
Multi-agent Collective Construction using 3D Decomposition

Akshaya Kesarimangalam Srinivasan1, Shambhavi Singh2, Geordan Gutow3, Howie Choset4 and Bhaskar Vundurthy5

Abstract— This paper addresses a Multi-Agent Collective
Construction (MACC) problem that aims to build a three-
dimensional structure comprised of cubic blocks. We use cube-
shaped robots that can carry one cubic block at a time, and
move forward, reverse, left, and right to an adjacent cell of
the same height or climb up and down one cube height. To
construct structures taller than one cube, the robots must build
supporting stairs made of blocks and remove the stairs once
the structure is built. Conventional techniques solve for the
entire structure at once and quickly become intractable for
larger workspaces and complex structures, especially in a multi-
agent setting. To this end, we present a decomposition algorithm
that computes valid substructures based on intrinsic structural
dependencies. We use Mixed Integer Linear Programming
(MILP) to solve for each of these substructures and then
aggregate the solutions to construct the entire structure.

Extensive testing on 200 randomly generated structures
shows an order of magnitude improvement in the solution
computation time compared to an MILP approach with-
out decomposition. Additionally, compared to Reinforcement
Learning (RL) based and heuristics-based approaches drawn
from the literature, our solution indicates orders of magnitude
improvement in the number of pick-up and drop-off actions
required to construct a structure. Furthermore, we leverage
the independence between substructures to detect which sub-
structures can be built in parallel. With this parallelization
technique, we illustrate a further improvement in the number
of time steps required to complete building the structure.
This work is a step towards applying multi-agent collective
construction for real-world structures by significantly reducing
solution computation time with a bounded increase in the
number of time steps required to build the structure.

I. INTRODUCTION

There is a growing class of applications in which robots
are used to assemble and construct structures [3]. Some
robotics technologies for on-site building construction [18]
include additive manufacturing [19], automated robotic as-
sembly [20], and bricklaying [21]. It is particularly relevant
in settings like open pit mining and extraterrestrial or un-
derwater construction where human presence is difficult or
dangerous [5][22][23][24]. Delegating construction to robots
in these scenarios can thus be beneficial. Automation can

*This work was not supported by any organization
1Akshaya Kesarimangalam Srinivasan is a Masters student in the Robotics

Institute at Carnegie Mellon University, USA
2Shambhavi Singh is an intern in the Robotics Institute at Carnegie

Mellon University, USA, and a student at Birla Institute of Technology
and Science, Pilani, India

3Geordan Gutow is a Postdoctoral fellow in the Robotics Institute at
Carnegie Mellon University, USA

4Howie Choset is a Professor with the Robotics Institute at Carnegie
Mellon University, USA

5Bhaskar Vundurthy is a Postdoctoral fellow in the Robotics Institute at
Carnegie Mellon University, USA

also improve construction speed, and efficiency [4]. In these
applications, teams of smaller robots are often more effective
than a few larger robots as they are cheaper, easier to deploy,
and facilitate more parallelization [2][3][25].

(a) Input structure (b) Structural decomposition

(c) Ordering of substructures (d) Parallelizable construction

Fig. 1: Visualization of our solution to the MACC problem.

The multi-agent collective construction (MACC) problem
aims to construct a given three-dimensional structure using a
set of robots in a grid world in the minimum number of time
steps [1]. Previously the MACC problem has been solved us-
ing optimization [1], heuristics [2][9], [10], or Reinforcement
Learning (RL) [6], [11]. All of these approaches have severe
limitations. Although [1] finds an optimal solution, it has a
very high solution computation time, even for some simple
structures. [2] requires less computation time but provides
high-cost solutions. While the approach taken in [6] is cheap
to evaluate on a novel structure, it requires large amounts
of training data and does not reliably produce the desired
structure.

We present our work on decomposing an input structure
into substructures and using an existing Mixed Integer Linear
Programming (MILP) formulation [1] for each substructure
to find good-quality solutions in a reasonable amount of time.
This is conceptually visualized in Fig. 1.

Our main contributions are as follows:
1) An algorithm to decompose an input structure into

ar
X

iv
:2

30
9.

00
98

5v
1

 [
cs

.R
O

]
 2

 S
ep

 2
02

3

substructures whose construction may be planned in-
dependently

2) An algorithm to find an order in which the substructures
can be built

3) An approach to leverage dependency between substruc-
tures to identify those that can be built simultaneously

4) Extensive numerical results demonstrating the compu-
tational improvements over existing methods

The problem formulation is presented in section II. Then,
existing approaches to the multi-agent collective construction
problem are outlined in section III. Section IV presents the
decomposition and bottom-up planning algorithms proposed
to solve this problem. The extension of the algorithm to
parallel construction is described in section IV-C. Section
V provides numerical results demonstrating the approach’s
effectiveness. Section VI presents some conclusions and
possible directions for future work.

II. PROBLEM FORMULATION

Similar to [1], the MACC problem in this work is set in a
3D grid world with two principal components: a predefined
structure comprised of cube-shaped building blocks and
block-sized robots. The robots collaboratively construct the
structure by moving these blocks using any of the following
permissible actions in a given time step:

1) Move to a free cell in the four compass directions
2) Climb up or down one block height to an adjacent

occupied cell
3) Pick up or place a block at an adjacent cell of the same

height
The standard rules of gravity apply to all the blocks, and

it is assumed that robots always interact with the topmost
blocks. In order to access a cell not surrounded by blocks
of the same height, the robots construct scaffolding. All
scaffolding must be removed after the completion of the
entire structure. We further assume an unlimited supply of
blocks at the boundary of the grid world and disregard any
movement of the robots outside the grid world. In other
words, the robots that exit the grid world can enter from any
boundary cell in the next time step. The world is initially
empty, and the robots start and finish outside the grid world.

This work discusses time-efficient algorithms to obtain a
sequence of actions for N robots to collectively construct
a predefined structure. We present a comparison of our
solutions with state-of-the-art via the following metrics:
• Computation Time: Time taken to compute the action

sequence for building the structure
• Makespan: Total number of time steps to complete

building the structure
• Sum of costs: Total number of actions for N robots to

build the structure

III. RELATED WORKS

Multi-agent collective construction has been explored in
both two [8] and three-dimensional worlds with varying types
of agents and construction blocks. For instance, [3] uses a

team of quadrotors to build structures made of beams and
columns. Harvard’s TERMES project, on the other hand,
addresses the problem with homogeneous blocks and agents
[4]. They show how teams of smaller robots are effective at
collectively building structures much larger than themselves.
The TERMES project inspired several works that proposed
ways to find a sequence of actions for TERMES-like robots
to build structures.

[2] solves the problem by performing dynamic program-
ming on a minimum spanning tree that spans the cells of the
weighted workspace and restricts the agent’s movements to
the edges of this tree. This planning method minimizes the
number of pick-up and drop-off operations but is restricted
to the single agent case. [7] extends this to multiple agents
by parallelizing the action sequence. It performs a local
search to find a more cost-efficient spanning tree using a
recursive algorithm. However, this increases the algorithm’s
complexity, and the solution is still not optimal.

The distributed multi-agent reinforcement learning algo-
rithm used in [6] extends single-agent advantage actor-critic
to enable multiple agents to learn a homogeneous, distributed
policy. The learned policy is tested with swarms of various
sizes on structures not seen during the nine days of training.
Although this approach is complete, some structures were
not built accurately. Moreover, the makespan of the test
structures was 100 times more than the minimum possible
makespan found by optimization approaches.

The work most closely related to the current effort is the
optimization approach presented in [1]. The MACC problem
is solved using MILP or Constraint Programming (CP). The
MILP model treats all robots as one flow through a time-
expanded graph. Each decision variable defines the action
the robot took and if it was carrying a block at that time
step. The dynamics of the world are modeled as constraints
for the set of decision variables. The formulation also models
each cell in the workspace as pillars that aim to reach their
target height. The CP approach uses a simpler network flow
structure than the MILP approach. CP models the specifica-
tions of the world, such as the vertical dimension, actions,
and block-carrying state, as logical and element constraints
that better exploit the strength of CP. Both formulations use
an objective function that minimizes the sum of costs and
externally minimizes makespan. The MILP model computed
the globally optimal makespan and the optimal sum of costs
for a particular makespan. Both optimization models found
feasible solutions to the six test instances with makespans
less than 20. However, the MILP formulation required less
computation time than the CP formulation. The approach
presented in Section IV calls this MILP formulation as a
subroutine.

The low makespans of the structures studied in [1] indicate
that small structures are simple to construct as they do
not need large makespans. However, even for some of the
six small structures, the optimization models needed more
than five days to compute a solution. As will be further
demonstrated in section V, the MILP solution computation
time is excessive for complex structures requiring longer

makespans to complete construction. This emphasizes the
need to find approaches with a practical solution computation
time for structures of varying complexity.

There has been some work, including [15], [14] for solving
these large MILP problems. [14] uses a two-level approach to
make large MILP problems tractable. It first coarsens binary
variables to reduce the number of variables in the MILP
problem and forms a semi-coarse model. It then aggregates
constraints by partitioning them into groups and adding the
violated constraints to the semi-coarse model iteratively till
all the constraints in the full model are added. Inspired by
3D model decomposition work [16], this paper reduces the
number of variables in the MILP problem by solving for one
substructure at a time. Constraints are aggregated at each
stage to represent the intermediate structure to be built.

IV. APPROACH

In this section, we propose a decomposition algorithm to
break down predefined structures into simpler substructures.
We then determine an order in which it is possible to
build the substructures and utilize Mixed Integer Linear
Programming (MILP) to compute an optimal sequence of
actions for every substructure [1].

A. Structural Decomposition

In a 3D grid world of dimensions (X×Y ×Z), we denote
predefined structures using z̄(x,y) where z̄ indicates the
height of the topmost block at every grid location (x,y),
x,y,z, z̄≥ 0 and x≤ X ,y≤Y,z≤ z̄≤ Z. We begin by ensuring
that all predefined structures are valid and performing a
similar check for substructures.

Definition 1: A structure is considered to be valid if, for
every block of the structure at height z (z > 1), there exists
a block at height (z−1).

Definition 1 ensures that any movement in the blocks is
achieved only through the robots’ permissible actions. A
valid structure always has a sequence of permissible actions
that constructs the structure. It is worth noting that the
robots can utilize blocks at a lower height as scaffolding
for higher blocks. Such an action minimizes duplication of
efforts from building temporary scaffolding for every block
in the structure. As a result, it is preferable to ensure that
any useful blocks (for scaffolding) are part of the same
substructure as the higher block under consideration. We use
the notion of a shadow region to identify the relation between
neighboring blocks and identify substructures.

Definition 2: For a tower of height z located at (x,y), all
cells (x′,y′,z′) s.t.

|x− x′|+ |y− y′|< h

and
z′ ≤ h− (|x− x′|+ |y− y′|)

are part of the shadow region of the tower.
Substructures are inherently associated with a specific

order in that the validity of a substructure depends on which
substructures are already present.

Definition 3: Consider a set of substructures represented
by S1 to Sd where ′d′ is the number of substructures.
Let

⋃
i=1,2,··· , j−1 Si be a valid structure. Then S j is a valid

substructure if
⋃

i=1,2,··· , j Si is also a valid structure.
In the context of our problem, we define the basin of

attraction of a tower of height h in the structure to be all
cells in the shadow region of that tower. Equivalently, all
the structure blocks that can help build a tower by acting as
direct support or scaffolding are part of its basin of attraction.

The decomposition algorithm iterates through the towers
in the input structure in decreasing order of height. At each
step, the blocks in the shadow region of the tower that are
not already part of another substructure become part of its
substructure. This decomposition algorithm is described in
Algorithm 1.

Algorithm 1: Decomposition using basins of attrac-
tion

1 (X ,Y ,Z) ← grid world dimension;
2 z̄ ← input structure;
3 towers ← non-zero z̄ elements in decreasing order;
4 Initialize the set of all substructures, sub = ∅;
5 for h in towers do
6 if Topmost block of tower h already in a

substructure then
7 continue;
8 end
9 Initialize substructure of h,subh ← ∅;

10 Shadow indices, sidx ← grid cells in shadow
region of tower h;

11 for s in sidx do
12 if s not in any substructure then
13 add s to subh;
14 end
15 end
16 Add subh to sub;
17 end

Theorem 1: Each substructure in the order they are found
by algorithm 1 is a valid substructure.

Proof of Theorem 1 is omitted in this paper for brevity.

B. Bottom Up Planning

Consider the example shown in Fig. 1. Algorithm 1
identifies five substructures (see Fig. 2), and hence there are
120 different possible orders in which the substructures can
be constructed. However, building all substructures will not
be possible in some of those orders. For example, consider
building the substructures in the order of (2),(4),(5),(1), and
(3). This is not possible as (4) requires (1) to be built
before it, and (3) cannot be built once (1), (2), (4), and
(5) are constructed. Hence, the order of construction of the
substructures is not trivial.

To find an order of construction of substructures, i.e.,
a sequence of substructures, we define the traversability

Fig. 2: Substructures identified by Algorithm 1

property of substructures. As with validity, this is depends
on which other substructures are already present.

Definition 4: A substructure is traversable if, for every
block in the substructure, there exists a feasible path from
the boundary to at least one neighbor cell at the same
height as the block in the presence of previously constructed
substructures.

Definition 5: A feasible path is a sequence of permissible
actions, not including picking up blocks from previously
constructed substructures.

Lemma 1: If there is no neighbor cell at the same height
as a block to be placed in a substructure, as a consequence
of Algorithm 1, there will always be enough space to build
a scaffolding of the required height.

The proof of Lemma 1 is omitted in this paper for brevity.
Definition 6: A sequence of substructures is feasible if

∀i ∈ 1, · · · ,d, Si is traversable and
⋃

k=1,2,··· ,i Sk is a valid
structure.

Obtaining a feasible sequence of substructures is treated as
an assembly sequencing problem where the substructures are
the components, and the input structure is the final product.
The key idea is to build substructures in the reverse order
in which they can be removed/disassembled from the goal
structure while leaving at every step a valid structure. Such an
order is obtained via a bottom-up planning algorithm inspired
from [12], [13], presented in Algorithm 3.

Remark 1: Henceforth, the index of a substructure refers
to the order in which the decomposition algorithm found the
substructures.

To find the order in which substructures can be removed,
we need to check if each block in a substructure is removable.
From the problem formulation:

1) To remove a block at (x,y,z), there should be no block
at (x,y,z+1)

2) To pick up a block at (x,y,z), the robot needs to be at
a neighbor cell of (x,y) at the same height z

3) If there are no neighbor cells at height z, it needs to
have enough space to build scaffolding to height z

These conditions can be reduced further. Condition 3 is
always satisfied by algorithm 1 as stated in Lemma 1.

Thus, the necessary and sufficient conditions to check if
a substructure is removable can be reduced to two:
(a) No block in the substructure should have a block from

another substructure on top of it
(b) There is a traversable path for a robot from outside the

grid to at least one of the neighboring cells for each
of the blocks in the substructure, i.e., the substructure
should be traversable in the current state of the envi-
ronment

Condition one implies that the only blocks allowed to be
on top of a block b in substructure S are blocks that are
part of S too. Thus, the top blocks will be removed while
removing S, ensuring block b is removable. This yields a
notion of dependence between substructures:

Definition 7: A substructure Si is said to be dependent
on substructure S j, (denoted Si −→ S j) if

⋃
k=1,2,··· ,i

k ̸= j
Sk is not

a valid substructure.
To check condition 2, a traversability matrix is constructed

at every stage, considering all the substructures yet to be
removed. The (i, j)th element is 1 only if the (i, j) location is
reachable from outside the grid. This is determined using dy-
namic programming starting from the boundary cells (which
are always reachable). Every subsequent cell is reachable if
a neighboring cell is reachable and the neighbor has a height
difference of less than two from the cell (as the robots can
only climb or descend one cube height at a time). Once this
matrix is obtained, contour polygons of unreachable cells
are computed. These contours represent impassable walls
in the environment. Blocks are treated as not removable if
they are enclosed on all four sides by blocks from another
substructure or inside a contour of impassable walls. Note
that in certain cases (the presence of a staircase on the
wall’s interior), scaffolding would, in principle, allow passing
these walls. Thus this check is a sufficient but not necessary
condition for removability. This algorithm is described in
Algorithm 2.

Finally, a feasible sequence of substructures can be gen-
erated. Let Od be the order in which the substructures were
found and Onew be the new feasible ordering. Algorithm
3 iterates through Od in reverse order and adds only sub-
structures that can be removed using Algorithm 2 to Onew.
During one pass through Od , if none of the substructures
were removable, this implies that a substructure Si was
not traversable due to substructure S j and Si −→ S j. In this
rare scenario, the two substructures are merged, resulting
in a traversable substructure. This is repeated until all sub-
structures are added to Onew. The final feasible sequence is
computed as the reverse of Onew.

Remark 2: None of the 206 different structures considered
in section V required merging to obtain a feasible sequence
of substructures.

Lemma 2: The reverse of the order of removing substruc-
tures is a feasible assembly order.

The proof of Lemma 2 is omitted in this paper for brevityx.
Theorem 2: Given valid substructures, algorithm 3 always

generates a feasible sequence of substructures.
Lemma 3: Given a valid input structure, the decomposi-

tion and ordering algorithms followed by MILP optimization
for each substructure return a legal/feasible action sequence
to build the structure if one exists.

Theorem 3: Consider a structure decomposed into d sub-
structures. The number of time steps required to construct
the structure by constructing substructures sequentially is
no more than d times the number of time steps required
to construct the structure without decomposition.

Algorithm 2: substructure removable check

1 S ← substructure being checked
2 traversability matrix ← reachable positions in the

(x,y) grid
3 contours ← polygons representing impassable

enclosures in the traversability matrix
4 for b ∈ blocks of S do
5 if b surrounded by blocks from another

substructure in all four directions then
6 return False;
7 end
8 if b inside any contour ∈ contours then
9 return False;

10 end
11 end
12 return True;

Algorithm 3: substructure ordering

1 Od ← original order;
2 Onew ← feasible order;
3 while all substructures are not ordered do
4 for sub in reverse order in Od do
5 if sub in Onew then
6 continue;
7 end
8 if removable(sub) then
9 delete sub from Od ;

10 append sub to Onew;
11 end
12 end
13 if no sub was removed and all substructures not

ordered then
14 Merge last two substructures in Od that are

not in Onew
15 end
16 end
17 return reverse of Onew

Proofs of Theorems 2-3 and Lemma 3 are omitted in this
paper for brevity.

C. Parallel Construction

Once the substructures and a feasible order are obtained,
any of the conventional approaches ([1], [6] and [2]) can
be used to find the sequence of actions to build each
substructure. However, if mixed integer linear programming
as in [1] is used, some substructures can be built in parallel.
This reduces the total time to build the structure.
This is achieved by modifying the bottom-up planner. In
sequential construction of substructures: any input is decom-
posed using Algorithm 1 into substructures ordered using
Algorithm 3. For parallel construction, Algorithm 3 is modi-
fied such that at every stage, all the substructures that can be
removed are determined instead of just the substructure being

considered as per Od (default order). These substructures can
potentially be built in parallel.
Let SP be a set of substructures that can be built in parallel.
The first structure in SP is built as described for sequential
construction. For every subsequent substructure Si in SP, the
actions taken to build all previous S j for j ∈ 1, · · · , i−1
are added as a constraint to the MILP. This ensures that
Si’s solution avoids agent-agent collision with the agents
building the previous substructure and does not use more
agents than permitted. In this approach, in the worst case, if
the substructures in SP cannot be built in parallel (due to,
say, insufficient agents), the ordering algorithm will provide
a sequential order.
Parallel execution reduces makespan at the cost of increased
constraints in the MILP formulations for each substructure.
However, our initial experiments show that this does not
significantly affect the solution computation time.

V. RESULTS

A. Experimental Setup

We evaluate the effectiveness of our algorithm on a variety
of test structures: (a) six test cases used by [1] and [6], (b)
one hundred randomly generated structures in a 10x10x4 grid
world, and (c) one hundred randomly generated structures in
a 7x7x4 grid world.

The MILP approach obtains the action sequence to build
each structure or substructure per the experiment. All opti-
mization models are solved using Gurobi 9.0.2, a state-of-
the-art solver for MILP on an Intel® Core™ i7-7700K CPU
@ 4.20GHz × 8 with 94GB of memory. In every case, the
Gurobi model was allowed to run for up to 10,000 seconds
for each structure.

B. Results on an Example Structure

We first demonstrate our method on the example structure
from Fig. 1. As shown in Fig. 1 (b), the algorithm gives five
substructures. The MILP model gets each substructure as an
input and gives a set of action sequences with a maximum
of 20 robots for each substructure. Table I presents the
metrics of the solution for each substructure. The approach
in [1] iterates through increasing makespans until the model
becomes feasible and subsequently performs optimization
to find a solution. ‘Solve Time’ denotes the time taken to
optimize the final model, and ‘Total Solve Time’ denotes
the time to iterate through all time steps along with the solve
time of the model.

TABLE I: Results on the structure used in Fig. 1 illustrating
the metrics for each substructure indicated by Sub. No.

Sub. No. Makespan Sum-of-costs Solve Time Total Solve Time
1 14 68 37.0s 123.6s
2 14 50 8.6s 96.8s
3 14 42 7.4s 95.5s
4 15 39 6.7s 111.4s
5 10 8 1.3s 34.6s

Total 67 207 61.0s 461.9s

C. Comparison with Other Approaches on Six Test Struc-
tures

We next conduct experiments to compare our approach
with two existing sub-optimal approaches [2][6]. The exper-
iments use a set of six test structures also used by [1] and
[6] for reporting their results. The Reinforcement Learning
approach [6] runs a pretrained policy for 100 trials using
eight agents for each structure. The authors noted that using
more than eight agents detriments the performance.

Table II reports the sum of costs for the tree approach
[2] and the average sum of costs for the RL approach (over
successful trials). It also reports the sum of costs using the
MILP approach with decomposition (our approach). Since
these existing methods aim to minimize the number of pick-
up and drop-off actions alone, our approach though not
optimal achieves costs nearly an order of magnitude smaller
than these methods.

TABLE II: Comparison of the sum of costs of solutions for
our approach with other non-optimal methods

Structure Tree based [2] RL based [6] Ours
1 1144 3040 179
2 836 1026 128
3 1590 3056 326
4 2120 3252 263
5 2180 2804 381
6 808 1276 161

Finally, we compare our approach with an existing optimal
approach [1]. [1] uses the entire structure as input to their
MILP formulation. In our experiments, the number of robots
is limited to 20 for uniformity between solving with and
without decomposition. Table III presents results for the
approach from [1] and our decomposition technique with
and without parallelism. Decomposition significantly im-
proves the solution computation times over pure MILP while
maintaining a similar sum of costs. However, we observe
an increase in time steps when constructing the structure
via substructures. Introducing parallel construction largely
mitigates this increase. On average, parallel construction
reduces the number of time steps by 46% compared to
pure decomposition with a similar sum of costs and solution
computation time. Note that, for structures 4-6, parallel
construction significantly increases the solution computation
time. However, it is still much faster than MILP without
decomposition.

D. Comparison with Exact Approach on Random Structures

We demonstrate the scope of our approach by testing all
three optimization-based approaches on a set of randomly
generated structures in two grid world sizes: 10x10x4 and
7x7x4. Structures were generated targeting ranges of occu-
pancy percentage: the number of blocks in the input structure
divided by the number of cells in the workspace. Out of
the 100 test structures, half had an occupancy percentage
between 40% to 60%, one-fourth had less than 40%, and
one-fourth had more than 60%. The maximum number of

Fig. 3: The total computation time when using MILP to
solve for the entire structure is exponential in the number
of optimization variables.

robots permitted is 20 for the 10x10x4 environment and 6
for the 7x7x4 environment.

On average, for a set of test structures in a fixed envi-
ronment size of 7X7X4, we noted that as the occupancy
percentage increased from 30 to 70%, the number of time
steps increased from 76 to 122. This happens because
the number of variables in the optimization model in the
MILP formulation increases significantly, with the number
of time steps following a linear trend. However, the solution
computation time increases exponentially as the number of
variables in the model increases. The exponential increase is
illustrated by Fig. 3. This is why decomposition is beneficial
for run-time: solving several smaller MILP models (one for
each substructure, smaller because substructures can usually
be built in fewer time steps than the full structure) is much
faster than solving one large model (for the entire structure
at once).

For 100 random structures in the 10x10x4 grid world, we
again tested our decomposition algorithm with MILP opti-
mization. Table IV shows the results for both environment
sizes.

VI. CONCLUSIONS

In this paper, we presented an algorithm to decompose
any input structure into substructures and obtain a feasible
order to build the substructures. Experimental results showed
that MILP optimization with decomposition has an order of
magnitude improvement in the solution computation time
compared to MILP without decomposition. However, the for-
mer demonstrated a higher makespan when the substructures
were built sequentially or with basic parallelization.

Developing more sophisticated algorithms to construct
substructures in parallel is a promising future direction. For
example, one can determine the action sequence to construct
each substructure that can be built in parallel. Then the
action sequences can be post-processed to enforce collision
and number of agents constraints. Further, the decomposition
into substructures can be modified to optimize metrics like
the number of scaffolding blocks required or the parallelism
provided.

Finally, the similarity between substructures can be lever-
aged to calculate the action sequence required to build the

TABLE III: Results for the six test cases
This table presents a comparison of metrics for solutions obtained using our approach with the time-optimal solution presented in [1] on a set of six test

structures used by [1] and [6]. Numbers indicated in green show the improvements of our approach compared to the state of the art. Here, A -
MILP-based Exact Approach, B - 3D decomposition with MILP-based Approach and C - Parallel Construction of substructures using 3D

decomposition with MILP-based Approach

Test Structure
Method A B C A B C A B C

Sum of costs 173 176 179 124 128 128 - 326 326
No. of timesteps 13 48 17 13 48 14 - 106 44

Final Computation Time (in sec) 1030.3 16.6 11.1 61.0 11.5 10.2 - 49.6 26.4
Total Computation Time (in sec) 1115.0 241.3 259.4 139.0 235.9 198.1 >10,000 377.2 318.1

Test Structure
Method A B C A B C A B C

Sum of costs - 204 263 - 365 381 160 153 161
No. of timesteps - 113 75 - 130 90 21 50 40

Final Computation Time (in sec) - 36.7 610.7 - 37.1 639.4 1215.3 15.6 265.9
Total Computation Time (in sec) >10,000 31.2 758.6 >10,000 27.8 688.5 1715.2 12.2 287.9

TABLE IV: Results for tests on random structures

Here, EA - MILP-based Exact Approach, EAD - 3D decomposition
with MILP-based Exact Approach

Environment Size 10x10x4 7x7x4
Method A B A B

Sum of costs - 384 83.72 97.12
No. of timesteps - 84 18.01 51.17

Final Computation Time - 48.10 229.41 1.48
Total Computation Time >10,000 567.99 423.51 37.83

latest substructure using solutions of previous substructures.

REFERENCES

[1] Edward Lam, Peter J. Stuckey, Sven Koenig, and T. K. Satish Kumar.
2020. Exact Approaches to the Multi-agent Collective Construction
Problem. In Principles and Practice of Constraint Programming:
26th International Conference, CP 2020, Louvain-la-Neuve, Belgium,
September 7–11, 2020, Proceedings. Springer-Verlag, Berlin, Heidel-
berg, 743–758. https://doi.org/10.1007/978-3-030-58475-7 43.

[2] Kumar, T.K.S. & Jung, Sangmook & Koenig, Sven. (2014). A Tree-
Based Algorithm for Construction Robots. Proceedings of the Inter-
national Conference on Automated Planning and Scheduling. 2014.
481-489. 10.1609/icaps.v24i1.13673.

[3] Lindsey, Quentin & Mellinger, Daniel & Kumar, Vijay. (2012).
Construction with quadrotor teams. Autonomous Robots. 33.
10.1007/s10514-012-9305-0.

[4] Petersen, Kirstin & Nagpal, Radhika & Werfel, Justin. (2011). TER-
MES: An Autonomous Robotic System for Three-Dimensional Col-
lective Construction. 10.15607/RSS.2011.VII.035.

[5] Werfel, Justin & Nagpal, Radhika. (2006). Extended Stigmergy
in Collective Construction. IEEE Intelligent Systems. 21. 20-28.
10.1109/MIS.2006.25.

[6] Sartoretti, Guillaume et al. “Distributed Reinforcement Learning for
Multi-robot Decentralized Collective Construction.” DARS (2018).

[7] Trevor Cai, David Y. Zhang, T.K. Satish Kumar, Sven Koenig, and
Nora Ayanian. 2016. Local Search on Trees and a Framework for
Automated Construction Using Multiple Identical Robots: (Extended
Abstract). In Proceedings of the 2016 International Conference on
Autonomous Agents & Multiagent Systems (AAMAS ’16). Interna-
tional Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC, 1301–1302.

[8] ”Proceedings 2006 IEEE International Conference on Robotics and
Automation [Title page],” Proceedings 2006 IEEE International Con-
ference on Robotics and Automation, 2006. ICRA 2006., 2006, pp.
0 2-0 2, doi: 10.1109/ROBOT.2006.1641149.

[9] Alexander Grushin and James A. Reggia. 2008. Automated design
of distributed control rules for the self-assembly of prespecified
artificial structures. Robot. Auton. Syst. 56, 4 (April, 2008), 334–359.
https://doi.org/10.1016/j.robot.2007.08.006.

[10] Panangadan A, Dyer MG. Construction in a Simulated Environment
Using Temporal Goal Sequencing and Reinforcement Learning. Adap-
tive Behavior. 2009;17(1):81-104. doi:10.1177/1059712308101787

[11] Barros dos Santos, Sergio Ronaldo & Givigi, Sidney & Nascimento
Jr, Cairo. (2013). Autonomous construction of structures in a dynamic
environment using Reinforcement Learning. SysCon 2013 - 7th An-
nual IEEE International Systems Conference, Proceedings. 452-459.
10.1109/SysCon.2013.6549922.

[12] L. S. Homem de Mello and A. C. Sanderson, ”A correct and complete
algorithm for the generation of mechanical assembly sequences,” in
IEEE Transactions on Robotics and Automation, vol. 7, no. 2, pp.
228-240, April 1991, doi: 10.1109/70.75905.

[13] S. Chakrabarty and J. Wolter, ”A structure-oriented approach to assem-
bly sequence planning,” in IEEE Transactions on Robotics and Au-
tomation, vol. 13, no. 1, pp. 14-29, Feb. 1997, doi: 10.1109/70.554344.

[14] Lin, Fu & Leyffer, Sven & Munson, Todd. (2016). A Two-Level
Approach to Large Mixed-Integer Programs with Application to Co-
generation in Energy-Efficient Buildings. Computational Optimization
and Applications. 65. 10.1007/s10589-016-9842-0.

[15] M. A. Bragin, P. B. Luh, B. Yan and X. Sun, ”A Scalable Solu-
tion Methodology for Mixed-Integer Linear Programming Problems

Arising in Automation,” in IEEE Transactions on Automation Science
and Engineering, vol. 16, no. 2, pp. 531-541, April 2019, doi:
10.1109/TASE.2018.2835298.

[16] Jain, Arjun & Thormählen, Thorsten & Ritschel, Tobias & Seidel,
Hans-Peter. (2012). Exploring Shape Variations by 3D-Model Decom-
position and Part-based Recombination. Computer Graphics Forum.
31. 631-640. 10.1111/j.1467-8659.2012.03042.x.

[17] Nusse, H. E., Yorke, J. A., & Kostelich, E. J. (1994). Basins
of Attraction. In Dynamics: Numerical Explorations: Accompany-
ing Computer Program Dynamics (pp. 269–314). Springer US.
https://doi.org/10.1007/978-1-4684-0231-5 7

[18] Gharbia, Marwan & Chang-Richards, Alice & Lu, Yuqian & Zhong,
Ray & Li, Heng. (2020). Robotic technologies for on-site building
construction: A systematic review. Journal of Building Engineering.
32. 101584. 10.1016/j.jobe.2020.101584.

[19] C. Ye, N. Chen, L. Chen and C. Jiang, ”A Variable-Scale Modular 3D
Printing Robot of Building Interior Wall,” 2018 IEEE International
Conference on Mechatronics and Automation (ICMA), 2018, pp.
1818-1822, doi: 10.1109/ICMA.2018.8484433.

[20] Jung, Kyoungmo & Chu, Baeksuk & Hong, Daehie. (2013).
Robot-based construction automation: An application to steel
beam assembly (Part II). Automation in Construction. 32. 62–79.
10.1016/j.autcon.2012.12.011.

[21] Y. Wu, H. H. Cheng, A. Fingrut, K. Crolla, Y. Yam and D. Lau,
”CU-brick cable-driven robot for automated construction of complex
brick structures: From simulation to hardware realisation,” 2018 IEEE
International Conference on Simulation, Modeling, and Program-
ming for Autonomous Robots (SIMPAR), 2018, pp. 166-173, doi:
10.1109/SIMPAR.2018.8376287.

[22] Miri Weiss Cohen & Vitor Nazário Coelho (2021). Open-Pit Mining
Operational Planning using Multi Agent Systems. Procedia Computer
Science. ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.08.172.

[23] Khoshnevis, Behrokh. ”Automated construction by contour craft-
ing—related robotics and information technologies.” Automation in
construction 13.1 (2004): 5-19.

[24] Werfel, Justin & Nagpal, Radhika. (2008). Three-Dimensional Con-
struction with Mobile Robots and Modular Blocks. I. J. Robotic Res..
27. 463-479. 10.1177/0278364907084984.

[25] Silva, Maira Saboia da & Thangavelu, Vivek & Napp, N.. (2018).
Autonomous Multi-Material Construction with a Heterogeneous Robot
Team.

	INTRODUCTION
	PROBLEM FORMULATION
	RELATED WORKS
	APPROACH
	Structural Decomposition
	Bottom Up Planning
	Parallel Construction

	RESULTS
	Experimental Setup
	Results on an Example Structure
	Comparison with Other Approaches on Six Test Structures
	Comparison with Exact Approach on Random Structures

	CONCLUSIONS
	References

