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Abstract— Interactive reinforcement learning has shown
promise in learning complex robotic tasks. However, the process
can be human-intensive due to the requirement of a large
amount of interactive feedback. This paper presents a new
method that uses scores provided by humans instead of pairwise
preferences to improve the feedback efficiency of interactive
reinforcement learning. Our key insight is that scores can yield
significantly more data than pairwise preferences. Specifically,
we require a teacher to interactively score the full trajectories
of an agent to train a behavioral policy in a sparse reward
environment. To avoid unstable scores given by humans nega-
tively impacting the training process, we propose an adaptive
learning scheme. This enables the learning paradigm to be
insensitive to imperfect or unreliable scores. We extensively
evaluate our method for robotic locomotion and manipulation
tasks. The results show that the proposed method can efficiently
learn near-optimal policies by adaptive learning from scores
while requiring less feedback compared to pairwise preference
learning methods. The source codes are publicly available at
https://github.com/SSKKai/Interactive-Scoring-IRL.

I. INTRODUCTION

Deep Reinforcement Learning (DRL) has made remark-
able progress in addressing robotic control tasks, such as
legged robot locomotion [1] and robotic manipulation [2].
However, formulating an accurate reward function for a
specific task can pose a significant challenge. Sparse reward
functions are frequently employed for their simplicity, but
their absence of reward signals can result in longer explo-
ration and training time [3] and lower success rates [4]. In
general, tasks with high complexity and high-dimensional
continuous state-action spaces benefit from denser reward
signals. Nonetheless, creating a reward function for au-
tonomous agents necessitates domain expertise, which can
be challenging for non-experts. Furthermore, hand-crafted
rewards can be vulnerable to local optima or unexpected
ways of achieving high numerical returns [5].

Inverse reinforcement learning (IRL) is a problem in which
the reward function is inferred from expert demonstration
trajectories [6]. This eliminates the need for tedious reward
engineering and makes it possible to learn reward functions
from expert demonstrations [7], [8]. However, IRL typically
requires optimal demonstrations, while those demonstrated
by people are often sub-optimal. To address this issue, a
new method called Trajectory-ranked Reward Extrapolation
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Fig. 1. Our proposed approach consists of two main components: policy
learning and reward learning. The policy learning component updates itself
through an off-policy RL algorithm to maximize the sum of predicted
rewards generated by a reward network. Meanwhile, the reward learning
component periodically samples trajectories, asks teachers to score them
and optimizes its network.

(T-REX) was recently proposed. T-REX seeks to improve
demonstrations by learning rewards from sequences of sub-
optimal ranked demonstrations. It attempts to convert those
rankings into a set of pairwise preferences to train the policy
network [9]. However, T-REX still requires a large number of
demonstrations to train the policy, which can be challenging
in tasks where providing demonstrations at such a scale is
difficult, even though optimality is not required.

In a recent study, PEBBLE [10] proposed an off-policy
interactive RL algorithm to train a reward network and a
policy network simultaneously from queried pairwise pref-
erences. Teachers provide real-time pairwise feedback to
supervise the learning process in the most efficient direction.
However, this approach presents three major issues when
providing feedback by assigning one-hot preference labels to
two trajectories: 1) Two trajectories can be compared only
when they have been paired together, making it difficult to
gain a broader understanding of the relationship between
individual and overall sampled trajectories. 2) Forcing the
teacher to prioritize a better trajectory can sometimes become
a burden and harm human-in-the-loop training. 3) To increase
the number of training examples, partial trajectories (i.e.,
partitioning a full trajectory into segments) are used rather
than full trajectories, which can make evaluating pairwise
preferences more ambiguous for the teacher.

Our aim is to enhance feedback efficiency in interactive
reinforcement learning. To achieve this, we suggest utiliz-
ing scores instead of pairwise preferences as the signals
for interacting with RL agents. Moreover, we put forward

ar
X

iv
:2

30
7.

05
40

5v
2 

 [
cs

.R
O

] 
 6

 A
ug

 2
02

3

https://github.com/SSKKai/Interactive-Scoring-IRL


an adaptive learning scheme to make the training process
smoother and more stable. This includes adaptive network
optimization to smoothly update network parameters from
score data and adaptive trajectory sampling to mine useful
trajectories for teachers to evaluate, making our methodology
less sensitive to imperfect or unreliable teacher inputs. By
interchangeably giving feedback and adjusting the reward
function, we continuously optimize both the reward and pol-
icy networks. Furthermore, we implement a scoring graphical
user interface (GUI), showing the most relevant trajectories
from the previously scored ones when a new trajectory
is scored to support users in providing consistent scores.
Teachers are allowed to amend and correct previous scores
during the training process. An overview of our proposed
framework is illustrated in Fig. 1. The main contributions of
this paper are summarized as follows.

1) We develop an interactive RL method that enables the
agent to learn both policy and reward simultaneously
using a score-based approach. The RL agent proactively
requests scores from teachers for complete trajectories,
which results in requiring less feedback compared to
pairwise-based methods.

2) We propose a method to tackle the problem of inac-
curacies in scoring by introducing an adaptable learn-
ing approach that can withstand errors. Our proposed
method also facilitates efficient learning of personalized
and desired behaviors in situations where rewards are
limited, based on the teachers’ choices.

II. RELATED WORK

A. Inverse Reinforcement Learning

IRL allows the agent to better understand tasks and the
environment, and learn an optimal policy using the reward
via RL methods [11]. However, classic IRL frameworks
[12], [8] assume that demonstrations are optimal and easy to
obtain. Maximum entropy IRL [13], [14], [15] and Bayesian
IRL [16], [17] are more robust to limited and stochastic sub-
optimality, but they cannot produce a policy better than the
demonstration, thus their performance still highly relies on
the quality of the demonstration. In [18], a generative model
is learned from a large number of suboptimal demonstrations
to produce noise-free trajectories. In [19], the reward func-
tion is formed as a linear combination of known features, and
suboptimal demonstrations are utilized by learning rewards
from trajectories labeled as success or failure. The method
proposed in [20] is robust to a limited number of non-optimal
demonstrations but still requires many expert demonstrations
to discriminate the suboptimal ones. However, these methods
can be challenging to apply in real-world scenarios where
demonstrations are scarce, expensive, or suboptimal.

B. Learning from Evaluative Feedback

Evaluative feedback is a value given by a human teacher
that rates the quality of the agent’s behavior, which is easier
for humans to provide compared to demonstrations. The
TAMER framework [21] interprets evaluative feedback as
a Q∗(s, a) function of RL, and makes the agent act greedily

according to it. Meanwhile, the COACH framework [22] in-
terprets human feedback as the advantage function Aπ(s, a)
of policy gradient update. In the policy shaping framework
[23], [24], evaluative feedback is considered an optimality
label of the action. Providing evaluative feedback for entire
trajectories can give each trajectory a global evaluation of
its quality and, therefore, more accessible generalization.
[25], [26] annotate each trajectory with a numeric score of a
human teacher’s global performance and leverage the IRL
framework to learn a reward by minimizing the distance
between human-provided and predicted scores. Although
these methods show robustness to scoring errors, they cannot
deal with suboptimal and high-dimensional IRL tasks.

Evaluative feedback is useful for handling non-optimality.
CEILing [27] labels all state-action pairs with binary feed-
back evaluative feedback, then directly learns a Gaussian dis-
tributed policy by reinforcing the good ones while ignoring
the bad ones. Similarly, [28] proposes IRLDC, which uses
binary evaluative feedback to label each state-action pair.
These methods still require a few demonstrations or correct
feedback.

C. Preference-based Reinforcement Learning

[29] introduces the preference-based DRL framework,
which can learn from pairwise preferences over the agent’s
current behaviors that the human teacher actively provides
during training. This approach is on-policy that needs the
human teacher to constantly provide preference feedback
during the training process. Thus, [9]. extends this framework
and proposes T-REX, which learns the reward function from
the pairwise preferences derived from a set of pre-collected
ranked demonstrations, then applies the reward to RL for
policy learning. T-REX allows the learned reward to ex-
trapolate beyond the demonstrations and achieve better-than-
demonstrator performance. D-REX [30] and SSRR [31] ex-
tend the learning-from-ranking framework by automatically
generating ranked trajectories via noise injection. However,
the need for demonstrations still exists.

Myers et al. [32] proposed a robot learning method that
can learn multimodal rewards from multiple active ranking
queries by multiple experts. PEBBLE [10] presented an
interactive preference learning method that enables users to
give preference feedback directly on the behavior of the RL
agent, thus eliminating the need for demonstrations. PEB-
BLE introduces the off-policy learning framework to reuse
data and follows the feedback form of pairwise preferences
between partial trajectories for the sample efficiency as in
[29]. To improve feedback efficiency, [33] investigates the
query selection and policy initialization. [34] presents an
exploration method to collect more diverse experiences. [35]
introduces this learning scheme for socially aware robot
navigation and reduces the amount of preference feedback
from humans by collecting expert demonstrations. [36] fur-
ther increases the feedback efficiency by inferring pseudo-
labels on a large number of unlabeled samples with data
augmentation, while we annotate global scores to the agent’s
past experience. In our work, we annotate global scores to



the agent’s past experiences and demonstrate that this scoring
feedback scheme can substantially reduce the amount of
required feedback and better fit the off-policy framework.

III. METHODOLOGY

Our proposed framework can be broken down into two
processes. First, the RL agent interacts with the environment
to create new trajectories to be scored. Second, an off-
policy DRL algorithm is applied to update the agent’s policy
πψ in order to maximize the expectation of the predicted
reward generated by r̂θ. Additionally, the teacher reviews the
sampled trajectories through video replay and scores them at
a frequency of f during the RL training process. The scored
trajectories (τ, s) are stored in the scoring buffer D to update
the reward network. The agent then deduces the teacher’s
preference from the score difference and updates the reward
network accordingly. The updated reward network guides the
agent to generate better trajectories. Scoring these trajectories
can lead to a more comprehensive reward network, and the
agent learns the policy and reward simultaneously.

A. Adaptive Learning from Scores
The reward function is trained as a neural network,

which we refer to as r̂θ. Users can choose either states
or state-action pairs as input. Our approach utilizes two
replay buffers: one for the RL part to store the state-action
transitions, and the other for reward learning to store the
trajectories and their scores. For policy learning, the only
difference between our method and vanilla RL algorithms is
that the rewards are produced by the reward network. As a
result, our approach can be applied to most off-policy RL
algorithms while maintaining their core functionality.

Note that the reward function is dynamically updated
during training, which can cause inconsistency in off-policy
RL since previously generated rewards may not match the
latest reward functions. To address this issue, we adopt the
approach proposed in PEBBLE [10] and relabel the replay
buffer each time we update the reward. Storing all scored
trajectories in the scoring buffer allows for off-policy learn-
ing in reward learning. This allows newly scored trajectories
to be compared with previously scored trajectories, which
significantly improves the utilization rate of human feedback.
Moreover, the scoring buffer allows the teacher to access
previous scores during training and correct them if they
change their minds, making reward learning more robust.

Adaptive Network Optimizing. Given a set of trajectories
τ1, τ2, . . . , τm and their corresponding scores s1, s2, . . . , sm,
our goal is to parameterize a reward function r̂θ to infer the
underlying reward from scores and output the reward value
that matches user’s evaluation standard, such that

∑
τi
r̂θ <∑

τj
r̂θ when si < sj . This problem can be regarded as

a learning-to-rank problem [37], to optimize the following
equation:

minU(sorted(r̂θ(τ1), ..., r̂θ(τ|D|)), y) (1)

where y is the ground-truth index list and U is a binary
function to evaluate if the ranked position is equivalent to

the ground-truth position yi in y. In our work, we decide
to solve this problem using the idea of pairwise learning
because our major goal is to train a reward function, instead
of a ranker that generates a descent permutation. The user’s
preference over any pair of two trajectories is described by
a distribution µ, which can be derived by comparing their
scores, e.g., µ = 1 if si < sj . By following the Bradley-
Terry and Luce-Shephard models of preferences [38], [39],
a preference predictor using the reward function r̂θ can be
modeled as a softmax-normalized distribution as follows.

P (τi ≺ τj) =
e
∑

τj
r̂θ

e
∑

τi
r̂θ + e

∑
τj
r̂θ

(2)

where τi ≺ τj denotes the trajectory τj is more preferred
to the trajectory τj . This equation demonstrates that the
probability of preferring one trajectory to another is expo-
nentially related to the predicted return of each trajectory.
Thus, the parameterized reward function r̂θ can be learned
via minimize the cross entropy loss between the predicted
preference and the user’s true preference as follows.

L = −
∑

(τ0,τ1,µ)∈D

[µ logP (τi ≺ τj)+(1−µ) logP (τj ≺ τi)]

(3)
The preference distribution µ is usually a one-hot encoded

label. Although this can learn reward effectively on correct
labels, it may suffer from poor performance when there are
wrong labels in the database D. Unfortunately, it is nearly
impossible for a human user to score a large number of
trajectories perfectly. To strengthen the robustness against
scoring error, we use the label smoothing method [40] to
convert the hard label µ to soft label µ̃ using µ̃ = (1 −
α)µ + α/K, where α ∈ [0, 1] is a constant factor that
indicates the smoothing strength for one-hot label and K
denotes the number of labels, in our case, K = 2. However,
in our setting, using a constant smoothing strength for all
pairwise labels may not be ideal because it ignores the
relative relationship implicit in the score differences. It is
intuitive that for a trajectory pair, the larger the scores differ,
the more confident that one trajectory is better than the
other. Thus, to better exploit the information from human
scores, we make the smoothing strength adaptive to the score
differences by α = 1/(|si − sj | + λ)2 where λ > 1 is a
hyperparameter, and we set it as 2 in all our experiments. The
adaptive α makes the label µ̃ closer to 0 or 1 when pairwise
trajectories significantly differ in the score and approach
0.5 when the scores are similar. Hence, the soft label µ̃ is
computed as

µ̃ = (1− 1

(|si − sj |+ λ)2
)µ+

1

K(|si − sj |+ λ)2
(4)

Adaptive Trajectory Sampling. The process of learning
through rewards includes two sampling procedures. The first
one involves gathering newly created trajectories from the
RL agent, which are then evaluated and given scores by
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Fig. 2. The graphs display the learning progress for SAC, PEBBLE, and our method in two different simulations: HalfCheetah and Ant for movement
tasks, and ButtonPress and SweepInto for robotics tasks. The data is measured by the success rate for the Metaworld environment and ground true return
for Mujoco. The solid lines indicate the mean, while the shaded regions show the minimum and maximum range across three runs for all figures.

teachers. The second procedure involves selecting a batch
of trajectory pairs from the scoring buffer, which stores all
scored trajectories.

To improve the training of our RL agent, we ask the user
to rate the newly generated trajectories. These ratings are
stored in the scoring buffer called D as scored trajectories
(τ, s). However, asking for scores for all trajectories can be
overwhelming. Therefore, we aim to choose the most infor-
mative scoring queries. This way, even if only a few newly
generated trajectories are scored each time, they are enough
to train the appropriate reward. We employ the k-means
clustering algorithm to automatically select trajectories with
high variance in performance, which are then approximated
by the predicted rewards. To select k trajectories from a set
of newly generated ones for evaluation, we use the reward
network to compute the episodic return of each trajectory.
Next, we run k-means clustering on these returns and choose
the k trajectories whose returns are closest to each k centroid.

For n scored trajectories (τ, s) in the scoring buffer D,
we notice that not all the trajectory pairs of them can lead to
effective reward update. To address this, we explore methods
for sampling from the scoring buffer D. An off-the-shelf
sampling method is the entropy-based sampling adopted in
PEBBLE [10], which randomly samples a large batch of
trajectories and seeks to maximize the entropy. However, we
notice that when a trajectory with a higher score is sampled
into D, it should be compared more broadly with other
trajectories. This allows the reward equation to learn what
behaviors lead to higher scores. Unfortunately, entropy-based
sampling cannot provide this capability. Inspired by the prior-
itized experience replay (PER) methods [41], we propose an
alternative sampling methodology: either randomly selecting
one trajectory in a pair or choosing based on a probability
that increases with its score. The probability of each scored
trajectory is computed according to its score as P (i) =
sβi∑
n s

β
n

, where β is a hyperparameter that determines how
much prioritization is assigned to a high-scored trajectory.
And n is the total number of trajectories in the scoring buffer.
The comparison between our sampling method and entropy-
based sampling is shown in the experimental section.
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Fig. 3. Ablation study on HalfCheetah and ButtonPress. (a) The perfor-
mance comparisons of different update reward methods under the scoring
noise of 0.4 and 0.8. (b) Effects of sampling schemes to select training
batch for reward update under the scoring noise of 0.4. We set a maximum
of 400 scores for HalfCheetah and 1000 scores for ButtonPress.

IV. EXPERIMENTS

A. Experiment Setups

We compare our approach to previous methods to verify
if our approach can achieve similar performance with less
feedback. In Sec. IV-B, we conduct ablation studies to
investigate the influence of adaptive reward updates on the
robustness of scoring errors, and to assess how various
sampling methods affect performance. In Sec. IV-D, we
analyze the learned reward and the agent’s behavioral pattern
to determine if our approach can accurately extrapolate the
user’s preferences and underlying intent. Finally, we conduct
real human experiments in Sec. IV-E.

We evaluate our proposed method on several continuous



(a) Analysis of episodic returns

(b) Analysis of reward signals within a episode

Fig. 4. (a) The episodic returns of learned reward and ground true reward
(b) The learned reward signals and the ground true reward signals within a
single episode along the timesteps.

robotic tasks in simulation, including locomotion tasks Ant
and HalfCheetah in Mujoco simulator [42] with OpenAI
Gym [43], and robotic manipulation tasks in Metaworld
environment [44], namely PushButton and SweepInto. For
locomotion tasks, we use the episode return as the evaluation
metric. For manipulation tasks, we use the task success rate
of the last 100 episodes as the evaluation metric. We train
2, 000 episodes for Mujoco locomotion tasks and 3, 000
episodes for Metaworld robotic manipulation tasks each run.
The episode is 300 steps long, with the exception of the
SweepInto task, which is 250 steps long to reduce the
proportion of task-goal-unrelated steps in the episode.

We use the state-of-the-art off-policy DRL algorithm SAC
to learn the behavioral policy [45]. However, the agent can
only receive the reward generated by our learned reward
function. To model our reward function, we use a single
deep neural network consisting of 3 fully connected layers
of 256 units with leaky ReLUs. We train the reward network
from scores using the Adam optimizer with a learning rate
of 10−3 and a batch size of 128. We use a standard scoring
range of 0 to 10 across all experiments. To evaluate our
approach quantitatively, we make the agent learn tasks only
by intermittently getting its past experience scored by a
scripted teacher. By linearly mapping the episode returns
to the scoring range, the scripted teacher provides scores.
We use a two-stage scoring frequency: at the beginning
of training, we use a faster scoring frequency, scoring 5
trajectories every 10 episodes. When the agent’s performance
reaches approximately a quarter of the maximum episode
returns, we switch to a slower scoring frequency, scoring 10
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Fig. 5. The performance comparisons of original SAC and our approach
trained by real human users and scripted teacher.

trajectories every 100 episodes. For all experiments, we set
the β for adaptive sampling to 3.

B. Results

To examine the effectiveness of our approach, we compare
it to the original SAC algorithm training with the same
ground true reward as we used for the scripted teacher.
We use the same hyperparameters for both trainings. We
also compare to the state-of-art preference learning algorithm
PEBBLE [10]. We use the exact same values of hyperparam-
eters for PEBBLE as the Equal SimTeacher setting reported
in [33] and the corresponding open-source code repository.

Fig. 2 shows the learning curves of our approach and
PEBBLE with different numbers of teacher preference feed-
back in comparison to SAC with true reward. Note that
our approach employs a different type of feedback than
PEBBLE. In this experiment setting, PEBBLE assigns a
preference label to a pair of 50-step partial trajectories for
single teacher feedback, whereas our approach assigns a
global score to an entire episode with 300 steps. As a result,
we give PEBBLE an advantage by providing more than
three times as much feedback as ours. We can see that our
approach achieves the same or higher level of performance
than PEBBLE, which is given more feedback, in all tasks.
In comparison to the SAC with ground true reward, our
approach requires more training time to converge because
it must learn the reward from scratch at the beginning of
training, but it can match the performance after convergence
in all tasks using only a small number of trajectory scores
from the teacher. The results show that our approach can
learn robot behavioral policies effectively in sparse reward
environments with teachers’ scores.

C. Ablation Study

1) Robustness to Scoring Errors: The preceding experi-
ments assume access to the perfect correct scores generated
by the ground true reward. However, in practice, it is impos-
sible for a human teacher to score hundreds of trajectories
accurately: users can give vague and approximate scores for
trajectories with similar performance. Thus, we examine the
robustness to scoring errors and low scoring precision of our
approach by comparing the performance of the noisy scores
when using hard reward update, soft reward update by label
smoothing, and adaptive reward update.



We simulate the real human teacher by adding noise
randomly generated by Gaussian distribution to the scores
given by the scripted teacher as s′ = N (s, σ2

noise). We
adopt a minimal step of 0.5 for these noise-infused scores,
such as 3.0 and 7.5. This permits teachers to give scores to
trajectories that perform similarly. We tested our method with
σ2
noise = 0.4 and σ2

noise = 0.8, and use Kendall’s τB coef-
ficient to further measure the rank correlation between the
noisy scores and the perfect correct scores. This coefficient is
calculated by τB = (P −Q)/

√
(P +Q+ T )(P +Q+ U),

where P is the number of concordant pairs, Q is the number
of discordant pairs, T is the number of ties only in one group
of data, and U is the number of ties only in another, τB will
be high and close to 1 if two variables have similar rank.
We found that in our experiment, σ2

noise = 0.4 corresponds
to τB ≈ 0.8. The higher noise σ2

noise = 0.8 leads to a lower
correlation level τB ≈ 0.65.

The results of training with imperfect scores on the
HalfCheetah and ButtonPress tasks are shown in Fig. 3(a),
where the smoothing strength is α = 0.05 for the original
label smoothing, α′ = 2 for the adaptive reward update.
Despite a slight decrease in performance compared to perfect
scoring, the adaptive update method performs better com-
pared to the other two methods in both tasks when scoring
errors σ2

noise = 0.4. With σ2
noise = 0.8, the adaptive reward

update method surpasses others in the ButtonPress task.
However, in the relatively simple task, HalfCheetah did not
gain extra advantages over the hard reward update. Overall,
our proposed adaptive reward update method delivers the
strongest performance and shows strong robustness to high-
scoring errors. We also investigate the effects of different
sampling methods to select scored trajectory pairs for reward
updates. We used σ2

noise = 0.4 to simulate the real scoring
scenario. Fig. 3(b) shows the learning curves of our approach
on the HalfCheetah and ButtonPress tasks under three dif-
ferent sampling schemes: uniform sampling, entropy-based
sampling, and priority-based sampling. We can see that
the priority-based sampling method significantly outperforms
other sampling methods. Although entropy-based sampling
performs well with a perfect feedback teacher as suggested
in [33], it cannot handle the noisy-scoring scenario well.

D. Reward Extrapolation

1) Reward Analysis: We compare the learned reward
function to the ground truth rewards to assess the quality of
the learned reward function. We run SAC with true reward
to collect trajectories with a variety of performance qualities,
and then we compare the episodic ground truth returns to the
returns generated by the learned reward function. Fig. 4(a)
shows the reward function learned by our approach on
250 scores and 500 scores in HalfCheetah and ButtonPress
respectively. We can see that the learned reward function has
a strong correlation with the true reward on the ground. It
should be noted that the learned and true rewards have very
different scales, but this difference had no effect on policy
learning performance. We further investigate the rewards
by looking into the reward functions within an episode

at different timesteps. We generate a set of suboptimal
trajectories with high and low reward ranges in one episode.
The results are shown in Fig. 4(b). We manually normalize
the learned reward outputs to have the same scale as the
true rewards by multiplying a coefficient. We can see that
the learned rewards are well-aligned with the ground truth
rewards.

2) Customized Behavior: One goal of our approach is to
enable users to train customized policies through scoring.
We demonstrate this in the RLBench [46] simulation task
PushButton, which requires a Franka Emika Panda robot
arm to push a button on a table. We model two scripted
teachers to score trajectories with different preferences as
follows: (1) teacher 1: robot first moves to the top of the
button, then pushes with the gripper tip while remaining
vertical, (2) teacher 2: robot moves its gripper parallel to the
table and presses the button with its side. For the trained
agent’s policies please refer to the supplementary video.
The result demonstrates that our method can infer users’
underlying intent and complete tasks in accordance with the
user’s preferences.

E. Real Human Experiment

We conduct experiments with real human users to test our
approach. We create a graphical user interface (GUI) and test
it with two users on the MetaWorld ButtonPress environment.
The GUI displays four previously scored trajectories and
their scores as references to help users score new trajectories
consistently. We select two scored trajectories with the
closest predicted returns to the current trajectory and two
references that are most similar to the current trajectory in
Cartesian space, measured by dynamic time warp (DTW)
[47]. Users are allowed to revise the scores of the reference
trajectories as needed, and they could skip scoring if they
find it difficult. We follow the two-stage scoring frequency
outlined in Sec. IV-A, starting with a faster scoring frequency
and allowing users to switch to a lower frequency mode
based on their performance. Fig. 5 shows the learning curve
of the four users compared to learning by SAC with true
reward and learning by our approach with a scripted teacher.
Our approach shows that a good behavior policy could be
trained with only about three hundred scores. For more
information on using the scoring interface, please refer to
the supplementary video.

V. CONCLUSION

We propose an algorithm for interactive RL that uses
scores from a teacher to learn both a policy and reward
function. This eliminates the need for human demonstrations
and maximizes the use of user feedback, reducing the amount
of required feedback. Our experiments show that even with a
small number of human scores, our method can train robotic
locomotion and manipulation tasks to near-optimal levels.
With this method, we can map global behavior evaluations
to rewards for only states or state-action pairs, allowing us to
learn optimal policies in environments where rewards cannot
be observed.
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