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Abstract— Deep reinforcement learning has achieved signif-
icant results in low-level controlling tasks. However, for some
applications like autonomous driving and drone flying, it is
difficult to control behavior stably since the agent may suddenly
change its actions which often lowers the controlling sys-
tem’s efficiency, induces excessive mechanical wear, and causes
uncontrollable, dangerous behavior to the vehicle. Recently,
a method called conditioning for action policy smoothness
(CAPS) was proposed to solve the problem of jerkiness in
low-dimensional features for applications such as quadrotor
drones. To cope with high-dimensional features, this paper
proposes image-based regularization for action smoothness (I-
RAS) for solving jerky control in autonomous miniature car
racing. We also introduce a control based on impact ratio,
an adaptive regularization weight to control the smoothness
constraint, called IR control. In the experiment, an agent with
I-RAS and IR control significantly improves the success rate
from 59% to 95%. In the real-world-track experiment, the
agent also outperforms other methods, namely reducing the
average finish lap time, while also improving the completion
rate even without real world training. This is also justified by
an agent based on I-RAS winning the 2022 AWS DeepRacer
Final Championship Cup.

I. INTRODUCTION

In recent years, deep reinforcement learning (DRL) has
achieved many milestones, particularly for games such as
AlphaGo [19], AlphaStar [20], OpenAI Five [17]. DRL has
also been applied to many real world applications. Shixi-
ang Gu et al. applied DRL for robotic manipulation with
asynchronous off-policy updates [7]. The work in [18] used
low-level control through reinforcement learning directly
to motors output. For autonomous driving, Amazon Web
Services (AWS) provided DeepRacer, an autonomous rac-
ing experimentation platform for sim-to-real reinforcement
learning [1].

However, a critical problem in control policy in real world
applications is the jerky behavior, when training the agent
in a complex dynamic environment [14], [15]. Especially,
in autonomous driving or quadrotor drone flying, jerky
control causes many serious problems, such as uncontrollable
movement and power consumption, which reduce the service
life of the autonomous vehicle. Prior works addressed the

∗Equal contribution.
†Correspondence.

issue of smoothness policy by using reward engineering [10],
[11], [4]. Their approach designed a reward function for a
specific task. In autonomous driving, for example, the agent
will be penalized if the current action is too different from
the previous action, or the selected speed is too slow. Reward
engineering is based on prior human knowledge about the
tasks.

Recent research used DRL algorithm to solve this problem,
trying to maximize total episode reward, and also smoothing
control or action oscillation [22], [5]. Siddharth Mysore et al.
proposed conditioning for action policy smoothness (CAPS)
for solving jerky actions by adding regularization terms[16].
CAPS was originally used to smooth the control of quadrotor
drones with some low-dimensional features. So far, CAPS
has not been applied to solving the jerky control problem in
autonomous driving, particularly for image-based control. In
the autonomous racing system with image-based control, the
environment is more complex and dynamic due to environ-
mental conditions and physical constraints. Besides, dealing
with high-dimensional input in reinforcement learning is very
challenging and difficult due to sample inefficiency [3]. To
cope with high-dimensional features, this paper proposes
image-based regularization for action smoothness (I-RAS)
to solve jerky control in autonomous miniature car racing.

The main contributions of this paper are summarized as
follows: 1) We propose I-RAS for solving jerky control in
autonomous miniature car racing with image-based control.
2) We introduce a control based on impact ratio, an adap-
tive hyperparameter to dynamically control the impact of
smoothness constraint in I-RAS. 3) The agent with I-RAS
and IR control outperforms other methods, namely reducing
the average finish lap time, while also improving the success
rate, even in a real environment without real world training.

II. BACKGROUNDS

A. Smoothness Control

For the issue of smoothness as described in the previous
section, some prior works addressed it by using reward
engineering [14]. The works in [10] and [15] defined the
reinforcement learning cost function based on the internal
states of the quadrotor, like position, angular velocities, linear
velocities, etc. However, to design a reward function for a
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specific task, we may need to access the information from
the environment, which may not be readily accessible.

Recent researches focus on the regularization penalties as
a condition to achieve an action-smoothness policy. Liu et
al [13] studied the regularization techniques to improve the
performance of control policy on continuous control tasks.
Yu et al. presented temporally abstract actor-critic TAAC, an
off-policy reinforcement learning incorporated with closed-
loop action repetition a kind of temporal abstraction [22].
TAAC learned to select different actions only at critical
states as possible. A work in [5] proposed Nested Soft
Actor-Critic (NSAC), a DRL algorithm that helps to reduce
oscillation behavior in autonomous driving. This approach
is only designed for discrete policies, while our task is for
continuous policy. Dmytro et al. [12] researched the smooth
exploration trajectories in continuous control tasks with low-
dimensional input.

Siddharth Mysore et al. [16] introduced conditioning for
action policy smoothness (CAPS) and got significant im-
provements in controller smoothness and power consump-
tion. The authors proposed spatial and temporal smoothing
regularization terms to optimize policy directly. Originally,
CAPS was applied to drones and used internal states as
the input, which is hard to be used for applications that
require visual input like autonomous driving. A work in [2]
applied temporal smoothness (of CAPS) to their work in
autonomous racing, without using spatial smoothness. They
reported that the agent achieved smoother steering, but did
not improve the performance compared to the one trained
without regularization. This paper in contrast proposes an
extensive method so as to smooth and stabilize the behavior
while improving the performance in terms of success rate
and finish lap time, as described in the rest of this paper.

B. Sim-to-real Transfer

Training DRL usually requires a large amount of data
for training and collecting data in the real world is ex-
tremely costly and time-consuming. In addition, to acquire
an optimal policy or near-optimal policy, the agent needs to
perform random actions to explore, which can be unstable
and dangerous during real world data collection for a task
like autonomous driving. Sim-to-real provides an efficient
approach for training DRL when we train agents in the
simulation and migrate them to the real world. However, the
intrinsic gap between simulation and the real world often
causes the agent trained in simulation to perform poorly in
the real world [9]. Prior works mainly focused on domain
randomization and domain adaptation methods.

The most widely used sim-to-real transfer method is
domain randomization. Domain randomization methods try
to enlarge the distribution of domain-randomized simulation
images to cover real world data [23]. The work in [6]
proposed a student-teacher method for sim-to-real transfer in
DeepRacer. Domain randomization usually requires careful
task-specific hyper-parameter tuning, and the cost grows
exponentially with the number of parameters [9]. A recent
method, named random convolution (RandConv)[21], where

Fig. 1: Overview of the regularization terms of CAPS with
low-dimensional input, where the share f(.) maps from state
to action. The temporal smoothness LT penalizes divergent
actions between consecutive states. The spatial smoothness
LS encourages consistent actions on similar states S′

t, where
S′
t is drawn from a normal distribution around the current

state St with standard deviation σ.

the weights are randomly sampled from a Gaussian distribu-
tion at each iteration.

III. METHODS

A. Conditioning for Action Policy Smoothness: CAPS

Mysore et al. [16] introduced conditioning for action
policy smoothness (CAPS) and got significant improve-
ments in controller smoothness and power consumption on a
quadrotors drone. To condition policies for smooth control,
the authors proposed two regularization terms: 1) temporal
smoothness term, and 2) spatial smoothness term.

The policy π is a mapping function of states s to actions
a = π(s). The objective function of CAPS, JCAPS

π , contains
three components: a reinforcement learning objective func-
tion Jπ; temporal smoothness regularization term LT ; and
spatial smoothness regularization term LS . The regulariza-
tion weights λT and λS are used to balance the impact of
two regularization terms LT and LS , respectively.

JCAPS
π = Jπ − λTLT − λSLS (1)

LT = DT (π(st), π(st+1)) (2)

LS = DS(π(st), π(s
′
t)) where s′t ∼ Φ(st). (3)

Both DT and DS are calculated based on the Euclidean
distance of two vectors. The temporal smoothness term LT

penalizes the JCAPS
π when the action of the next states st+1

are significantly different from the actions of the current
states st. The spatial smoothness term LS encourages the
policy to take similar actions on the similar states s′t, which
are drawn from a distribution Φ around states st, namely
Φ(s) = N(s, σ) with standard deviation σ around s. Origi-
nally, CAPS is applied to smooth the control of a quadrotor
drone, with the input being the inertial measurement unit



(IMU) and the electronic speed controller (ESC) sensors.
Figure 1 illustrates a design for temporal smoothness and
spatial smoothness in CAPS.

B. Image-based Regularization for Action Smoothness in
Autonomous Racing Car: I-RAS

CAPS was originally applied to smooth the control of
a drone with the internal states of the rotors, which does
not directly fit the applications that require visual input like
autonomous driving. In order to generate the similar state
s′t in spatial smoothness in CAPS, the authors [16] used
Gaussian Noise to draw s′t from a normal distribution around
state st as described in Subsection III-A. Now consider
the applications that need to use images as the input. A
straightforward method is to draw from a normal distribution
(Gaussian noise) on image pixels like the original CAPS.
Actually, we can apply domain randomization to generate a
similar state s′t in the spatial smoothness, instead of drawing
from a normal distribution.

In this paper, we categorize domain randomization into
two types: photometric transformation and geometric trans-
formation. The photometric transformation uses filters to
change the intensity of the image. In the autonomous racing
car, the photometric transformation simulates the different
conditions of the environment like light, darkness, shadows,
flare, etc., or camera conditions like noise, blurred image,
etc. We use four photometric transformation methods TP :
random brightness, random contrast, salt and pepper, and
Gaussian blur. The geometric transformation is used to
generate a possible next state that the agent might observe
in the next step. We use three geometric transformation
methods TG: rotation, shift, and scale. We then generate a
similar state s′t by using either geometric transformation TG

or photometric transformation TP from the current state st.
The spatial smoothness in I-RAS is defined as:

LS = DS(π(st), π(s
′
t)) where s′t ∼ TP |TG(st). (4)

For temporal smoothness LT , we also penalize the policy
in the same way as CAPS, when the agent applies signifi-
cantly different actions between two continuous steps. Fig-
ure 2a illustrates our network structure and Figure 2b shows
the overview of I-RAS with image-based input. Figure 3
shows some examples images that are generated by TG and
TP .

C. Flexible Smoothness Action Constraint with IR Control

CAPS strictly made the policy excessively smooth which
lost the capability to handle situations that require the agent
to change the action. Especially in autonomous racing, the
car needs to quickly reduce the speed and change the steering
action at a curve. To solve this problem, we introduce the
impact ratio control (IR control) λIR, an adaptive regular-
ization weight that combines the normalized speed with the
normalized reward of the current state:

λIR =
√
speed∗t × reward∗t (5)

The speed∗t is the normalized speed in a range from [0,1]
and the reward∗t is the normalized reward in a range [0,1]
of a state st. A lower value of λIR relaxes the smoothness
constraint and allows the agent to substantially change the
action. A higher value of λIR will maintain the current action
for smoothness trajectory. Table I shows some examples of
IR control value and explains the relation to the smoothness
regularization constraint. The loss function of I-RAS with IR
control is defined as:

J IR
π = Jπ − λIR(λTLT + λSLS) (6)

Figure 4 visualizes how the IR control value is related to the
normalized speed value and normalized reward value.

D. Sim to Real Transfer: RandConv

In this paper, we apply random convolution (RandConv)
[21] as the sim-to-real transfer method. In contrast to
other fixed weights of filters in most of the other domain
randomization methods, RandConv is a data augmentation
technique using multi-scale random convolutions to gener-
ate images with random textures while maintaining global
shapes. The weights of filters in RandConv are randomly
sampled from a Gaussian distribution at each iteration. This
is a promising approach that can replace other hand-picked
domain randomization methods. Since this paper focuses on
action smoothness, this paper uses it as a standard domain
randomization method in all real-world cases for simplicity
of analysis.

IV. EXPERIMENT SETUP

A. Environments

Our experiments are done on DeepRacer [1], an au-
tonomous car racing platform developed by AWS, as shown
in Figure 5. The AWS DeepRacer uses a 1/18th scale race
car compared to a real-sized race car, which provided a more
affordable way to conduct research in autonomous racing.
The agent receives the observation from a camera placed on
the top of the miniature car racing. The observation is an
RGB image with a resolution of 120x160, and each pixel
color ranges from 0 to 255. For the action space, it is free
to choose between discrete actions and continuous actions.
We use the continuous space where the output includes the
normalized steering angle in a range from [-1, 1], covering
from -30 to 30 degrees, and normalized speed with a range
from [-1, 1], covering from 1m/s to 4m/s based on the
configuration of AWS DeepRacer.

For the baseline, we implement a version of Soft Actor-
Critic (SAC) [8] with the following configurations: three
workers are used; gamma is 0.98; initial alpha is 0.3; batch
size is 1024; learning rate is 0.0003; global buffer size is
10000; local buffer size is 2000. Following the configuration
in [16], the regularization weights of temporal smoothness
and spatial smoothness in Equation (1) are set to λT = 1
and λS = 5 respectively.



(a) Network structure. (b) Overview of I-RAS.

Fig. 2: (a) Policy network structure with three convolutions layers followed by three fully connected layers. The output
is continuous action for normalized values of steering and speed. (b) The overview of regularization terms of I-RAS with
image-based input. Temporal smoothness LT and spatial smoothness LS hold a similar meaning as in CAPS. For image
input, we generate a similar state S′

t from the current state St using either photometric transformation TP or geometric
transformation TG.

Normalized speed Normalized reward IR control value Description

1.0 1.0 1.0
High speed, good action (high reward).
Maintain the action.

1.0 0.1 0.316
High speed, bad action (low reward).
Need to change the action; otherwise, out of the track.

0.1 1.0 0.316
Low speed, good action (high reward).
Need to change the action to make a turn.

0.1 0.1 0.1
Low speed, bad action (low reward).
Definitely need to change the action.

TABLE I: Illustrations of normalized speed and reward, and IR control value together with a description of their relation to
the smoothness regularization constraint in the last column. A high value of IR control means that the agent should maintain
the action for smoothness control. A low value of IR control means that the agent should change the action since the current
action is inappropriate or need to make a turn.

Agent Success rate (%)↑ Finish lap time (s) ↓ Avg speed ↑ Steering Sm ↓
Vanilla SAC 59% 18.12 ± 0.63 1.37 0.070
I-RAS 87% 13.34 ± 0.35 2.12 0.059
I-RAS + IR control 95% 13.10 ± 0.34 2.23 0.058

TABLE II: The performances on finish lap time, average speed, and steering smoothness value among different agents. The
I-RAS agent with IR control achieved a 95% success rate with the fastest finish lap time while maintaining smoothness
value.

B. Evaluation

To evaluate the effectiveness of the smoothness method,
we use a metric Sm, called a smoothness value proposed by
[16], a method based on the Fast Fourier Transform (FFT)
frequency spectrum defined as follows.

Sm =
2

nfs

n∑
i=1

Mifi, (7)

where Mi denotes the amplitude of the frequency component
fi, and fs the sampling rate, set to fs = 30 in this paper. In

general, the lower the value, the smoother the action, since
the low-frequency control is weighed less.

To evaluate the performance of car racing, we use the
following metrics: (a) Action smoothness value: the smooth-
ness value of the action of the agent. (b) Average finishing
lap time: the average time to finish a run (in seconds).
(c) Success rate: the percentage of completed runs against all
runs. A run is terminated after the car moves in the wrong
direction on the track, all wheels are out of the track, or
when it successfully completes the track.



Fig. 3: Example images generated by geometry transforma-
tion (the upper-right three) and photometric transformation
(the lower four) used in the spatial smoothness.

V. EXPERIMENT RESULTS

In the experiment, we first evaluate the control smoothness
ability of I-RAS in the simulation in Section V-A. We
then test I-RAS in the real environment and report the
performance of our agent at the 2022 AWS DeepRacer Final
Championship Cup (Section V-B). Finally, in Section V-C,
we conduct extensive experiments to analyze the impact of
I-RAS components.

A. Smoothness with I-RAS

In this experiment, we investigate the policy smoothness
capability of I-RAS in the simulation. We implement a
vanilla SAC agent as a baseline, and two SAC agents trained
with I-RAS (called I-RAS agents in the rest of this section)
and with and without IR control respectively. For each agent,
we pick the model trained up to 50,000 iterations and then
try 100 runs using the model. Table II shows the performance
results for three agents including success rate, average finish
lap time, average speed, and steering smoothness value. From
the results, we see that both I-RAS agents outperform the
vanilla SAC by a large margin in terms of both success rate
and finish lap time. Particularly, the I-RAS agent with IR
control achieves the highest speed and finishes a lap in 13.10
seconds on average, while maintaining the highest success
rate and keeping the lowest steering smoothness value.

Fig. 4: Visualize IR control value with respect to normalized
reward and speed. Red color indicates high value and blue
color indicates low value.

Agents
Success
rate (%)

Finish lap
time (s)

Vanilla SAC 46.66% 20.04
Vanilla PPO 40.00% 22.03
I-RAS 60.00% 19.54
I-RAS + IR control 73.33% 19.36

TABLE III: Real experiments result with AWS DeepRacer.
The RandConv helps to transfer the model from simulation
to the real environment. The I-RAS agents with smoothness
control perform better than other agents in terms of success
rate and finish lap time.

For the two I-RAS agents, we observe the following
phenomenon. The I-RAS agent without IR control tries to
maintain a strong regularization between two contiguous
states, thus it does not reduce the speed and steering sig-
nificantly at sharp curves so as to lose control to make a
turn. In contrast, the I-RAS agent with IR control is able to
make a quicker change in speed and steering to make a turn.
As a result, the I-RAS agent with IR control greatly improves
the success rate from 87% to 95%, with slightly better finish
lap time compared to the one without the control.

Figure 6 shows steering actions and their changes in detail
during the progress of episodes. The agent with I-RAS has
a better smoothness value of steering, which reduces from
7.0 × 10−2 in vanilla SAC to 5.9 × 10−2. By adding the
adaptive regularization weight IR control, the agent still
maintains a smooth trajectory while having the benefit to
make a turn. Therefore, the I-RAS agent with IR control not
only maintains a smooth trajectory but also finishes a track
in the fastest time.

B. Real Experiments

We then evaluate our agent in the real work environment.
The agents were trained entirely in the simulation and tested
in the real environment with zero real world training. In
the real test, each agent tries 15 attempts and calculates
the average performance. For the sim-to-real transfer, we
simply apply RandConv as mentioned in Subsection III-D, a
photometric transformation method for sim-to-real transfer.

Table III shows, in the real environment, the success rate
and finish lap time of the agents with the following models:
(a) Vanilla SAC. (b) Vanilla PPO. (c) I-RAS. (d) I-RAS
with IR control. Note that we ignore the agent without
RandConv since it cannot completely finish even for one
run. In general, the behaviors of I-RAS agents are more
stable, finishing a run faster than the agents without I-RAS.
The two I-RAS agents have success rates at 60.00% and
73.33%, clearly outperforming the other two vanilla agents
with SAC and PPO whose success rates are 46.66% and
40.00% respectively. By adding the IR control, the finish lap
time of the I-RAS agent is improved by 0.18 seconds in
finish lap time.

AWS DeepRacer Challenge. We then incorporated our
proposed method into our agent and competed with others



Fig. 5: Environment setup in simulation and real world of AWS DeepRacer. (a) and (b) are the racing track and car in
simulation. (c) and (d) are the racing track and the car in our own real-world environment, where there is an intensely
difficult track (35.87 meters) with many devious curves.

(a) Vanilla SAC. (b) I-RAS. (c) I-RAS with IR control.

(d) Vanilla SAC. (e) I-RAS. (f) I-RAS with IR control.

(g) Vanilla SAC. (h) I-RAS. (i) I-RAS with IR control.

(j) Vanilla SAC. (k) I-RAS. (l) I-RAS with IR control.

Fig. 6: Steering actions and corresponding steering changes, FFTs of the three agents, vanilla SAC, I-RAS, and I-RAS with
IR control (from left to right). The progress is the normalized travel distances with respect to the track length of a run.
(a)-(c) are the steering actions through a completed track; (d)-(f) the corresponding steering change; (g)-(i) the corresponding
FFTs. and (j)-(l) the speed action through a completed track. With I-RAS, the agents significantly improve the smoothness
of steering and speed compared to the vanilla SAC agent. Therefore, in the corresponding steering FFTs, the agents with
I-RAS show better stability with high-frequency components being reduced, compared to vanilla SAC.

in the event of 2022 AWS DeepRacer Championship, where
more than 150,000 developers participated according to the
official reporters1. In the AWS DeepRacer Final Champi-
onship Cup 2022, our agent with I-RAS performed even

1AWS DeepRacer League https://aws.amazon.com/
deepracer/league/

better in the stadium in Las Vegas, namely finished a track
much faster, reducing the lap finish time from about 19.360
to 13.756 seconds which is also the record in the whole
competition. Consequently, our agent ILI-NYCU-CGI won
the championship in this event. From this event, interest-
ingly, we also observed that differences in environmental

https://aws.amazon.com/deepracer/league/
https://aws.amazon.com/deepracer/league/


conditions affect the performances significantly. For exam-
ple, the condition of friction at the stadium of the AWS
Final Championship was much better than that in our own
environment, so our agent can run even much faster due to
the friction. Other factors may also include the conditions of
environments, such as lights, the fences of tracks, and even
the stability of miniature cars, but these factors are not in
the research scope of this paper. A video clip is included
in the supplementary to demonstrate (a) the performances of
agents with and without I-RAS, and (b) the run of our I-RAS
agent, the fastest finishing with 13.756 seconds in the AWS
DeepRacer competition.

C. Ablation study

1) Temporal Smoothness and Spatial Smoothness: In
this ablation experiment, we study the impact of I-RAS
components on the objective function in Equation (6) by
ablating either temporal or spatial smoothness. In addition
to the agents with vanilla SAC and I-RAS (the same as the
ones in Table II), we consider two more agents with the
following models: (a) The agent with temporal smoothness
term only (denoted as Temporal). (b) The agent with spatial
smoothness term only (denoted as Spatial). The weights for
both smoothness terms, λT and λS , are set to 1.

Table IV lists the success rate, finish lap time, and
steering smoothness of these agents, and shows that spatial
smoothness improves the performances more significantly
than temporal smoothness. In terms of finish lap time, both
Spatial and I-RAS require nearly the same time around 13
seconds, which are much faster than vanilla and Temporal
around 18 seconds. However, with temporal smoothness
added, it is negligible and even negligibly slower, namely
slower by 0.04 seconds from Temporal to vanilla, and 0.08
seconds from I-RAS to Spatial. In terms of success rate, both
Spatial and I-RAS (with spatial smoothness added) are also
much better than vanilla and Temporal, and both I-RAS and
Temporal are also better than Spatial and vanilla respectively,
but not much. In terms of steering smoothness value, adding
temporal smoothness does not show much difference in
the results either, while adding spatial smoothness shows a
significant reduction of the steering smoothness value. This
result concludes from experiments that spatial smoothness
has a higher impact on the performance of the agent than
temporal smoothness.

This is in contrast with the low-dimensional inputs ex-
periment in CAPS, where the result of CAPS shows that
temporal smoothness is more important than spatial smooth-
ness. In [16], the authors used CAPS to control a quadrotor
drone where the input is the low-dimensional input while we
used image-based input which is high-dimensional input in
autonomous racing. In high-dimensional input, particularly
in a stochastic environment like autonomous racing, the
distribution of data is much more diverse than that in low-
dimensional input. We have the following conjectures. In
low-dimensional input in CAPS, it is sufficient to obtain
a smooth trajectory by learning temporal smoothness only
from the observed next state. However, in high-dimensional

input, it is required to obtain a smooth trajectory by learning
from possible next states generated in spatial smoothness.

Agents
Success
rate (%)

Finish lap
time (s) Steering Sm

Vanilla SAC 59% 18.12 ± 0.63 0.070
Temporal 65% 18.16 ± 0.62 0.066
Spatial 84% 13.26 ± 0.45 0.059
I-RAS 87% 13.34 ± 0.35 0.059

TABLE IV: Ablation study of I-RAS components by eval-
uating the four agents, vanilla SAC, Temporal, Spatial, and
I-RAS (including both temporal and spatial smoothness).

2) Photometric and Geometric Transformation: In this
ablation experiment, we study the effectiveness of photo-
metric and geometric transformation in spatial smoothness
regularization by ablating either photometric or geometric
transformation. In addition to the agents with vanilla SAC
and Spatial (the same as the ones in Table IV), we consider
two more agents with the following models: (a) The agent
uses photometric transformation only to generate images in
spatial smoothness (denoted as Photometric). (b) The agent
uses geometric transformation only (denoted as Geometric).

Table V shows that geometry transformation improves the
performances more significantly than photometric transfor-
mation. It is not hard to conclude this from the table in
terms of any of the finish lap time, success rate, and steering
smoothness value. A possible reason is that a vanilla agent
that includes RandConv, a kind of photometric transforma-
tion method for sim-to-real transfer, also has the capability
to deal with different photometric environment conditions.
Therefore, the photometric transformation takes less impact
to smooth the control action, and Photometric does not
improve performance significantly over vanilla SAC. The
geometry is used to simulate the possible next state from
the current state by rotating, shifting, or scaling which is
important to learn how to smooth the trajectory in a complex
environment like an autonomous racing car.

Agents
Success
rate (%)

Finish lap
time (s) Steering Sm

Vanilla SAC 59% 18.12 ± 0.63 0.070
Photometric 60% 18.17 ± 0.51 0.071
Geometric 83% 13.28 ± 034 0.059
Both (Spatial) 84% 13.26 ± 0.45 0.059

TABLE V: Ablation study of photometric and geometric
transformation in spatial smoothness by evaluating the four
agents, vanilla SAC, Photometric, Geometric, and Spatial.

VI. CONCLUSION

This paper presents image-based regularization for action
smoothness (I-RAS) to smooth the control of autonomous
miniature car racing. The agent with I-RAS achieves a
smoother trajectory compared to the agent without I-RAS,



therefore improving the performance in both terms of success
rate and finish lap time. We also introduce the IR control, an
adaptive regularization weight combined between normalized
speed and normalized action. The IR control allows the
agent to quickly change the action in needed cases while
maintaining a smooth trajectory during the run. This is
critical to improve the performance of autonomous racing.
We also demonstrated the robustness and effectiveness of our
method in the AWS DeepRacer competition, a platform for
an autonomous racing car. Our agent with I-RAS won the
2022 AWS DeepRacer Final Championship with a record of
finishing a track in 13.756 seconds.

We further analyze the impact of I-RAS components by
ablation study. It is concluded from experiments that spatial
smoothness takes more impact on performance than temporal
smoothness. This is in contrast with the low-dimensional
input problem for CAPS, where temporal smoothness is the
most important component. Besides, it is also concluded
from experiments that geometric transformation takes more
impact on performance than photometric transformation. A
possible reason is that photometric transformation is also
included in RandConv for sim-to-real transfer. More future
work is expected to clarify these issues.
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