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Abstract— Human motion prediction is important for mobile
service robots and intelligent vehicles to operate safely and
smoothly around people. The more accurate predictions are,
particularly over extended periods of time, the better a system
can, e.g., assess collision risks and plan ahead. In this paper, we
propose to exploit maps of dynamics (MoDs, a class of general
representations of place-dependent spatial motion patterns,
learned from prior observations) for long-term human motion
prediction (LHMP). We present a new MoD-informed human
motion prediction approach, named CLiFF-LHMP, which is
data efficient, explainable, and insensitive to errors from an
upstream tracking system. Our approach uses CLiFF-map, a
specific MoD trained with human motion data recorded in
the same environment. We bias a constant velocity prediction
with samples from the CLiFF-map to generate multi-modal
trajectory predictions. In two public datasets we show that this
algorithm outperforms the state of the art for predictions over
very extended periods of time, achieving 45% more accurate
prediction performance at 50s compared to the baseline.

I. INTRODUCTION

Accounting for long-term human motion prediction
(LHMP) is an important task for autonomous robots and
vehicles to operate safely in populated environments [1].
Accurate prediction of future trajectories of surrounding
people over longer periods of time is a key skill to improve
motion planning, tracking, automated driving, human-robot
interaction, and surveillance. Long-term predictions are use-
ful to associate observed tracklets in sparse camera networks,
or inform the robot of the long-term environment dynamics
on the path to its goal [2, 3], for instance when following
a group of people. Very long-term predictions are useful for
global motion planning to produce socially-aware unobtru-
sive trajectories, and for coordinating connected multi-robot
systems with sparse perception fields.

Human motion is complex and may be influenced by sev-
eral hard-to-model factors, including social rules and norms,
personal preferences, and subtle cues in the environment
that are not represented in geometric maps. Accordingly,
accurate motion prediction is very challenging [1]. Prediction
on the very long-term scale (i.e., over 20 s into the future)
is particularly hard as complex, large-scale environments
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Fig. 1. Long-term (50 s) motion prediction result obtained with CLiFF-
LHMP for one person in the ATC dataset. Red line: ground truth trajectory.
Green line: observed trajectory. Blue lines: predicted trajectories. The
CLiFF-map is shown with colored arrows.

influence human motion in a way that cannot be summarized
and contained in the current state of the moving person or
the observed interactions but rather have to be modelled
explicitly [4].

In this paper, we examine and address the novel task
of very long-term human motion prediction [5], aiming to
predict human trajectories for up to 50 s into the future.
Prior works have addressed human motion prediction us-
ing physics-, planning- and pattern-based approaches [1].
The majority of existing approaches, however, focuses on
relatively short prediction horizons (up to 10 s) [6] and the
popular ETH-UCY benchmark uses 4.8 s [1, 7, 8, 9].

To predict very long-term human motion, we exploit
maps of dynamics (MoDs) that encode human dynamics
as a feature of the environment. There are several MoD
approaches for mapping velocities [10, 11, 12, 13, 14]. In this
work, we use Circular Linear Flow Field map (CLiFF-map)
[12], which captures multimodal statistical information about
human flow patterns in a continuous probabilistic represen-
tation over velocities. The motion patterns represented in a
CLiFF-map implicitly avoid collisions with static obstacles
and follow the topological structure of the environment, e.g.,
capturing the dynamic flow through a hall into a corridor
(see Fig. 1). In this paper we present a novel, MoD-informed
prediction approach (CLiFF-LHMP)1 that predicts stochastic
trajectories by sampling from a CLiFF-map to guide a
velocity filtering model [6]. Examples of prediction results
are shown in Fig. 1.

In qualitative and quantitative experiments we demonstrate
our CLiFF-LHMP approach is 45% more accurate than the
baseline at 50 s, with average displacement error (ADE)

1The approach is available at https://github.com/
test-bai-cpu/CLiFF-LHMP
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below 5m up to 50 s. In contrast to prior art in long-
term environment-aware motion prediction [4], our method
does not make any assumptions on the optimality of human
motion and instead generalizes the features of human-space
interactions from the learned MoD. Furthermore, our method
does not require a list of goals in the environment as input, in
contrast to prior planning-based prediction methods. Finally,
our method can flexibly estimate the variable time end-
points of human motion, predicting both short- and long-
term trajectories, in contrast to the prior art which always
predicts up to a fixed prediction horizon.

The paper is structured as follows: we review related work
in Sec. II, describe the proposed approach in Sec. III, present
our evaluation in Sec. IV, discuss the results in Sec. V and
conclude in Sec. VI.

II. RELATED WORK

Human motion prediction has been studied extensively in
recent years. With different prediction horizons, the human
motion prediction problem can be divided into short-term (1–
2 s), long-term (up to 20 s) [1], and very long-term (which
we define as over 20 s). Several approaches address long-
term motion prediction, e.g., full-body motion [5] or in the
context of vehicle routing and GPS positioning [15, 16], but,
to the best of our knowledge, very long-term prediction of
dense navigation trajectories has not been addressed before.

One approach to predict long-term human motion is to
account for various semantic attributes of the static environ-
ment. For instance, prior knowledge of potential goals in the
environment can be used in planning-based methods. Ziebart
et al. [17] and Karasev et al. [18] propose planning MDP-
based approaches for long-term goal-directed global motion
prediction. Rudenko et al. [4] extends this line of work by
accounting for local social interactions, which is shown to
outperform prior art in the long-term map-aware perspective.

Another popular approach to make long-term predictions
is using clustering to represent observed long-term motion
patterns, e.g., using expectation-maximization [19]. Chen
et al. [20] use constrained gravitational clustering for dy-
namically grouping the observed trajectories, learning also
how motion patterns change over time. Bera et al. [21] learn
global and local motion patterns using Bayesian inference in
real-time. One shortcoming of clustering-based methods is
that they depend on complete trajectories as input. In many
cases, e.g. in cluttered environments or from a first-person
perspective [22], it is difficult to observe long trajectories,
or cluster shorter tracklets and incomplete trajectories in a
meaningful way.

Clustering-based methods directly model the distribution
over full trajectories and are non-sequential. By contrast,
transition-based approaches [23, 24, 25, 26, 27] describe
human motion with causally conditional models and generate
sequential predictions from learned local motion patterns.

Further, there are physics-based approaches that build a
kinematic model without considering other forces that govern
the motion. The constant velocity model (CVM) is a simple
yet potent approach to predict human motion. Schöller et al.

[28] have shown CVM to outperform several state-of-the-
art neural predictors at the 4.8 s prediction horizon. On the
other hand, CVM is not reliable for long-term prediction as
it ignores all environment information.

Finally, many neural network approaches for motion pre-
diction have been presented in recent years, based on LSTMs
[29], GANs [30], CNNs [31], CVAEs [32] and transformers
[33]. Most of these approaches focus on learning to predict
stochastic interactions between diverse moving agents in
the short-term perspective in scenarios where the effect of
the environment topology and semantics is minimal. Our
approach, on the other hand, targets specifically the long-
term perspective, where the environment effects become
critical for making accurate predictions.

Our approach to motion prediction leverages maps of
dynamics (MoDs), which encode motion as a feature of
the environment by building spatio-temporal models of the
patterns followed by dynamic objects (such as humans) in the
environment [14, 12]. There are several approaches for build-
ing maps of dynamics from observed motion. Some MoDs
represent human dynamics in occupancy grid maps [24].
Another type of MoDs clusters human trajectories as men-
tioned above [19]. Chen et al. [34] present an approach that
uses a dictionary learning algorithm to develop a part-based
trajectory representation.

The above mentioned MoDs encode the direction but not
the speed of motion. MoDs can also be based on mapping
sparse velocity observations into flow models, which has the
distinct advantage that the MoD can be built from incomplete
or spatially sparse data. An example of this class of MoDs
is the probabilistic Circular-Linear Flow Field map (CLiFF-
map) [12] that we use in this paper. CLiFF-map uses a
Gaussian mixture model (GMM) to describe multimodal flow
patterns at each location. In this paper, we use sampled
directions from the CLiFF-map to predict stochastic long-
term human motion.

A method similar to ours is presented in Barata et al. [35].
It constructs a vector field that represents the most common
direction at each point and predicts human trajectories by in-
ferring the most probable sequence through this vector field.
By contrast, our approach uses a probabilistic vector field
that represents speed and direction jointly in a multimodal
distribution. Further, the evaluation in Barata et al. [35]
assumes a fixed prediction horizon of 4.8 s, whereas we show
our approach to estimate human motion more accurately than
the state of the art for up to 50 s.

III. METHOD

In this section, we first describe the CLiFF-map represen-
tation for site-specific motion patterns (Sec. III-A) and then
present the CLiFF-LHMP approach for single-agent long-
term motion prediction exploiting the information accumu-
lated in a CLiFF-map (Sec. III-B).

A. Circular-Linear Flow Field Map (CLiFF-map)

To predict human trajectories we exploit the information
about local flow patterns represented in a CLiFF-map as a
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Fig. 2. Steps of sampling a direction θs from the CLiFF-map. (a) CLiFF-map built from the ATC data. The location to sample from is marked with
an orange arrow. (b) Selection of SWGMMs in the CLiFF-map: The red circle contains all SWGMMs within rs distance to the sampling location. From
these SWGMMs, the SWGMM with the highest motion ratio is selected (marked with a blue circle). (c) The SWGMM distribution in the selected location
wrapped on a unit cylinder. The speed is represented by the position along the ρ axis and the direction is θ. The probability is represented by the distance
from the surface of the cylinder. A velocity vector (marked with a red arrow) is sampled from this SWGMM. (d) The direction value θs of the sampled
velocity is shown in the sampled direction and marked with an orange circle.

multimodal, continuous distribution over velocities. CLiFF-
map [12] is a probabilistic framework for mapping velocity
observations (independently of their underlying physical pro-
cesses), i.e., essentially a generalization of a vector field into
a Gaussian mixture field. Each location in the map is associ-
ated with a Gaussian mixture model (GMM). A CLiFF-map
represents motion patterns based on local observations and
estimates the likelihood of motion at a given query location.

CLiFF-maps represent speed and direction jointly as ve-
locity V = [θ, ρ]T using direction θ and speed ρ, where
ρ ∈ R+, θ ∈ [0, 2π). As the direction θ is a circu-
lar variable and the speed is linear, a mixture of semi-
wrapped normal distributions (SWNDs) is used in CLiFF-
map. At a given location, the semi-wrapped probability
density function (PDF) over velocities can be visualized as
a function on a cylinder. Direction values θ are wrapped
on the unit circle and the speed ρ runs along the length
of the cylinder. An SWND N SW

Σ,µ is formally defined as
N SW

Σ,µ (V) =
∑

k∈Z NΣ,µ([θ, ρ]
T + 2π[k, 0]T ), where Σ,µ

denote the covariance matrix and mean value of the direc-
tional velocity (θ, ρ)T , and k is a winding number. Although
k ∈ Z, the PDF can be approximated adequately by taking
k ∈ {−1, 0, 1} for practical purposes [36]. To preserve
the multi-modal characteristic of the flow, a semi-wrapped
Gaussian mixture model (SWGMM) is used, which is a PDF
represented as a weighted sum of J SWNDs: p(V|ξ) =∑J

j=1 πjN SW
Σj ,µj

(V), where ξ = {ξj = (µj ,Σj , πj)|j ∈
Z+} denotes a finite set of components of the SWGMM,
and πj denotes the mixing factor and satisfies 0 ≤ πj ≤ 1.

B. Human Motion Prediction Using CLiFF-map
We frame the task of predicting a person’s future trajectory

as inferring a sequence of future states. The algorithm
is presented in Alg. 1. With the input of an observation
history of Op past states of a person and a CLiFF-map Ξ,
the algorithm predicts Tp future states. The length of the
observation history is Os ∈ R+ s, equivalent to Op > 0
observation time steps. With the current time-step denoted as
the integer t0 ≥ 0, the sequence of observed states is H =
⟨st0−1, ..., st0−Op⟩, where st is the state of a person at time-
step t. A state is represented by 2D Cartesian coordinates
(x, y), speed ρ and direction θ: s = (x, y, ρ, θ).

Algorithm 1: CLiFF-LHMP
Input: H, xt0 , yt0 ,Ξ
Output: T

1 T = {}
2 ρobs, θobs ← getObservedVelocity(H)
3 st0 = (xt0 , yt0 , ρobs, θobs)
4 for t = t0 + 1, ..., t0 + Tp do
5 xt, yt ← getNewPosition(st–1)
6 θs ← sampleDirectionFromCLiFFmap(xt, yt,Ξ)
7 (ρt, θt) ← predictVelocity(θs, ρt–1, θt–1)
8 st ← (xt, yt, ρt, θt)
9 T ← T ∪ st

10 return T

From the observed sequence H, we derive the ob-
served speed ρobs and direction θobs at time-step t0 (line
2 of Alg. 1). Then the current state becomes st0 =
(xt0 , yt0 , ρobs, θobs) (line 3 of Alg. 1). The values of ρobs
and θobs are calculated as a weighted sum of the finite
differences in the observed states, as in the recent ATLAS
benchmark [6]. With the same parameters as in [6], the
sequence of observed velocities is weighted with a zero-mean
Gaussian kernel with σ = 1.5 to put more weight on more
recent observations, such that ρobs =

∑Op

t=1 vt0−tg(t) and
θobs =

∑Op

t=1 θt0−tg(t), where g(t) = (σ
√
2πe

1
2 (

t
σ )2)−1.

Given the current state st0 , we estimate a sequence of
future states. Similar to past states, future states are predicted
within a time horizon Ts ∈ R+ s. Ts is equivalent to Tp >
0 prediction time steps, assuming a constant time interval
∆t between two predictions. Thus, the prediction horizon
is Ts = Tp∆t. The predicted sequence is then denoted as
T = ⟨st0+1, st0+2, ..., st0+Tp

⟩.

To estimate T , for each prediction time step, we sample
a direction from the CLiFF-map at the current position (xt,
yt) to bias the prediction with the learned motion patterns
represented by the CLiFF-map. The main steps for each
iteration are shown in lines 5–9 of Alg. 1.

For each iteration, we first compute the predicted position
(xt, yt) at time step t from the state at the previous time step



Algorithm 2: sampleDirectionFromCLiFFmap(x, y,Ξ)
Input: x, y, Ξ
Output: θs

1 Ξnear ← getNearSWGMMs(x, y,Ξ)
2 ξ ← selectSWGMM(Ξnear)
3 θs ← sampleDirectionFromSWGMM(ξ)
4 return θs

(line 5 of Alg. 1):

xt = xt−1 + ρt−1 cos θt−1∆t,

yt = yt−1 + ρt−1 sin θt−1∆t,
(1)

Afterwards, we estimate the new speed and direction using
constant velocity prediction biased by the CLiFF-map. The
bias impacts only the estimated direction of motion, speed
is assumed to be unchanging.

To estimate direction at time t, we sample a direction
from the CLiFF-map at location (xt, yt) in the function
sampleDirectionFromCLiFFmap() (line 6 of Alg. 1).
Alg. 2 outlines its implementation. The inputs of Alg. 2
are: the sample location (x, y) and the CLiFF-map Ξ of the
environment. The sampling process is illustrated in Fig. 2.
To sample a direction at location (x, y), from Ξ, we first
get the SWGMMs Ξnear whose distances to (x, y) are less
than the sampling radius rs (line 1 of Alg. 2). In a CLiFF-
map, each SWGMM is associated with a motion ratio. To
sample from the location with the highest intensity of human
motions, in line 2, from Ξnear, we select the SWGMM ξ
with highest motion ratio. In line 3 of Alg. 2, from ξ, an
SWND is sampled from the selected SWGMM, based on
the mixing factor π. A velocity is drawn randomly from
the sampled SWND. Finally, the direction of the sampled
velocity is returned and used for motion prediction.

With the direction sampled from the CLiFF-map, we
predict the velocity (ρt, θt) in line 7 of Alg. 1 assuming
that a person tends to continue walking with the same speed
as in the last time step, ρt = ρt−1, and bias the direction of
motion with the sampled direction θs as:

θt = θt−1 + (θs − θt−1) ·K(θs − θt−1), (2)

where K(·) is a kernel function that defines the degree of
impact of the CLiFF-map. We use a Gaussian kernel with a
parameter β that represents the kernel width:

K(x) = e−β∥x∥2

. (3)

An example of velocity prediction results is shown in Fig. 3.
With kernel K, we scale the CLiFF-map term by the dif-
ference between the direction sampled from the CLiFF-map
and the current direction according to the CVM. The sampled
direction is trusted less if it deviates more from the current
direction. A larger value of β makes the proposed method
behave more like a CVM, and with a smaller value of β, the
prediction will follow the CLiFF-map more closely.

In the end of each iteration, we add st to the predicted
trajectory T (line 9 of Alg. 1) and update t for the next

(a) (b)

Fig. 3. Example predictions that visualize the adaptive influence of the
CLiFF-map and the constant velocity model on the prediction, based on the
sampled direction. Green dots show the observed past states H, red dots
show the ground truth future states and blue dots show the predicted states
T . In each predicted state, the orange arrow shows the sampled direction
from the CLiFF-map θs and the green arrow shows the direction from the
last time step θt–1. Blue arrows between predicted states show the direction
of the predicted trajectory. In locations like (a) where the sampled CLiFF-
map direction greatly opposes the CVM prediction, the CVM prediction is
trusted more. In locations like (b) where the sampled CLiFF-map direction
is close to the CVM prediction, the CVM prediction is biased more towards
the CLiFF-map direction.

iteration. After iterating for Tp times, the output is a sequence
T of future states that represents the predicted trajectory.

IV. EXPERIMENTS

This section describes the experimental setup for qual-
itative and quantitative evaluation of our CLiFF-LHMP
approach. Accurate map-aware long-term motion predic-
tions are typically addressed with Markov Decision Process
(MDP) based methods [17, 18, 37, 38, 4]. Among them, as
the baseline for CLiFF-LHMP, we chose the recent IS-MDP
approach [4]. We also compare our method with the constant
velocity predictor [28, 6].

We evaluate the predictive performance using the follow-
ing two real-world datasets:

1) THÖR [39]: This dataset captures human motion in
a room with static obstacles. It includes two settings:
with one obstacle (denoted as THÖR1, see the top row
in Fig. 9) and with three obstacles (denoted as THÖR3,
see the bottom row in Fig. 9). The size of the room
for data collection is 8.4×18.8 m.

2) ATC [40]: This dataset contains trajectories recorded
in a shopping mall in Japan. The dataset covers a large
indoor environment with total area of around 900m2.
The map of the environment is shown in Fig. 1.

THÖR1 and THÖR3 both include four rounds of collected
data. We use the first round to build the CLiFF-map and
use the remaining three rounds for evaluation. After filtering
out short trajectories (shorter than the observation horizon
Os) for evaluation, there are in total 247 trajectories in the
THÖR1 dataset and 327 trajectories in the THÖR3 dataset.
This gives us the train-to-test ratio of about 1 to 3 in both
THÖR1 and THÖR3.

The ATC dataset consists of 92 days in total. For building
the CLiFF-map, we used the data from the first day (Oct.
24th, 2012). From the remaining 91 days, again after filtering



Parameter ATC THÖR

observation horizon Os 3.2 s 3.2 s
kernel parameter β 1 1
sampling radius rs 1 m 0.5 m
prediction horizon Ts 1–50 s 0.4–12 s
prediction time step ∆t 1 s 0.4 s
CLiFF-map resolution 1 m 0.5 m
kernal parameter σ 1.5 1.5
number of predicted trajectories k 20 20

TABLE I
PARAMETERS USED FOR EVALUATION IN THE ATC AND THÖR

DATASETS

out trajectories shorter than the observation horizon Os, we
use 1 803 303 trajectories that have continuous motion.

We downsampled both datasets to 2.5Hz. For observation,
we take 3.2 s (the first 8 positions) of the trajectory and use
the remaining (up to 50 s or 125 positions) as the prediction
ground truth. In the parameter analysis, we also evaluate the
effect of setting the observation horizon to different values.

Given the area covered by the ATC dataset (∼900m2)
and the THÖR dataset (∼150m2), the size and number
of obstacles in THÖR dataset, and the trajectory lengths
available in the datasets, we selected the parameters shown
in Table I for our quantitative and qualitative experiments.
Because the size of obstacles in the THÖR setting is less
than 1m, we set the grid resolution to 0.5m when building
the CLiFF-map from the THÖR dataset, in contrast to 1m
in the ATC dataset. Also, we set the prediction time step ∆t
to 0.4 s for the cluttered THÖR dataset, in contrast to 1 s for
the ATC dataset. In the parameter analysis we evaluate the
impact of selecting ∆t on prediction accuracy.

Sampling radius rs and kernel β are the main parameters
in CLiFF-LHMP. The value of rs is set to a multiple
of the CLiFF-map grid resolution. For biasing the current
direction with the sampled one, we use the default value
of β = 1 for both datasets. The impact of both parameters
is evaluated in the experiments. Using the ATC dataset, we
specifically evaluate the influence of the three parameters
(see Fig. 6): observation horizon Os ∈ [1.2, 3.2] s, sampling
radius rs ∈ [1, 3] m, and kernel parameter β ∈ [0.5, 10].
We also evaluated the influence of the prediction time step
∆t ∈ [0.4, 1.0] s using the THÖR dataset (see Fig. 7).

For the evaluation of the predictive performance we used
the following metrics: Average and Final Displacement Er-
rors (ADE and FDE) and Top-k ADE/FDE. ADE describes
the error between points on the predicted trajectories and the
ground truth at the same time step. FDE describes the error
at the last prediction time step. Top-k ADE/FDE compute
the displacements between the ground truth position and the
closest of the k predicted trajectories. For each ground truth
trajectory we predict k = 20 trajectories.

We stop prediction according to Alg. 1 when no dynamics
data (i.e. SWGMMs) is available within the radius rs from
the sampled location (line 6). If one predicted trajectory
stops before Ts, it will only be included in the ADE/FDE
evaluation up to the last available predicted point. When
predicting for each ground truth trajectory, the prediction

horizon Ts is either equal to its length or 50 s for longer
trajectories.

V. RESULTS

In this section, we present the results obtained in ATC
and THÖR with our approach compared to two baselines.
The performance evaluation is conducted using both quanti-
tative and qualitative analysis, and we further investigate the
approach’s performance through a parameter analysis.

A. Quantitative Results

Figs. 4 and 5 show the quantitative results obtained in the
ATC and THÖR datasets. We compare our CLiFF-LHMP
approach with IS-MDP [4] and CVM. In the short-term
perspective all approaches perform on par. The mean ADE is
marginally lower for CVM compared to the other predictors
below 6 s in ATC, below 10 s in THÖR1, and below 4 s in
THÖR3. In THÖR3 there are more obstacles that people
need to avoid, while THÖR1 and ATC include more open
spaces. In open spaces without obstacles, a constant velocity
prediction is often a very good short-term predictor [6].
For our approach which accounts for possible deviations
from straight trajectories the ADE for short-term predictions
is slightly higher. For prediction horizons less than 10 s,
IS-MDP performs better than CLiFF-LHMP. However, the
IS-MDP method requires additional input (goal points and
the obstacle map) and its performance strongly depends on
both. In contrast, our approach makes predictions without
explicit knowledge about goals and implicitly accounts for
the obstacle layout, as well as the specific ways people
navigate in the environment.

In long-term predictions above 10 s, both CLiFF-LHMP
and IS-MDP outperform the CVM method. Our approach is
substantially better than IS-MDP when the prediction horizon
is above 20 s since it implicitly exploits location-specific mo-
tion patterns, thus overcoming a known limitation of MDP-
based methods [4]. Table II summarises the performance
results of our method against the baseline approaches at the
maximum prediction horizon. Our CLiFF-LHMP approach
accurately predicts human motion up to 50 s with a mean
ADE of 5m. At 50 s in the ATC dataset, our method achieves
a 45% ADE and 55% FDE improvement in performance
compared to IS-MDP. At 12 s in THÖR1 and THÖR3, our
method achieves an improvement of 6.3% and 13.3% ADE
(25.7%, 27.8% FDE) over IS-MDP, respectively.

Figs. 4 and 5 also show that the standard deviation of ADE
and FDE is generally lower for CLiFF-LHMP predictions,
compared to CVM and IS-MDP. This indicates that our
approach makes more consistent predictions, both in the
short- and long-term perspective.

B. Parameter Analysis

In the experiments with different observation horizons
(see Fig. 6, left), our method performs robustly when the
observation horizon is as low as 1.2 s. In the experiments
with different β values (see Fig. 6, middle), we find that
β = 1 is a good trade-off. Lower β values make the



Dataset Horizon ADE / FDE (m)
CLiFF-LHMP IS-MDP CVM

ATC 50 s 4.6 / 9.6 8.4 / 21.3 12.4 / 27.1
THÖR1 12 s 1.5 / 2.6 1.6 / 3.5 1.8 / 3.8
THÖR3 12 s 1.3 / 2.6 1.5 / 3.6 2.8 / 6.1

TABLE II
LONG-TERM PREDICTION HORIZON RESULTS ON DIFFERENT DATASETS.

WITH Os = 3.2 s, ERROR REPORTED ARE ADE/FDE IN METERS.
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Fig. 4. ADE/FDE (mean ± one std. dev.) in the ATC dataset with prediction
horizon 1–50 s.

predictor trust the CLiFF-map more, which can lead to jumps
between distinct motion patterns. Setting β to a high value
such as 10 slightly improves the performance in short-term
predictions, however, as for the CVM model, the CLiFF-
LHMP predictor with high values of β is prone to fail
delivering long-term predictions. The reason is that we stop
predicting when the CLiFF-map is not any longer available
close to the predicted location. So, if more trust is put on
the CVM component, many ground truth trajectories cannot
be predicted successfully for long prediction times. When
the planning horizon is set to 50 s, 84% of ground truth
trajectories can be predicted successfully with β = 1, while
with β = 10, the ratio drops to 52.3%. Also when the
prediction is dominated by the CVM component, the top
k-ADE/FDE scores are worse due to a reduced diversity of
the predictions.

In the experiments with different values of the sampling
radius rs (see Fig. 6, right), we observed a stable prediction
performance. Therefore, it is reasonable to set rs = 1 in
order to reduce the computation cost.

In our experiments with the prediction time step ∆t,
we observe robust performance with slight improvement
when making higher frequency predictions (∆t =0.4 s vs.
1.0 s, see Fig. 7). Smaller ∆t is recommended in cluttered
environments, such as in the THÖR dataset. Making iterative
predictions with a smaller time step naturally comes at the
expense of computational cost increasing linearly for CLiFF-
LHMP. Selecting a larger prediction time step ∆t =1.0 s
drops the performance in THÖR by only approx. 5% at the
maximum prediction horizon, as compared to ∆t = 0.4 s.

C. Qualitative Results

Figures 8 and 9 show qualitative results with example
predictions. Our approach correctly captures the motion pat-
terns in each scenario, utilizing the environment information
during the prediction. Figure 9 shows that the predicted
trajectories avoid the obstacles, even though an obstacle map
is not used for predictions. Furthermore, using maps of dy-
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Fig. 5. ADE/FDE (mean ± one std. dev.) in the THÖR1 (top) and THÖR3
(bottom) dataset with prediction horizon 0.4–12 s.

namics built from the observations of human motion makes
it possible to predict motion through regions which appear
as obstacles in an occupancy map, for example across stairs
and through narrow passages (see Fig. 8). Similarly, using the
MoD input keeps predictions in more intensively used areas
of the environment, avoiding semantically-insignificant and
empty regions, e.g., corners of the room (see Fig. 9).

VI. CONCLUSIONS
In this paper we present the idea to use Maps of Dynamics

(MoDs) for long-term human motion prediction. By using
MoDs, motion prediction can utilize previously observed
spatial motion patterns that encode important information
about spatial motion patterns in a given environment. We
present the CLiFF-LHMP approach to predict long-term
motion using a CLiFF-map – a probabilistic representation
of a velocity field from isolated and possibly sparse flow
information (i.e. complete trajectories are not required as
input). In our approach, we sample directional information
from a CLiFF-map to bias a constant velocity prediction.

We evaluate CLiFF-LHMP with two publicly available
real-world datasets, comparing it to several baseline ap-
proaches. The results demonstrate that our approach can
predict human motion in complex environments over very
long time horizons. Our approach performs on-par with the
state of the art for shorter periods (10 s) and significantly
outperforms it in terms of ADE and FDE for longer periods
of up to 50 s. We also showed that our method makes more
consistent predictions and is not strongly sensitive to the
observation horizon. By exploiting the learned motion pat-
terns encoded in the CLiFF MoD, our method can implicitly
infer common goal points and correctly predict trajectories
that follow the complex topology of the environment, e.g.,
navigating around corners or obstacles, or passing through
narrow passages such as doors.

Future work will include experimenting with other types
of MoDs and motion prediction methods, sampling speed
in addition to direction from the MoD, extending CLiFF-
LHMP to multi-agent prediction, extending the evaluation to
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outdoor datasets, as well as estimating confidence values for
the predicted trajectories.
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Fig. 8. Predictions in ATC with Ts = 50 s. Red line shows the ground truth trajectory. Green line shows the observed trajectory and blue lines show
the predicted trajectories. Note that we correctly predict trajectories crossing obstacles such as stairs (top of the map) and exits (left of the map).
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Fig. 9. Predictions in THÖR1 (top) and THÖR3 (bottom) with Ts = 12 s.
Red line shows the ground truth trajectory. Green line shows the observed
trajectory and blue lines show the predicted future trajectories
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