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Abstract— The progress of LiDAR-based 3D object detection
has significantly enhanced developments in autonomous driv-
ing and robotics. However, due to the limitations of LiDAR
sensors, object shapes suffer from deterioration in occluded
and distant areas, which creates a fundamental challenge to
3D perception. Existing methods estimate specific 3D shapes
and achieve remarkable performance. However, these methods
rely on extensive computation and memory, causing imbalances
between accuracy and real-time performance. To tackle this
challenge, we propose a novel LiDAR-based 3D object detection
model named BSH-Det3D, which applies an effective way to
enhance spatial features by estimating complete shapes from a
bird’s eye view (BEV). Specifically, we design the Pillar-based
Shape Completion (PSC) module to predict the probability of
occupancy whether a pillar contains object shapes. The PSC
module generates a BEV shape heatmap for each scene. After
integrating with heatmaps, BSH-Det3D can provide additional
information in shape deterioration areas and generate high-
quality 3D proposals. We also design an attention-based densi-
fication fusion module (ADF) to adaptively associate the sparse
features with heatmaps and raw points. The ADF module
integrates the advantages of points and shapes knowledge
with negligible overheads. Extensive experiments on the KITTI
benchmark achieve state-of-the-art (SOTA) performance in
terms of accuracy and speed, demonstrating the efficiency
and flexibility of BSH-Det3D. The source code is available on
https://github.com/mystorm16/BSH-Det3D.

I. INTRODUCTION

Over the past decade, deep learning has made significant
progress in 2D vision tasks such as detection [1]–[3], seg-
mentation [4]–[6], and pose estimation [7]. While 2D images
have valuable information, 3D point clouds can provide more
geometric, shape and scale information [41], significantly
improving scene perception capability. LiDAR sensors have
been widely used to obtain 3D point clouds in autonomous
driving, mobile robotics, and augmented reality/virtual reality
thanks to high-precision measurements and robustness to
illumination changes. Although LiDAR sensors have these
advantages, achieving high-performance detection in point
clouds is still challenging due to two inherent limitations:
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(a) Original scene

(b) BEV shape (c) BSH-Det3D VS. Baseline
Fig. 1. Performance comparisons of our BSH-Det3D with the baseline [16]
on the KITTI val set. (a) RGB image of the original scene. (b) Result of
BEV shape heatmap. (c) Result of our BSH-Det3D and the baseline detector.
The ground-truth boxes, predicted boxes of the baseline and BSH-Det3D
are shown in red, yellow, and green. As indicated by the orange arrows, our
method can fix box offset and removes false positives effectively.

• Laser beams return after hitting the first object, causing
shapes behind the occluder to be missing.

• The faraway objects receive only a few points on their
surfaces, so shapes at far-range areas will be sparse and
incomplete.

Both limitations cause shape deterioration during detec-
tion. To address this issue, Xu et al. [9] complete entire
shapes by manual ground truth. Subsequently, almost all ob-
jects are detected correctly (Average Precision>99%), prov-
ing that complete shapes are essential for high-performance
detectors. One straightforward way to alleviate the missing
shape problem is learning object shapes from priors: SPG
[10] and BtcDet [9] manually fill points into the labeled
bounding boxes and try to recover the specific shape of
objects. However, since they focus on entire 3D shapes,
these methods are computationally expensive. Other methods
convert shape information to features instead of specific
shapes [13]–[15] to reduce computation. However, this is
challenging due to shape feature extraction and fusion re-
sulting lower accuracy. Thus, a new challenge arises: How
do detectors alleviate shape deterioration while remaining
efficient and flexible?

To tackle this challenge, we chose the BEV-based method
for its speed and accuracy performance, e.g., PointPillars
[16]. These methods encode points into pseudo-images and
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Fig. 2. This shows the performance of vanilla PointPillars [16] (solid bar)
and PointPillars with ground truth BEV shape heatmap (striped bar) on the
KITTI [12] val split. We show the result in three classes: Car, Pedestrian,
and Cyclist; with three difficulty levels: Easy, Moderate, and Hard. After
associating with the BEV shape, the performance significantly improves.

use well-established 2D convolutions to extract features. We
conduct a pilot study to explore the possibility of detectors
with BEV shapes. We design ground truth BEV shapes as
heatmaps (see details in III-B). Then, we directly concatenate
heatmaps with raw point features extracted by the baseline
detector [16]. Both training and evaluation is based on the
KITTI [12] dataset. We show the average precision (AP) of
cars, pedestrians, and cyclists with three occlusion levels. As
illustrated in Fig.2, the performance improves significantly
with the fusion of BEV shape heatmaps, demonstrating the
potential of utilizing BEV shapes to enhance detection.

In this paper, we present a novel approach to improving
3D object detectors with BEV Shape Heatmap (BSH-Det3D),
which alleviates shape deterioration efficiently, as illustrated
in Fig.1. BSH-Det3D proposes an effective method for
improving detection quality by learning BEV shape knowl-
edge. We design a pillar-based shape completion module
(PSC) to obtain a BEV shape heatmap in each scene. PSC
extracts multi-scale pillar features and estimates the occu-
pancy probability of whether a pillar belongs to complete
shapes. Furthermore, targeting the sparsity of both point
cloud features and shape heatmaps, we propose an attention-
based densification fusion module (ADF) to associate points
and shapes. We conduct experiments on the KITTI dataset,
and achieve SOTA performance in terms of accuracy and
speed. It is worth noting that our method is general and can
be used with various detectors. To validate the flexibility, we
conduct experiments integrating our method into different
mainstream 3D detection frameworks [16], [21] and design
a two-stage module for box refinement.

The main contributions can be summarized as follows:

• We propose a novel 3D object detector that learns to
associate object shape knowledge from a bird’s eye
view, enhancing spatial features and providing implicit
guidance for detection.

• We design a pillar-based shape completion module
(PSC) to estimate a probability-based shape heatmap for
each scene, alleviating shape deterioration efficiently.

• We design an attention-based densification fusion mod-
ule (ADF) that adapts to the sparse features of shapes
and point clouds with negligible overheads.

• Our proposed BSH-Det3D achieves SOTA perfor-
mances on the KITTI benchmark in terms of accuracy
and real-time performance. We also test our approach
with different baseline detectors to verify its flexibility.

II. RELATED WORK

A. LiDAR-based 3D Object Detectors

According to the representation of point clouds, LiDAR-
based 3D object detection can be divided into point-based
and grid-based methods. Point-based methods inherit the
success of feature extraction modules [22] and propose di-
verse architectures to detect objects from raw points directly.
PointRCNN [20] segments point clouds by PointNet++ [23]
and estimates proposals for each foreground point. STD
[25] presents a point-based proposal generation paradigm
with spherical anchors to reduce computation. 3DSSD [24]
combines feature-based and point-based sampling to improve
the classification. Grid-based 3D detectors first transfer raw
points into discrete grid representations such as voxels and
pillars; then, detectors use 2D or 3D convolutional neural net-
works to extract features from grids and detect objects from
grid cells. VoxelNet [42] divides point cloud into 3D voxels,
which are further processed by the voxel feature extractor
and 3D CNN encoder network. SECOND [21] introduces
sparse 3D convolutions for efficient 3D processing of voxels,
significantly improving real-time performance. PointPillars
[16] collapses raw points into vertical pillars, uses a per-pillar
feature extractor by PointNet [22] to compress the height
dimension, and then utilizes the pillar feature as a BEV
pseudo-image for detection. Unlike existing BEV detectors
which encode points into pseudo-image and directly estimate
proposals, we propose a novel way of predicting shape
heatmaps in BEV to enhance spatial features. Our BSH-
Det3D is designed on grid-based methods and can be easily
integrated into various detectors.

B. Shape Priors for 3D Object Detection

Many advanced 3D detectors focus on alleviating missing
shape problems by using shape priors. One class of methods
attempts to learn shape knowledge as features: Part-A² [13]
applies a part-aware stage to obtain object part locations. SA-
SSD [14] and Associate-3Ddet [15] aim to exploit structure
modules to conserve shape features by auxiliary networks.
However, due to difficulties in extracting and fusing shape
features, these methods suffer from accuracy bottlenecks.
Another class of methods recovers the specific shape of
objects: SPG [10] locates foreground regions and generates
semantic points for each foreground voxel. BtcDet [9] finds
similar shapes as priors and generates new shape points. Due
to the estimate of entire 3D shapes, these methods consume
significant computation and memory, resulting in imbalances
between accuracy and real-time performance. Given this,
BSH-Det3D proposes a novel mechanism for utilizing shape
priors as BEV heatmaps, which effectively reduces shape
deterioration with a small amount of extra time, particularly
for occluded objects or distant objects.

III. METHODOLOGY

A. Model Overview

As illustrated in Fig.3, the PSC module first pillarizes
raw points and utilizes a pillar-wise occupancy network to
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Fig. 3. Detection pipeline: The PSC module first splits points into pillars and estimates pillar-wise shape occupancy probability to generate BEV shape
heatmap ŜBEV . The backbone network Ψ extracts feature from raw points, and ŜBEV concatenates with the output feature of Ψ. Then, the ADF module
uses a hybrid-attention based strategy to fuse features, linking with an RPN network to generate 3D proposals. Furthermore, for each proposal, BSH-Det3D
constructs local grids and pools the local features with ŜBEV to the nearby grids for further refinement (see black box and red box in Box Refinement).

estimate the BEV shape heatmap ŜBEV (III-B). Next, BSH-
Det3D uses a backbone network Ψ [21] [16] to extract fea-
tures Fb of point clouds. To associate the shape knowledge,
the ADF module concatenates the ŜBEV to the output feature
from Ψ and gets Fc; we then use a hybrid-attention based
strategy to get fusion features Fadf . Finally, Fadf is sent to
a Region Proposal Network (RPN) generating 3D proposals.
During box refinement, we construct local grids covering
each proposal box, and aggregate the grid features with shape
heatmaps to generate the final proposals.

B. Pillar-based Shape Completion Module
Generation of ground truth labels. The process of gener-

ating BEV shape labels is illustrated in Fig.4. First, we follow
methods in [9] using a heuristic-based strategy to find the top
three shapes which are most similar to current shapes Sd in
the dataset. After assembling similar shapes, the approximate
3D shapes Sc can be obtained. Next, we compress the height
dimension of Sc and get the corresponding 2D shapes S2d.
In S2d, we set shape occupancy probability P (Os) = 1
for pillars that contain shapes and P (Os) = 0 for the
others. When multiple objects are assembled as Sc, the point
density varies, which causes voids in S2d. To counteract this,
we increase the positive supervision for the S2d by span
locations pxy where P (Os) = 1 with a Gaussian kernel:

Yxy = exp(− (x− px)2 + (y − py)2

2σ2
p

), (1)

where σp is an object size-adaptive standard deviation de-
pending on the size of the object. Finally, Sg is used as the
ground truth label of the BEV shape heatmap.

Estimation of BEV shape heatmap. First, we adopt
the strategy of [16] to extract pillar features: PSC module
projects raw points on the X-Y plane via a tiny one-layer
PointNet [22] to fetch pillar feature fp. Then, fp is processed
by a pillar-wise shape occupancy network Ω (Fig.5). Ω
adopts a top-down architecture that processes the fp with
stride 1×, 2×, and 4× convolution blocks, each block
linking to a transposed 2D convolution for upsampling and
then concatenating the multi-scale features for the detection
head. The detection head uses 3 × 3 convolutional layers
separated by ReLU and BatchNorm. The last convolutional
layer produces a K-channel heatmap Ŷ showing the shape
occupancy probability, where the channel of Ŷ indicates
object classes. To highlight the shapes, we use a sigmoid
function with the threshold(≥ 0.5) to filter Ŷ . Finally, we
get the estimated BEV shape heatmap ŜBEV .

Sigmoid cross-entropy Focal Loss [26] supervises the
output of Ω, if Yxy = 1:

Lshape = − 1

N

∑
xy

(
1− Ŷxy

)α
log
(
Ŷxy

)
, (2)

otherwise:

Lshape = − 1

N

∑
xy

(1− Yxy)
β
(
Ŷxy

)α
log
(

1− Ŷxy
)
, (3)

where α = 2 and β = 4 are default hyper-parameters and
N is the number of p where P (Os) = 1. Since PSC module
involves only fast 2D convolutions and MLPs, this guarantees
detection efficiency.
C. Attention-based Densification Fusion Module

Some parts of object shapes significantly determine the
performance and deserve more attention. Inspired by [27] we
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Fig. 4. The generation process of our BEV shape label. For each shape
deteriorated object Sd, we obtain completed 3D shapes by following the
method in [9]. Next, we compress Sc into 2D by height dimension, getting
S2d. After that, we apply rendered Gaussian kernels to counteract the noise
introduced by the shape priors, getting high-quality BEV shape labels Sg .

exploit an effective hybrid-attention-based ADF module for
adaptive feature refinement. The ADF module extracts shape
knowledge from ŜBEV to enhance the point cloud features
Fb from the backbone network. As shown in Fig.3, targeting
the sparsity of both ŜBEV and Fb, the concatenation feature
Fc first densifies by 2D convolutional layers making the
initial dense fusion feature Fid available. The ADF module
consists of channel-wise attention and grid-wise attention.

Channel-wise attention focuses on filtering significant se-
mantics in Fid. We first aggregate spatial information in two
descriptors by using average-pooling and max-pooling, then
both descriptors are forwarded to a shared network producing
a channel map. Afterwards, we merge the feature maps by
summation, followed by a sigmoid function σ. In short, the
computation of channel-wise attention map is:

Mc(Fid) = σ(MLP (FAvgid ) +MLP (FMax
id )). (4)

Grid-wise attention focuses on filtering significant posi-
tions in Fid. We apply average-pooling and max-pooling to
compress the channel dimension of Fid, connected with a
convolution layer to encode the part of shape requiring more
attention. Finally, we generate a grid attention map by uti-
lizing the inter-spatial relationship of Fid. The computation
of grid-wise attention map is:

Mg(Fid) = σ(f7×7([FAvg
′

id ;FMax′

id ])), (5)

where σ denotes the sigmoid function and f7×7 represents
a 7× 7 convolutional layer.

These two attention modules focus on semantics and
positions respectively. Using ⊗ to denote element-wise mul-
tiplication, the overall attention process can be computed as:

Fadf = Mg(Fid)⊗Mc(Fid)⊗ Fid. (6)

D. One-Stage and Two-Stage BSH-Det3D

Choosing to focus on accuracy or speed, the backbone
network adopts two ways to encode raw points. For speed,
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Fig. 5. The estimation of the BEV shape heatmap. We adopt a top-
down architecture to extract multi-scale pillar features. The detection head
predicts the shape occupancy probability as a heatmap. After sending it to
the sigmoid function and threshold, we can get the finaly heatmap ŜBEV .

we encode points into pillar feature maps [16]. For accuracy,
we encode points into voxels [42], and then the 3D backbone
extracts features by sparse convolution and compresses along
the height axis to generate 2D feature maps. After encoding,
the 2D backbone uses a multi-scale feature fusion network
to generate a 2D feature map.

One-Stage. The Region Proposal Network (RPN) takes
the output features of the ADF module and predicts stage-one
proposals with the anchor-based approaches [16], [21]. Two
anchors of 0◦, 90◦ are evaluated for each pixel of the BEV
feature map. Each proposal contains eight parameters: center
coordinates (xp, yp, zp), box size (lp, wp, hp), yaw rotation
angle θp, and classification confidence cp.

Two-Stage. Based on proposals and grid features learned
from stage-one, the refinement module further exploits the
BEV shape heatmaps, as shown in Fig.3. Each box needs
to consider the nearby geometry structure to generate accu-
rate final proposals. We design a RoI-grid pooling strategy
inspired by [18]. For each proposal, we construct local grids
of 6 × 6 × 6 to capture contextual information among the
neighboring voxel features. To further enhance the awareness
of shape deterioration, we pool the BEV shape heatmap
ŜBEV onto the nearby grids through bilinear-interpolation
and aggregate them by fusing multiple levels of Fadf . After
that, two branches of MLP are used to predict an IoU-related
class confidence score and residuals between the 3D proposal
and ground truth bounding box for two-stage results.

E. Loss Function

The proposed BSH-Det3D is trained in an end-to-end
manner. Our overall loss includes Lrpn in stage-one, box
refinement loss Lrcnn in stage-two, and BEV shape heatmap
estimation loss Lshape in Eq.2 as:

Ltotal = λLshape + Lrpn + Lpr. (7)

Following [16], [21], Lrpn is defined as the summation of
classification loss and box regression loss as:

Lrpn =Lcls +
∑
r

Lsmooth−L1(∆r1 ),

r1 ∈ {x, y, z, l, h, w, θ}
(8)

where r1 is the parametric representation of the proposal,
and the smooth-L1 loss is used to anchor box regression
with the predicted residual and the regression target. We use
focal loss [26] to calculate the anchor classification:

Lcls = α (1− pt)γ log (pt) , (9)



TABLE I
PERFORMANCE COMPARISON OF OBJECT DETECTION WITH SOTA LIDAR METHODS OF KITTI val SPLIT.

Car 3D APR40 Car BEV APR40 Cyc. 3D APR40Stage Method
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Time
(ms)

PointPillars [16] 87.75 78.39 75.18 92.40 87.79 86.39 81.57 62.94 58.98 24
BSH-Det3D(Pillars) 89.08 81.66 79.01 92.80 89.15 88.46 86.48 69.22 63.59 32

Improvement +1.33 +3.27 +3.83 +0.40 +1.36 +2.07 +4.91 +6.28 +4.61 -8
SECOND [21] 90.97 79.94 77.09 95.61 89.54 86.96 78.50 56.74 52.83 50

BSH-Det3D(Voxels) 91.07 82.53 79.54 93.04 89.28 88.43 85.32 66.23 64.92 43

One-stage

Improvement +0.10 +2.59 +2.45 -2.57 -0.26 +3.27 +6.82 +9.49 +12.09 +7
PV-RCNN [19] 92.10 84.36 82.48 93.02 90.33 88.53 88.88 71.95 66.78 80

Voxel R-CNN [18] 92.38 85.29 82.86 95.52 91.25 88.99 - - - 40
BSH-Det3D(Refinement) 92.88 85.93 83.49 93.97 91.94 89.60 89.64 72.33 69.05 48

Two-stage

Improvement +0.50 +0.64 +0.63 -1.55 +0.69 +0.61 +0.76 +0.38 +2.27 -8

where pt is the class probability of an anchor and we use
the default hyper-parameters α = 0.25 and γ = 2.

The proposal refinement loss Lrcnn includes the IoU-
guided confidence prediction loss [19] and box refinement
loss as:

Lrcnn =Liou +
∑
r2

Lsmooth−L1 (∆r2) , (10)

where ∆r2 is the residual between the predicted box and
proposal target which are encoded similarly to ∆r1 .

IV. EXPERIMENTS

A. Dataset and Evaluation

We train and evaluate our proposed BSH-Det3D on the
widely acknowledged KITTI dataset [12], which offers 7,481
samples for training and 7,518 samples for testing. Referring
to previous work such as [19], [21], we split training exam-
ples into the train set (3,712 samples) and the val set (3,769
samples). The samples are classified as three difficulty levels:
easy, moderate, and hard, the official KITTI leaderboard is
ranked on the moderate levels. We adopt AP with a 3D
overlap threshold of 0.7 as the evaluation metric of the Car
class and 0.5 for Cyclist.

B. Implementation Details

Pillarization&Voxelization. Before sending to networks,
the raw points are first encoded into pillars or voxels.
For voxelization, we clip the range of point clouds into
[0, 70.4]m for the X-axis, [−40, 40]m for the Y-axis, and
[−3, 1]m for the Z-axis. The input voxel size is set as
(0.05m, 0.05m, 0.1m). For pillarization, we define the detec-
tion range as [0, 69.12]m for the X-axis, [−39.68, 39.68]m
for the Y-axis, and [−3, 1]m for the Z-axis. We set the pillar
size to (0.16m, 0.16m, 4m).

Training. The BSH-Det3D is end-to-end optimized by the
ADAM optimizer [28] from scratch. The parameter λ in Eq.7
is set to 6.0 empirically. We train our models with a batch
size of 8 on a GTX 3090 GPU for 80 epochs. The learning
rate is initialized as 0.01 and updated by the cosine annealing
strategy. We randomly sample 128 proposals for training, and
50% of them are positive samples that have IoU>0.55 with
the corresponding ground truth boxes.

Inference. During the inference stage, non-maximum sup-
pression (NMS) is conducted with a threshold>0.7 to filter

the redundant proposals. We choose the top 100 proposals
for refinement. After refinement, NMS is applied with IoU
threshold 0.01 to remove redundant box predictions.

Data augmentation. First, we randomly sample objects
from the training data and inject them into the training
samples as [21]. Next, we randomly flip scenes along X-axis
with 50% probability. Then, we rotate each scene around Z-
axis with a random angle sampled from [−45◦, 45◦]. Finally,
we uniformly sample a scaling factor from the range of
[0.95, 1.05] and use it to scale the point cloud.

C. Evaluation Results

We evaluate BSH-Det3D for 3D detection and BEV detec-
tion benchmark on KITTI val split and test split. Correspond-
ing to the KITTI [12] protocol, we calculate the AP results
under 40 recall thresholds (R40). The evaluation results show
three major advantages of our method.

High performance. We compare our two-stage detec-
tor BSH-Det3D(Refinement) with the front runners on the
KITTI leaderboard by submitting our results to the online test
server, as illustrated in Table II. Our BSH-Det3D can effec-
tively improve detection performance and achieves balance
between accuracy and efficiency. By taking full advantage
of BEV shape knowledge, BSH-Det3D(Refinement) achieves
81.91% average precision on the moderate level of class Car
with 48ms. Our method outperforms many multi-modality
fusion-based methods, including UberATG-MMF [33], 3D-
CVF [34], and CLOCs PVCas [35], by a large margin (1.24%
to 4.48% of moderate AP and 0.21% to 7.14% of hard
AP). Compared with the LiDAR-based methods, we also
outperform the recent SOTA detectors, e.g., PV-RCNN [19],
Voxel R-CNN [18], and CIA-SSD [38] by 0.29% to 1.63% of
moderate AP and 0.30% to 4.49% of hard AP. The KITTI
test set results demonstrate that our proposed BSH-Det3D
achieves the SOTA performance on 3D object detection and
keeps the high efficiency to address shape deterioration.

Flexibility. As summarized in Table I, to demonstrate that
BSH-Det3D can generalize across models, we build BSH-
Det3D using two mainstream detectors [16], [21] imple-
mented in OpenPCDet [40]. The box refinement module is
designed based on the SECOND detector [21]. We evaluate
BSH-Det3D on Car and Cyclist categories and use the
APR40 for PV-RCNN [19] and Voxel R-CNN [18] from their



TABLE II
PERFORMANCE COMPARISON OF 3D AND BEV DETECTION OF CAR CLASS ON KITTI TEST SPLIT.

Modality Method Stage
3D Detection APR40 BEV Detection APR40 Time

(ms)Easy Mod. Hard Easy Mod. Hard

RGB+LiDAR

MV3D [29] Two 74.97 63.63 54.00 86.62 78.93 69.80 360
AVOD [31] Two 83.07 71.76 65.73 89.75 84.95 78.32 100

ContFuse [32] One 83.68 68.78 61.67 94.07 85.35 75.88 60
UberATG-MMF [33] Two 88.40 77.43 70.22 93.67 88.21 81.99 80

3D-CVF [34] Two 89.20 80.05 73.11 93.52 89.56 82.45 75
CLOCs PVCas [35] Two 88.94 80.67 77.15 93.05 89.80 86.57 100

LiDAR only

SECOND [21] One 83.34 72.55 65.82 89.39 83.77 78.59 50
PointPillars [16] One 82.58 74.34 68.99 90.07 86.56 82.81 24
PointRCNN [20] Two 86.96 75.64 70.70 92.13 87.39 82.72 100

STD [25] Two 87.95 79.71 75.09 94.74 89.19 86.42 80
Part-A2 [13] Two 87.81 78.49 73.51 91.70 87.79 84.61 80

Associate-3Det [15] One 85.99 77.40 70.53 91.40 88.09 82.96 60
3DSSD [24] One 88.36 79.57 74.55 92.66 89.02 85.86 38

PV-RCNN [19] Two 90.25 81.43 76.82 94.98 90.65 86.14 80
Point-GNN [37] One 88.33 79.47 72.29 93.11 89.17 83.90 643

TANet [39] One 84.39 75.94 68.82 91.58 86.54 81.19 35
Voxel R-CNN [18] Two 90.90 81.62 77.06 94.85 88.83 86.13 40

CIA-SSD [38] One 89.59 80.28 72.87 93.74 89.84 82.39 31
BSH-Det3D(ours) Two 88.75 81.91 77.36 92.90 90.99 86.43 48

papers and the APR40 for PointPillars [16] and SECOND
[21] are generated from the officially released code. Com-
pared to baseline methods, the BSH-Det3D detectors increase
the performance in 3D and BEV object detection by a large
margin. Results demonstrate the effectiveness and flexibility
of our method.

Efficiency. Notably, owing to the fast 2D CNN architec-
ture in PSC module and the effective fusion strategy in ADF
module, our method is quite efficient (Table I). We measure
the runtime of BSH-Det3D on an Intel i7-12700F and a
single 3060Ti GPU. The moderate AP and running speed
comparisons in the KITTI server are shown in Fig.6.

Comparing to other detectors focus on shape missing, our
one-stage detector BSH-Det3D(Pillars) is the only detector
that works in real-time (32ms). It also achieves 79.10%
AP, significantly improving the baseline PointPillars [16] by
4.76% of moderate AP. Moreover, BSH-Det3D(Refinement)
achieves comparable accuracy with the strong competitors,
i.e., BtcDet [9] and SPG [10], with only about 50% of the
running time. This verifies that the BEV shapes are almost
sufficient for shape deterioration in 3D object detection, and
the BEV shape representation is more efficient than specific
3D shapes.

Qualitative results. Some visualization results for BSH-
Det3D(Voxels) and the corresponding BEV shape heatmaps
are illustrated in Fig.7. We show detection results on three
typical KITTI scenes: City, Rural, and Highway. In compar-
ison to the baseline [21] method, we mark the advantage of
BSH-Det3D with orange arrows. In the city, objects shapes
are obscured at corner intersections, which causes missed
detection in the baseline. However, due to the guidance of
the BEV shape, the missing shapes are completed with shape
heatmaps, and all objects can get effective detection in BSH-
Det3D. In rural areas, the vehicles on the left are parked
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Fig. 6. The 3D detection performance and speed for our BSH-Det3D on the
KITTI test set compared with SOTA detectors, especially those focusing on
shapes missing. BSH-S1 and BSH-S2 show the result of BSH-Det3D(Pillars)
and BSH-Det3D(Refinement), respectively.

compactly, and the baseline [21] suffers detection drift by
limitation of points information. In comparison, by taking
pillar-wise shape estimation, shapes can be separated under
compact parking areas, and the drift box can be corrected.
Regarding highways, the vehicles driving side by side can
cause multiple occlusions, resulting in the baseline method
facing critical false detection, especially in far-range areas.
By associating shape heatmaps, our detector can provide
more descriptions of objects, significantly alleviating false
detections. In conclusion, BSH-Det3D has benefits in various
scenes, effectively suppressing missing and false detections.

D. Ablation Studies

Effect of Components. Table III details how each pro-
posed module influences the accuracy and efficiency of
our BSH-Det3D. The results are evaluated with APR40 of
moderate level for the car class. Method(a) is the one-stage
baseline that performs detection on BEV features which
runs at 25.5ms. Method(b) extends (a) with a pillar-based
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Fig. 7. Qualitative results of the KITTI val split. We select three typical scenes in KITTI: City, Rural, and Highway. We show the BSH-Det3D(Voxels)
results with corresponding BEV shape heatmaps for each scene. The advantages compared with the baseline [21] are marked with the orange arrows. The
boxes of prediction and ground truth are rendered in green and red. Results show that our method positively reduces false detections and corrects offset.

TABLE III
PERFORMANCE WITH DIFFERENT CONFIGURATIONS ON KITTI val SET.

Methods PSC GAU ADF REF 3D APR40 Time (ms)
(a) 79.94 25.5
(b) X 81.73 33.2
(c) X X 82.84 35.6
(d) X X X 83.17 35.6
(e) X X X X 85.93 48.2

shape completion module, which directly concatenates with
raw points feature and fusion by 2D convolution. The PSC
module leads to a boost of 1.79% moderate AP, which
verifies that PSC can strengthen the robustness of spatial
features. We apply pillarization and 2D CNN leading to a
decrease of 33.2ms. Method(c) replaces feature fusion with
our ADF module, which makes 1.11% AP improvement
and only an extra 2.4ms thanks to a simple yet effective
Hybird-Attention feature fusion strategy. Method(d) uses our
rendered Gaussian kernels (GAU) to counteract the noise of
shape priors during training, boosting 0.33% AP without ex-
tra cost. Method(e) is the proposed BSH-Det3D(Refinement)
by extending the one-stage detector with a box refine-
ment module combined with BEV shape knowledge. BSH-
Det3D(Refinement) achieves SOTA accuracy for 3D object
detection and maintains efficiency.

Effect on different recall thresholds. We designed an
experiment based on four intervals to further analyze how
BSH-Det3D enhances the detectors. Since the recall posi-
tions of R40 are recorded according to the sorted predicted
confidence, objects in [R1, R30] generally have low detec-
tion difficulty and retain almost complete object shapes. In
comparison, the objects of [R31, R40] usually suffer from
shape deterioration in occluded and distant areas. Thus,
our experiment evenly slices the 40 recall points into four
pieces, counts the number of true positives (TP) and false
positives (FP), then calculates the TP’s ratios (TP/(TP+FP))

TABLE IV
DETECTION OF DIFFERENT INTERVALS ON KITTI val SET.

Recall

Interval
Method

Car 3D Detection
Ration (%)

TP FP

R1-R10
PointPillars [16]

1772
23 98.72

BSH-Det3D 17 99.04 (0.32↑)

R11-R20
PointPillars [16]

3740
157 95.97

BSH-Det3D 124 96.80 (0.83↑)

R21-R30
PointPillars [16]

5709
767 88.16

BSH-Det3D 600 90.49 (2.33↑)

R31-R40
PointPillars [16]

6496
3567 64.55

BSH-Det3D 1836 77.96 (13.41↑)

in each interval. Our experiment is conducted on BSH-
Det3D(Voxels) of the KITTI val set, moderate level on Car
category. As demonstrated in Table IV, for [R1, R30], the
TP ratio of our methods has a slight improvement over
the baseline. However, for [R31, R40], the ratio of FP is
greatly reduced in BSH-Det3D, which plays a significant
role in detection performance. It can be inferred that with
the associated BEV shape heatmap, BSH-Det3D can provide
additional descriptions of objects, which is especially useful
in correcting low-confidence boxes that suffer from shape
deterioration.

V. CONCLUSION

In this paper, we demonstrate that shape deterioration is
a fundamental challenge in 3D object detection. To tackle
this, we present the novel BSH-Det3D exploiting the poten-
tial of BEV shapes to improve detection. Specifically, we
design a efficient PSC module that learns to enhance spatial
features by producing the complete BEV shapes in each
scene. Additionally, we introduce a hybrid-attention based
ADF module for adaptive feature refinement between shapes



and raw points with negligible overhead. It should also be
noted that the BEV shape heatmaps of our approach can
be easily integrated into many existing detectors in 3D point
clouds. Experimental results on the KITTI benchmark dataset
have validated the efficiency and flexibility of our BSH-
Det3D. In future work, we plan to integrate the BEV shape
completion module with RGB images to further improve the
performance.
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