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Trajectory Tracking via Multiscale Continuous Attractor Networks

Therese Joseph Tobias Fischer Michael Milford

Abstract— Animals and insects showcase remarkably robust
and adept navigational abilities, up to literally circumnavigating
the globe. Primary progress in robotics inspired by these
natural systems has occurred in two areas: highly theoretical
computational neuroscience models, and handcrafted systems
like RatSLAM and NeuroSLAM. In this research, we present
work bridging the gap between the two, in the form of Mul-
tiscale Continuous Attractor Networks (MCAN), that combine
the multiscale parallel spatial neural networks of the previous
theoretical models with the real-world robustness of the robot-
targeted systems, to enable trajectory tracking over large
velocity ranges. To overcome the limitations of the reliance
of previous systems on hand-tuned parameters, we present a
genetic algorithm-based approach for automated tuning of these
networks, substantially improving their usability. To provide
challenging navigational scale ranges, we open source a flexible
city-scale navigation simulator that adapts to any street net-
work, enabling high throughput experimentation1. In extensive
experiments using the city-scale navigation environment and
Kitti, we show that the system is capable of stable dead
reckoning over a wide range of velocities and environmental
scales, where a single-scale approach fails.

I. INTRODUCTION

Robotic navigation systems encounter several challenges:
creating efficient maps, adapting to significant environmental
changes, and long-term tracking. In contrast, biological sys-
tems have evolved efficient strategies for lifelong navigation
while performing tasks such as foraging, migration, and
homing. Neuroscience research on spatial representation has
identified some of these mechanisms that encode and inte-
grate sensory information to build spatial maps using mod-
els such as Continuous Attractor Networks (CAN) [1]–[3].
Robotics has drawn inspiration from this field and developed
algorithms such as RatSLAM [4] and NeuroSLAM [5]
that attempt to emulate some of the biological mechanisms
of spatial navigation. These systems still face significant
challenges in terms of one or more of robustness, scalability,
ease of deployment, and adaptability.

In particular, robust navigation systems should be able
to operate over a wide range of spatial scales without
incurring excessive memory usage. While most CAN nav-
igation systems use single-scale networks for 2D and 3D
spaces, a multiscale network can switch modes of operation
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Fig. 1. Overview of the Multiscale Continuous Attractor Network (MCAN)
architecture: The head direction network on the left processes angular
velocity to estimate the robot’s heading direction, which is then fed into
MCAN along with linear velocity. The MCAN integrates these inputs
at multiple scales and generates trajectory estimates – an example of a
generated trajectory is shown on the right. Note that MCAN only uses
odometry information.

according to the input scale, making them suitable for long-
term navigation.

This paper proposes a new multiscale biologically inspired
network, with the following contributions:

1) Multiscale Continuous Attractor Networks
(MCAN): Our proposed Multiscale Continuous
Attractor Networks (MCAN) is a bio-inspired neural
network architecture with multi-scale parallel spatial
neural networks building on previous theoretical
models to accurately encode a wide range of velocity
inputs and enable large scale trajectory tracking
(Figure 1).

2) A tuning method using genetic algorithms: The
reliance of previous systems on hand-tuned parameters
is overcome by presenting a genetic algorithm-based
approach for automated tuning of the MCAN and
a head direction network. This optimization method
automatically identifies high performance parameter
spaces in large CAN networks.

3) A city-scale navigation simulator: To provide chal-
lenging navigational scale ranges, we contribute a
flexible city-scale navigation simulator that adapts to
any street network, enabling high throughput experi-
mentation for evaluating path integration performance.

The paper is structured as follows: In Section II, we will
provide an overview of the brain’s navigational mechanisms,
attractor networks, and related research. Section III presents
the methodology, which explains the process of simulating
robot trajectories within city road networks, optimizing net-
work performance using genetic algorithms, and utilizing
the multiscale network architecture with attractor dynamics.
The results of extensive experiments using both the new
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simulator and Kitti are presented in Sections IV and V, where
we quantitatively compare a single-scale baseline to the
proposed multiscale system. Finally, Section VI concludes
the paper with recommendations for future work.

II. RELATED WORKS

Section II-A introduces spatial cells in the hippocampus,
including place cells, head direction cells, grid cells, and
border cells, that play a critical role in mammalian nav-
igation.Section II-B discusses the development of several
computational models that integrate linear and angular ve-
locity cues for path integration while mimicking the char-
acteristics of spatial cells. Section II-C reviews bio-inspired
robotic systems that emulate the behaviour of spatial cells
within real environments using robotic hardware. Section II-
D then presents methods for tuning CANs using optimization
techniques, and finally, Section II-E discusses simulators for
robot navigation.

A. Navigation Mechanisms in the Brain

Mammalian navigation is a complex process that involves
various spatial cells in the hippocampus, such as place cells,
head direction cells, and grid cells. Place cells [6] are neurons
that fire at unique spatial locations, representing places
within an environment. Head direction cells [7] encode
an animal’s orientation and provide information about its
heading. Grid cells [8]–[10] use a tessellated grid pattern
to integrate direction and speed, enabling efficient encoding
of large environments [11]. Border cells and object vector
cells are additional spatial cells that provide information
about the boundaries within an environment along with
the distance and direction of objects within it [12], [13].
These biological mechanisms offer an alternative to classical
robotic Simultaneous Localization And Mapping (SLAM)
algorithms by integrating sensory visual and motion cues
to update estimates of a location while building a cognitive
map of the environment.

B. Theoretic Computational Neuroscience Models

The discovery of spatial cells led to the development of
several computational models that can integrate linear and
angular velocity cues for path integration while mimicking
the characteristics of spatial cells. Attractor networks were
proposed to model head direction [14] using neurons in a
ring structure with a stable bump of activity, which shifts
based on angular velocity inputs. They were also used to
model grid cells with 2D CAN models that combine head
direction and speed for shifting activity bumps with toroidal
connections at the boundary [3], [15], [16].

Early works [17]–[19] implemented attractor models with
unsupervised learning, while supervised models [2], [20]
incorporated learning rules or error signal feedback. Other
models [1], [10], [21] have used backpropagation and archi-
tecture constraints to form computational navigation models.

Although these theoretical models cannot fully replicate
the complexity and nuance of how the brain solves nav-
igational problems, they offer valuable insights into the

computations that the brain employs for integration, error
correction, and learning [22].

C. Bio-inspired Robot Navigation

The discovery of navigational mechanisms in the brain
also resulted in algorithms that emulate the behaviour of
spatial cells in physical robotic hardware, demonstrating
navigational capabilities through bio-inspiration. Early works
include [4], [23], [24] which rely on place cells along with
curated mechanisms like “view cells”, “transition cells” and
“pose cells” based on standard robotics principles. Exten-
sions of these works include NeuroSLAM [5] which extends
RatSLAM [4] to a 3D space and [25] which corrects absolute
heading using polarization of light as seen in Desert Ants.

Grid cell mechanisms have also been the basis for numer-
ous multiscale systems in robotics such as the large-scale
aerial mapping system developed by Hausler et al. [26],
a grid-cell inspired place recognition system that utilizes
homogeneous maps at varying scales [27], and a system for
multiscale path integration in 3D for unmanned aerial vehi-
cles (UAVs) [28]. These systems demonstrate the potential of
grid cell-based models for solving complex tasks in different
domains.

D. Tuning CANs

Existing methods for tuning CANs have relied on either
optimization techniques or hand-crafted network parameters
to achieve stable activity that integrates input signals accu-
rately. In early works, DeGris et al. [29] used a Genetic
Algorithm to fine-tune 1D CAN networks in a spiking
neuron model. Dall’Osto et al. [30] proposed an automatic
calibration method utilizing global optimization methods,
while Menezes et al. [31] presented an iterative closest point
algorithm for automatic tuning of RatSLAM. More recently,
Fox et al. [32] proposed a new evolutionary dynamic op-
timization method for shifting attractor peaks, along with
a benchmark suite. However, with the growth of network
complexity in scale and dimension, optimizing additional
parameters becomes increasingly challenging.

E. Simulators for Robot Navigation

Simulations play a crucial role in enabling rapid experi-
mentation and development of any system. OpenStreetMap
(OSM) is a crowd-sourced map that includes road network
information obtained from portable GPS devices, and it has
been used in several systems. For example, Brubaker et
al. [33] performed self-localization using OSM maps and
visual odometry. Fleischmann et al. [34] used OSM paths
to assess the quality of GNSS signals during navigation. Li
et al. [35] combined OSM road network paths with onboard
sensors for path tracking. By integrating OSM maps with
other data sources, these systems showcase the versatility
and potential of OSM in various applications and motivated
the simulation developed within this work.



III. METHODOLOGY

Our work aims to enhance the ability of robots to nav-
igate through large-scale environments by introducing a
new multiscale extension to continuous attractor models.
In Section III-A, we describe the dynamics of the 2D
attractor network, which serves as the foundation of our
approach. We then present the multiscale network extension
in Section III-B, which enables the network to handle large-
scale velocity inputs and accurately track trajectories over
extended periods. Additionally, we introduce the head direc-
tion network in Section III-C, which processes the robot’s
heading direction information and feeds it into the multiscale
network. To further improve the usability and performance of
our approach, we employ a genetic algorithm-based tuning
approach, which is detailed in Section III-D. Our methodol-
ogy is evaluated in a new city-scale navigation simulator that
we introduce in Section III-E, providing a comprehensive
evaluation of our approach’s ability to track motion through
a range of large, varied street networks.

A. Attractor Dynamics

Attractor networks are widely used in neural modelling
[5] [4] [22] due to their ability to represent and maintain
stable patterns of activity, even in the presence of noise and
input variability. In this subsection, we describe the attractor
dynamics used in our model, which is based on a 2D grid of
neurons with recurrent excitatory connections. Specifically,
a 2D attractor network X is defined as an Nx ×Ny grid of
neurons.

1) Initilization: At the beginning of the simulation, the
neurons in the attractor network are initialized using a 2D
Gaussian function with standard deviation (σx, σy), which
determines their initial state of activation. We initialize the
activity in an A×A region centred around neuron (x0, y0),
resulting in the following activation profile:

G(i, j) = exp

(
− (i− x0)

2

2σ2
x

− (j − y0)
2

2σ2
y

)
(1)

X(0, i, j) =


G(i, j), if i ∈ [x0 −A, x0 +A],

j ∈ [y0 −A, y0 +A]

0, otherwise
(2)

2) Network update: At the end of each time step δt,
the activity of each neuron is divided by the L2 norm of
the activity across the entire network. This ensures that the
maximum magnitude of the activity vector is always one and
prevents explosive activity growth:

X(t+ δt, i, j) =
X(t, i, j) +Cf (i, j) + ϵ(i, j)− µ

∥X(t, i, j) +Cf (i, j) + ϵ(i, j)− µ∥ (3)

In this equation, the numerator represents the total input
to each neuron, which is the sum of its current activity
X(t, i, j), the activity of neurons shifted into its place field
based on the input velocity Cf (i, j), the excitation caused
by nearby active neurons ϵ(i, j), and the global inhibition
term µ.

3) Copying and shifting the activity packet: After ini-
tialization, the attractor network is updated by injecting the
activity of active neurons back into the network with an
integer offset αx and αy corresponding to the input velocity,
which shifts the activity packet across the grid. To achieve
this, we copy the weights C of active neurons (i.e., those
with an activity greater than zero) into the network, with
wraparound connections at the edges. Specifically, we use
the following equation:

C(i′,j′) =

{
X(t,i,j), if C(i′,j′) > 0,

0 otherwise,
(4)

where (i′, j′) is the shifted position of the active neuron
(i, j), computed as (i′, j′) =

(
(i + αx) mod Nx, (j +

αy) mod Ny

)
.

4) Fractional shifts: In addition to integer shifts, the
attractor network can also handle fractional shifts, which
allow the activity packet to move more smoothly across the
grid. To achieve this, we use linear interpolation to modify
the copied weights C(i, j) with a fractional offset amount
αf and a confidence parameter γ, resulting in the following
fractional copy function:

Cf (i, j) = γ
(
(1− αf ) ·C(i, j)

+ αf ·C((i+ 1) mod Nx, (j + 1) mod Ny)
)
.
(5)

5) Excitation: After the activity packet has been shifted
across the grid, the active neurons excite a region of size
E × E (such that E represents the excitation radius), with
the strength of the excitation being scaled by the weight, Wn,
of each neuron. Specifically, we use a 2D Gaussian function
to compute the excitation ϵ(i, j) of neuron (i, j), resulting
in the following expression:

ϵ(i, j) =

Nx×Ny∑
n=1

Wn · exp
(
− (i− xn)

2

2σ2
x

− (j − yn)
2

2σ2
y

)
.

(6)
As for the initialization, if the neuron index is outside the
range xn − E < i < xn + E and yn − E < j < yn + E,
then the activity is set to 0.

6) Inhibition: To prevent the network from explosive
activity growth, a global inhibition term is applied. The
global inhibition µ that is applied to each neuron is computed
by summing the activities of all neurons and scaling the result
by an inhibition factor ϕ:

µ =

Nx∑
i=1

Ny∑
j=1

Xi,j × ϕ. (7)

This inhibition term acts as a normalizing factor, reducing
all neurons’ activity when the total network activity becomes
too high.

B. Multiscale Attractor Network

The multiscale attractor network builds upon the capabil-
ities of the single-scale attractor network by incorporating



multiple 2D networks, each with its own unique scale
resolution. This allows the network to capture information
at various scales, which is especially relevant in spatial
navigation where the agent’s velocity can span a large range.
By selecting the input network with the closest spatial
resolution to the agent’s speed, the network can effectively
integrate motion information using attractor dynamics and
enable accurate position tracking.

1) Storing network wraparound: Continuous attractor
networks in 2D have toroidal manifolds, i.e. the surface
wraps around and reconnects with itself in the x and y
dimension, forming a seamless and continuous space that
has a torus or donut shape. This enables more efficient
computation as neurons on the edge can receive input from
the opposite edge. However, the toroidal manifold of the
network poses a challenge in terms of preventing decoded
position reset when activity wraps around an edge. By storing
the distance travelled in wraparound buffers, our algorithm
ensures that the agent’s position is accurately updated when
the activity wraps around an edge, preventing position reset
and enabling smooth navigation in the environment.

For example, if the decoded x position from the network
decreases while the agent is facing right (270 < θ < 90),
the wraparound buffer is incremented by the network size
to store the magnitude of the position reset. Similarly, if the
decoded x position from the network increases while the
agent is facing left (90 < θ < 270), the wraparound buffer
is decremented by the network size. In the 2D network, two
wraparound buffers are used to store the distance travelled
in x and y dimensions.

2) Position decoding: The final step in the process is
to decode the estimated position of the agent using the
combined activity of all networks and the wraparound buffer.
This is accomplished by taking the circular mean of the
most active neuron’s row and column, with each network’s
activity weighed by its corresponding scale resolution. The
resulting position estimation is therefore a combination of
the information captured at different scales, resulting in a
more accurate representation of the agent’s true position.
Specifically, the decoded position of M networks, each of
size N and scale s is:

D =

M∑
j=1

s(j) · N

2π
atan2

( N∑
i=1

Wi sin(i
N

2π
),

N∑
i=1

Wi cos(i
N

2π
)
)
,

(8)
where N is Nx for decoding the x position and Ny for
decoding the y position, as defined previously.

C. Head Direction Network

The head direction network plays a crucial role in the
navigation system and is also modeled by a continuous
attractor network, which is a well-established computational
model in the field of neuroscience [7], [14]. It has a 1D ring
structure, and similar to the 2D system, it uses the same
tuning parameters (A,E, γ, ϕ) and attractor dynamics. At
the beginning of the simulation, the 1D attractor network

is initialized with a 1D Gaussian of radius A. The activity in
the network is updated by shifting activity packets scaled by
γ. Excitation and inhibition are applied with radius E and
inhibition factor ϕ, respectively. The activity in the network
is normalized after each update to maintain a stable firing
rate.

The network estimates the current heading angle of the
agent using the circular mean method. The circular mean is
calculated by taking the weighted average of the cosine and
sine of the firing angles of the neurons in the network. This
method is used to ensure that the direction estimate is robust
to circular data, where the values wrap around after reaching
the maximum or minimum value. Overall, the head direction
network provides an estimate of the agent’s heading angle,
which is used in conjunction with the multiscale attractor
network to update the agent’s position.

D. Network Tuning with Genetic Algorithm

To ensure stable dynamics and accurate velocity integra-
tion, the continuous attractor network parameters activation
radius A, excitation radius E, motion confidence γ, and
inhibition factor ϕ must be carefully tuned. We use a genetic
algorithm [36] to automate this tuning process. Genetic
algorithms are a type of optimization algorithm that is
commonly used to explore the fitness landscape of a set
of parameters and find the optimal solution. The goal of
the tuning process is to ensure that the attractor network
exhibits stable dynamics and accurate velocity integration.
Each parameter has an operating range that is dependent on
the network size and the number of dimensions.

To explore the fitness landscape, the genetic algorithm
generates an initial population of potential solutions with
varying parameter values. The fitness function is evaluated
for each member of the population, and the fittest individuals
are selected to be the parents of the next generation. The
algorithm then creates three children from the fittest parents
by mutating their genes with a mutation probability. This
is further detailed in Algorithm 1. Fitness is evaluated in
parallel at the start of each generation to reduce computing
time.

The fitness function used in this case evaluates the per-
formance of the attractor network in integrating velocity
information and providing accurate estimates of position and
heading. The velocity is sampled from a uniform distribution
within a desired operating range to avoid overfitting to a
specific input trajectory.

Overall, the genetic algorithm provides an automated
way to fine-tune the parameters of the continuous attractor
network, which is essential for the system to work accurately
in a variety of environments.

E. City Scale Navigation Simulator

Our City Scale Navigation (CSN) simulator is a tool
used to evaluate the performance of our proposed system
in realistic scenarios. The simulator generates trajectories
based on real-world road networks within a 10km × 10km
region from major cities. This enables the evaluation of the



Data: population P , population size N , fitness
function f , mutation rate rm, gene ranges ρ,
mutation amount µ

Result: Fittest Child Genome [A,E, γ, ϕ]
Generate initial population;
while generation < max generation do

fitnesses← f(Pi) ∀i ∈ P ;
parents← top 25% of P ordered by fitnesses;
Clone each parent into three children;
for g ∈ children do

if U(0, 1) < rm then
g ← [g(i)+N(0, µ), ∀i ∈ [1, c.size]];
repeat until c is within ρ;

end
end

end
Algorithm 1: Tuning Attractor Networks parameters ac-
tivation radius A, excitation radius E, motion confidence
γ, and inhibition factor ϕ with a Genetic Algorithm

system’s ability to navigate through complex and dynamic
urban environments. The simulator extracts road network
data from Open Street Maps to generate an occupancy map
consisting of traversable, realistic roads. The occupied cells
in the map represent the drivable areas of the road network. A
path-finding distance transform algorithm [37], is then used
to find the optimal route between two randomly generated
points on the road map.

Once the sample paths are generated, they can be traversed
using the kinematics of a bicycle motion model [38], which is
a common model used in the navigation of ground vehicles.
During the traversal of the paths, motion information such
as linear and angular velocities are recorded. This motion
data is then used to evaluate the performance of the system,
such as the accuracy of the estimated position and heading,
the stability of the continuous attractor network, and the
effectiveness of the buffer to prevent position resetting.

IV. EXPERIMENTAL SETUP

A. Implementation Details

The MCAN trajectory tracking system was implemented
in Python3 using standard libraries. The head direction
network consists of 360 neurons that were tuned using a
genetic algorithm to accurately integrate angular velocity
inputs to produce an estimate of agent orientation. The
2D networks in the multiscale system was generated with
100×100 neurons and 4 scales with scale ratios incremented
by a factor of 4, i.e., (0.25, 1, 4, 16). This was suitable for
the desired operating range of 0-20 m/s (0-72 km/h). For
a fair comparison, the single-scale CAN was implemented
with 200x200 neurons, so both systems had a total of 40000
neurons.

The CANs were tuned using 24 genomes mutated and
evaluated for 20 generations with 14 parallel processes for
fitness evaluation. Based on the network size, the parameter

TABLE I
COMPARISON OF ATE PER METER

Dataset Single-scale Multiscale
Tokyo (CSN simulation) 1.093 ± 0.110 0.068 ± 0.010
New York (CSN simulation) 0.893 ± 0.137 0.070 ± 0.028
Brisbane (CSN simulation) 0.934 ± 0.102 0.070 ± 0.019
Berlin (CSN simulation) 0.896 ± 0.166 0.046 ± 0.021
Kitti (odometry) 0.136 ± 0.138 0.041 ± 0.026

ranges were set to A ∈ [1, 10], E ∈ [1, 10], γ ∈ [0, 1], and
ϕ ∈ [0.00001, 0.005].

B. Datasets

The performance of our system was evaluated on the
City scale navigation simulator (Section III-E) and the Kitti
Odometry dataset [39], which is commonly used to bench-
mark robotic systems. The navigation simulator was used
to generate trajectories based on road networks within a
10 km × 10 km region from Tokyo, Berlin, Brisbane, and
New York. These road maps were converted into occupancy
grids, and a path-finding distance transform algorithm from
the Robotics Toolbox for Python [37] was used to find an
optimal route between two points on the road map. Our city
scale simulator was used to generate paths through Tokyo,
Brisbane, Berlin and New York, covering distances of 38
km, 70 km, 167 km, and 63 km, respectively. Using both
the simulator and the Kitti Odometry dataset, we evaluated
the proposed system in a variety of realistic scenarios.

C. Evaluation Metrics

Our networks were evaluated using the Absolute Tra-
jectory Error (ATE), which is a common metric used in
trajectory estimation systems [40]. ATE is defined as the
Root Mean Square Error (RMSE) between the estimated and
desired trajectory after alignment. In order to ensure a fair
comparison between different datasets, ATE was averaged
over the total distance, resulting in ATE/meter. While we
used ATE to evaluate the performance of our networks, we
utilized the Sum of Absolute Differences (SAD) method [41]
during the tuning process to measure the fitness of the
networks.

V. RESULTS AND DISCUSSION

This section provides a comparison of single-scale CAN
versus the proposed multiscale system. We evaluate the
performance of our system on multiple trajectories generated
from simulation and existing datasets in Section V-A. This
is followed by an analysis of the tuning mechanism in
Section V-B.

A. Comparison of Multiscale versus Single-Scale

Our experiments demonstrate that incorporating a multi-
scale system can lead to significant performance enhance-
ments on the standard CAN model. Table I presents the av-
erage translational error (ATE) for the single-scale CAN and
our proposed MCAN model on five different datasets. We
observed that the ATE for MCAN was orders of magnitude
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Fig. 2. Comparison of trajectory tracking (in meters) between single-scale
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Fig. 3. A Comparison between multiscale and single-scale attractor
networks models on Berlin City Scale Navigation Simulation dataset. The
two networks are tested on 20 trajectories with increasing velocity ranges
to evaluate the invariance to velocity within the multiscale network.

lower than that of the single-scale baseline, with improve-
ments evident across all tasks. The City Scale Navigation
simulations showed the most significant difference between
MCAN and CAN, likely because of their more extensive
range of input velocities. On the Kitti dataset, MCAN
showed performance improvements specifically in areas of
the path with higher velocities and minor improvements in
the other regions, as depicted in Figure 2.

Furthermore, we evaluated the impact of the input velocity
range on the performance of the single-scale and multiscale
systems. Figure 3 shows the ATE for different velocity ranges
for the OSM simulation dataset. We can observe that the
ATE of the single-scale network increases linearly with the
velocity range, whereas the ATE of the MCAN increases
with a smaller gradient. This demonstrates that MCAN can
handle varying velocity ranges and maintain high accuracy,
even when faced with challenging trajectories, generated
from the tracks seen in Figure 4.

Brisbane Berlin

Tokyo New York

Fig. 4. Maps generated from the City Scale Navigation Simulation used
to generate test trajectories: Brisbane, Berlin, Tokyo and New York, with
colours representing the road speeds in each city. For example, the highways
in Brisbane are shown in orange while the residential roads are in purple.

Figure 5 provides further insights into the behaviour of
MCAN. It shows track segments from the Berlin CSN
simulator with increasing tracking errors. Trajectories with
multiple 90-degree turns have increased errors in comparison
to trajectories with smaller turns.

However, these errors are orders of magnitude less than the
single-scale model. An example of this is in Figure 6, where
the error accumulates up to 10000 meters within the single-
scale run and MCAN has a maximum error of 450 meters
with less accumulation of error over time. This is further
supported by Figure 7 where the MCAN error is consistently
lower in all 18 tracks through Berlin.

B. Tuning Performance

The genetic algorithm tuning procedure was successful in
achieving good performance despite the added complexity of
multiple interacting models. Both heading direction (1D) and
multiscale (2D) tuning converged after about 3 generations,
as shown in Figure 8. The multiscale tuning had limited
fitness improvements after generation 2, suggesting that
either there is an upper limit on what fitness is realistically
possible or that the algorithm is prone to getting stuck in
local optima.

VI. CONCLUSIONS AND FUTURE WORK

In conclusion, our proposed multiscale architecture, cou-
pled with the genetic algorithm tuning procedure, provides
a step forward in making bio-inspired systems work with
both large scale simulated and real-world data and capable
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Fig. 6. ATE error over time for single-scale and multiscale networks
integrating velocities ranging from 0-20m/s for a single trajectory from the
Berlin City Scale Navigation Simulation dataset. Note the scale difference
between plots.

of handling large velocity ranges. This is a key step towards
making bio-inspired networks competitive with conventional
robotic navigation systems.

Through the development of a multiscale cognitive ar-
chitecture, we were able to significantly enhance the per-
formance of the continuous attractor model. Our approach
results in a system capable of handling a wide range of
velocities and complex environments. The proposed genetic
algorithm tuning procedure allowed for efficient and effective
optimization of network parameters, reducing the need for
manual tuning and increasing the scalability of the system.
Our results show that the genetic algorithm can successfully
optimize both the heading direction and multiscale parame-
ters, leading to improved performance in navigation tasks.

While our proposed system has shown promise, there is
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Fig. 7. Average Trajectory Error (ATE) within local segments of simulated
trajectories through Berlin. The trajectories are realigned after each segment
so the error doesn’t accumulate across trajectories. The multiscale error
ranges from 0-500m; whereas, the single-scale ranges from 0-11000m.
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Fig. 8. Fitness evolution of the head direction network [left] and Multiscale
Network [right] over 20 generations. Here the fitness is displayed as -SAD
which approaches 0 over generations, as the algorithm converges.

potential for future work to address some existing limitations.
One limitation is the absence of landmarks or memorized
locations of previously visited areas, which means errors
could eventually accumulate without a corrective mechanism.
Integrating a loop closure component will move this from a
dead reckoning system to a full mapping and localization
system. Although we conducted extensive simulation exper-
iments drawing upon real world city networks as well as
real-world data from Kitti, further live experimentation on
deployed robot platforms will provide insights that can drive
and inform future model development.
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