (RMSE) without loop closing and re-localization on the OIVIO dataset (unit: m). L refers to
tracking lost and D refers to sequences where RMSEs are larger than 10m.

Sequence VINS-Fusion StructVIO UV-SLAM PL-SLAM OKVIS ORB-SLAM2 Basalt-VIO AirVO

MN_015_GV_01 0.1033 8.6098 0.4991 1.3166 0.0663 0.0762 0.2157 0.0537
MN_015_GV_02 D L D 0.9523 1.5320 0.0776 0.1533 0.0619
MN_050_GV_01 D D D 1.1538 0.7785 0.0839 0.1857 0.0756
MN_050_GV_02 D D D 1.0055 0.7385 0.0755 0.1026 0.0717
MN_100_GV_01 D D D 0.8455 0.8729 0.0892 0.1965 0.0646
MN_100_GV_02 D D D 0.6708 0.4360 0.0848 0.0922 0.0770
TN_015_GV_01 0.1541 7.5849 1.6695 1.8856 0.3063 0.0902 0.1478 0.1009
TN_050_GV_01 0.2079 D 2.5948 1.9335 0.2262 0.0965 0.5214 0.0971
TN_100_GV_01 0.4063 D 1.4496 1.5263 0.3984 0.1044 0.1162 0.0578

the world frame to the camera frame:

cL =

[ cn
cv

]
=

[ c
wR [cwt]×

c
wR

0 c
wR

][ wn
wv

]
= c

wHwL, (7)

where cL and wL are Plücker coordinates of 3D line in the
camera frame and world frame, respectively. c

wR ∈ SO(3)
is the rotation matrix from world frame to camera frame
and c

wt ∈ R3 is the translation vector. [ · ]× denotes the skew-
symmetric matrix of a vector and c

wH is the transformation
matrix of 3D lines from world frame to camera frame.

Then the 3D line cL can be projected to the image plane
through a line projection matrix i

cP:

il =

 A
B
C

= i
cPcL[:3] =

 fx 0 0
0 fy 0

− fycx − fxcy fx fy

 cn, (8)

where il =
[

A B C
]T is the re-projected 2D line on

image plane. cL[:3] donates the first three rows of vector cL.

D. Keyframe Selection

Observing that the learning-based data association method
used in our system is able to track two frames that have a
large baseline, so different from the frame-by-frame tracking
strategy used in other VO or visual SLAM systems, we only
match the current frame with the last keyframe, as this can
reduce the tracking error. A frame will be selected as a
keyframe if any of the following conditions is satisfied:

• The distance to the last keyframe is larger than δ
k f
d .

• The angle with the last keyframe is larger than δ
k f
θ

.
• The number of tracked map-points is smaller than Nk f

1
and bigger than Nk f

2 , where Nk f
2 < Nk f

1 .
• Tracked map-points are more than Nk f

2 but the tracking-
lost happened in the last frame, i.e., map-points tracked
by the last frame are less than Nk f

2 .

where δ
k f
d , δ

k f
θ

, Nk f
1 and Nk f

2 are all preset thresholds.

E. Graph Optimization

We select Ngo
k f keyframes and construct a co-visibility graph

similar to ORB-SLAM [16], where map points, 3D lines, and
keyframes are vertices and constraints are edges. Both point
constraints and line constraints are used in our system and
the related error terms are defined as follows.
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Fig. 5: Comparison based on the OIVIO dataset. The vertical
axis is the proportion of pose errors that are less than the
given alignment error threshold on the horizontal axis.

1) Line Re-projection Error: If the frame k can observe
the 3D line wLi, then the re-projection error is defined as:

Elk,i = el

(
k l̄i, k

cP(c
wHwLi)[:3]

)
∈ R2, (9a)

el

(
k l̄i,k li

)
=
[

d
(

kp̄i,1,
k li

)
d
(

kp̄i,2,
k li

) ]T
, (9b)

where k l̄i is the observation of wLi on frame k, d (p, l) is the
distance between point p and line l, and kp̄i,1 and kp̄i,2 are
the endpoints of k l̄i.

2) Point Re-projection Error: If the frame k can observe
the 3D point wXq, then the re-projection error is defined as:

Epk,q =
kx̄q −π (c

wRwXq +
c
wt) , (10)

where kx̄q is the observation of wXq on frame k and π ( ·)
represents the camera projection.

IV. EXPERIMENTS

In this section, experimental results will be presented to
demonstrate the performance of our method. We take pre-
trained SuperPoint and SuperGlue to detect and match feature
points without any fine-tuning training. The experiments are
conducted on two datasets: OIVIO dataset [48] and UMA
visual-inertial dataset [6]. To prove the efficiency of the
proposed line processing pipeline, we compare AirVO with
state-of-the-art point-line VO and visual SLAM systems, i.e.,
PL-SLAM [26], StructVIO [31] and UV-SLAM [28]. PL-
SLAM and UV-SLAM use the LBD descriptor to match
line features while StructVIO tracks line features by tracking
sampling points on lines. We also add stereo-mode VINS-
Fusion [3], ORB-SLAM2 [17], Basalt-VIO [39] and VIO-
mode OKVIS [49] to the baselines. To handle the dynamic
illumination problem, VINS-Fusion uses a failure detection
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Fig. 6: A challenging sequence in UMA-VI dataset with significant illumination changes. The image may suddenly go dark
as a result of turning off the lights, which is very difficult for feature tracking.
TABLE II: Translational error (RMSE) on the UMA-VI
dataset (unit: m). The best results are highlighted.

Sequence PL-SLAM OKVIS AirVO

conference-csc1 2.6974 1.1181 0.5236
conference-csc2 1.5956 0.4696 0.1607
third-floor-csc1 4.4779 0.2525 0.1760
third-floor-csc2 6.0675 0.2161 0.1312

average 3.7096 0.5141 0.2479

and recovery module, while StructVIO uses the ZNCC method
and Basalt-VIO uses the LSSD KLT method. The following
experiments will prove that AirVO outperforms these methods
in illumination-challenging environments. As the proposed
method is a VO system, we disabled the loop closure part
and re-localization from the above baselines.

Note that as a result of lacking the ground truth of
line matching and triangulation in dynamic illumination
environments, we prove the effectiveness of the proposed
line processing method by comparing it with other point-line
systems and an ablation study instead of designing an extra
line matching or triangulation comparison. Like [50]–[52],
we compare with ORB-SLAM2 instead of ORB-SLAM3 [53]
because the newly added atlas and IMU in ORB-SLAM3 are
unfair to compare with the visual-only odometry, and they
are difficult to remove because of the high coupling system.
We also do not add DX-SLAM [23] and GCNv2-SLAM [20]
to the baselines since they are based on RGB-D inputs and
thus cannot run on the stereo datasets.

A. Results on OIVIO Benchmark

OIVIO dataset collects visual-inertial data in tunnels and
mines. In each sequence, the scene is illuminated by an
onboard light of approximately 1300, 4500, or 9000 lumens.
We used all nine sequences with ground truth acquired by
the Leica TCRP1203 R300. The performance of translational
error is presented in Table I. The two most accurate results
are highlighted and underlined, respectively. AirVO achieves
the best performance on 7 sequences and the second-best
performance on the other 2 sequences, which outperforms
other state-of-the-art algorithms. We notice that VINS-Fusion,
StructVIO and UV-SLAM lost track on many sequences, this
may be because their feature tracking methods, i.e., LSSD
KLT sparse optical flow, ZNCC, LBD descriptor, are not

TABLE III: Ablation study. Translational error (RMSE) of
AirVOw/o line and AirVO on the UMA-VI and OIVIO datasets
(unit: m). The best results are highlighted.

Sequence AirVOw/o line AirVO

UMA-VI

conference-csc1 2.4789 0.5236
conference-csc2 0.2323 0.1607
third-floor-csc1 0.1736 0.1760
third-floor-csc2 0.1629 0.1312

OIVIO

MN_015_GV_01 0.1035 0.0537
MN_015_GV_02 0.0668 0.0619
MN_050_GV_01 0.1051 0.0756
MN_050_GV_02 0.1049 0.0717
MN_100_GV_01 0.1177 0.0646
MN_100_GV_02 0.0921 0.0770
TN_015_GV_01 0.1155 0.1009
TN_050_GV_01 0.0987 0.0971
TN_100_GV_01 0.0879 0.0578

robust enough in illumination-challenging environments.
We show a comparison of our method with selected

baselines on OIVIO TN_100_GV_01 sequence in Fig. 5.
In this case, the robot goes through a mine with onboard
illumination. The distance is about 150 meters and the average
speed is about 0.84m/s. The plot shows the proportion of
pose errors on the horizontal axis that are less than the
given alignment error threshold on the horizontal axis. AirVO
achieves the most accurate result on this sequence.

B. Results on UMA-VI Benchmark

UMA-VI dataset is a visual-inertial dataset gathered in
illumination-challenging scenarios with handheld custom
sensors. We selected sequences with illumination changes to
evaluate our system. As shown in Fig. 6, it contains many
sub-sequences where the image suddenly goes dark as a result
of turning off the lights. It is more challenging than OIVIO
dataset, so we only select methods proved to be illumination-
robust in Section IV-A as baselines, i.e., ORB-SLAM2, PL-
SLAM, OKVIS and Basalt-VIO. The translational errors
are presented in Table II. As ORB-SLAM2 and Basalt-VIO
lost track on all 4 sequences, we do not list their results.
It can be seen that AirVO outperforms other methods. Its
average translational error is only 6.7% of PL-SLAM and
48.2% of OKVIS. We notice that the aligned errors are larger
than those on the OIVIO dataset. It is because the UMA-VI
dataset only gives the ground truth of the beginning and end
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Fig. 7: Bar chat showing the efficiency of different algorithms,
as measured by CPU usage (%) and per-frame processing
time (ms) on Nvidia Jetson AGX Xavier (2018).

TABLE IV: The average running time comparison of principal
components with PL-SLAM.

PE LE PM LM IPE BA

PL-SLAM 70 ms 96 ms 1 ms 29 ms 1 ms 101 ms
AirVO 25 ms 29 ms 10 ms 2 ms 4 ms 264 ms

of each sequence, which makes the errors appear larger, and
the scenes are more difficult for VO or VIO systems.

We also compare the trajectory of AirVO with OKVIS and
PL-SLAM on conference-csc2 sequence as shown in Fig. 1.
The traveling distance of this sequence is about 50 meters
and the average speed is about 0.75m/s. It clearly shows
that AirVO produces the best accuracy in this challenging
case. The drift error of AirVO is about 1.0%. OKVIS and
PL-SLAM are 1.5% and 7.1%, respectively.

C. Ablation Study

To show the effectiveness of the proposed line processing
method, we remove line features from AirVO and name
it as AirVOw/o line. The comparison results of AirVO and
AirVOw/o line on OIVIO and UMA-VI datasets are pre-
sented in Table III. It can be seen that AirVO outperforms
AirVOw/o line on 12 of 13 sequences, and utilizing line features
reduces the translational error by 58.2% on average, which
demonstrates that the proposed line processing method can
improve the performance of the system.

D. Runtime Analysis

This section presents the running time analysis of the
proposed system. The evaluation is performed on the Nvidia
Jetson AGX Xavier (2018), which is a low-power embedded
platform with an 8-core ARM v8.2 64-bit CPU and a low-
power 512-core NVIDIA Volta GPU. The resolution of the
input image sequence is 640 × 480. For all algorithms,
we extract 200 points and disabled the loop closure, re-
localization and visualization part for a fair comparison.

1) CNN and GNN Acceleration: We first verify the
acceleration of the point detection and matching network.
In our system, detecting and tracking feature points for one
image take 64 ms, while the original code needs 342 ms. So
it is about 5.3× faster than the origin.

2) Efficiency Comparison: We also compare the algorithm
efficiency, as measured by CPU usage and per-frame process-
ing time. The result is presented in Fig. 7. It can be seen that
AirVO is one of the fastest methods (about 15 FPS) while

the CPU usage is roughly the same as other methods because
of utilizing the GPU resources. Notice that only the binary
executable file of Struct-VIO is available, which is compiled
on the x86 computer and cannot run on the Jetson platform,
so we did not add it to this comparison.

3) Detailed Running Time: We also present the detailed
running time of each module of PL-SLAM and AirVO in
Table IV, where PE is point extraction, LE is line extraction,
PM is point matching, LM is line matching, IPE is initial
pose estimation and BA is keyframe processing and local
bundle adjustment. It can be seen that the line processing
pipeline of AirVO is much more efficient than PL-SLAM.
Our BA module has higher runtime than PL-SLAM, this
may be because more stable features are detected, tracked
and taken into optimization in our system. Notice that these
modules run in parallel and BA module is a non-real-time
back-end thread, so the running time of the whole system is
not the simple accumulation of each module.

V. CONCLUSIONS

In this work, we presented an illumination-robust visual
odometry based on learning-based key-point detection and
matching methods. To improve the accuracy, line features
are also utilized in our system. We proposed a novel line
processing pipeline to make line tracking robust enough
in illumination-dynamic environments. In the experiments,
we showed that the proposed method achieved superior
performance in illumination-dynamic environments and could
run in real-time on low-power devices. We open the source
code to benefit the robotic community. For future work,
we will extend AirVO to a SLAM system by adding loop
closing, re-localization and map reuse. We hope to build an
illumination-robust visual map for long-term localization.
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