
DAMON: Dynamic Amorphous Obstacle Navigation using
Topological Manifold Learning and Variational Autoencoding

Apan Dastider and Mingjie Lin

Abstract— DAMON leverages manifold learning and vari-
ational autoencoding to achieve obstacle avoidance, allowing
for motion planning through adaptive graph traversal in a
pre-learned low-dimensional hierarchically-structured manifold
graph that captures intricate motion dynamics between a
robotic arm and its obstacles. This versatile and reusable
approach is applicable to various collaboration scenarios.

The primary advantage of DAMON is its ability to embed
information in a low-dimensional graph, eliminating the need
for repeated computation required by current sampling-based
methods. As a result, it offers faster and more efficient motion
planning with significantly lower computational overhead and
memory footprint. In summary, DAMON is a breakthrough
methodology that addresses the challenge of dynamic obstacle
avoidance in robotic systems and offers a promising solution
for safe and efficient human-robot collaboration.

Our approach has been experimentally validated on a 7-DoF
robotic manipulator in both simulation and physical settings.
DAMON enables the robot to learn and generate skills for
avoiding previously-unseen obstacles while achieving predefined
objectives. We also optimize DAMON’s design parameters and
performance using an analytical framework. Our approach
outperforms mainstream methodologies, including RRT, RRT*,
Dynamic RRT*, L2RRT, and MpNet, with 40% more trajectory
smoothness and over 65% improved latency performance, on
average.

I. INTRODUCTION

Ensuring safe collaboration between humans and robots
demands that robots be equipped to handle uncertainty
and partial observability, while executing actions in unpre-
dictable and dynamic environments [1], [2]. For robotic arms,
standard algorithms can be effective in motion planning
in obstacle-free settings, but become more challenging in
unstructured environments where the robot’s workspace is
occupied by static and dynamic obstacles [3]. Moreover,
accomplishing variable or dynamically-changing motion ob-
jectives significantly raises the difficulty level of active
obstacle avoidance.

Traditionally, obstacle avoidance problems in robotic con-
trol relied on dynamical-system-based approaches [4], [5].
These approaches modeled motion dynamics and incorpo-
rated probabilistic methods [6] to handle data variability and
model uncertainty. However, recent advancements in Deep
Neural Networks (DNN) have prompted researchers to inves-
tigate obstacle avoidance from a deep learning perspective,
utilizing various reinforcement learning methodologies to
capture the intricate motion dynamics between a robotic arm
and its obstacles [7].

Despite significant advancements in safe and accurate
robotic arm motion planning, several formidable challenges
remain. These include: (1) developing a generalized method-
ology with efficiency and scalability that can quickly adapt
to variable targets and robotic arm dynamics, (2) creating
a unified framework that can avoid multiple dynamically
moving and morphing 3D obstacles without relying on an
explicit environment model, and (3) establishing a rigor-
ous mathematical framework to accurately analyze well-
defined performance metrics and guide the design tradeoffs

of algorithm parameters. Addressing these challenges, among
others, is crucial to advancing the field of robotic arm motion
planning.

Fig. 1: A 7-DoF robotic manipulator needs to reach a target while avoiding
a dynamically moving and changing obstacle. From accumulated dataset
we learn a variational autoencoder that spans a random topological mani-
fold. The motion control of this manipulator is computed by dynamically
traversing a 2D graph generated by manifold learning.

Related Works: In recent years, there has been a growing
interest in developing smoother robotic motion planning and
obstacle avoidance through the formulation of latent space
representation and topological manifold learning. Moham-
madi et al. (2021) [11] developed a Riemannian subman-
ifold in R3 × S3 space and used geodesic paths over the
learned sub-manifold for robotic motion generation. They
also introduced an obstacle avoidance scheme by modifying
the ambient metrics in the latent space. Other works, such
as Ichter et al. (2019) [9] and MPNet (Motion Planning
Networks) [10], have also introduced sampling-based mo-
tion planning and obstacle avoidance through learned latent
space networks. Bernstein (2017) [12] provided a detailed
review of manifold learning algorithms incorporated in recent
advancements of machine vision and robotics. Additionally,
Khan et al. (2020) [13] proposed an optimal tracking control
and obstacle avoidance solution using recurrent knowledge-
based heuristics and proximal distance measurements be-
tween 3D meshes. Table II presents some comparison results
between DAMON and 5 recent studies. While L2RRT [9]
and MpNet [10] have introduced manifold representation
for learning various robotic skills in low-dimensional space,
our work DAMON is more scalable and simpler for real-
time shape-changing obstacle avoidance due to the avoidance
of performing expensive sampling-based motion planning.
Instead, DAMON leverages a densely-connected 2D network
of manifold representation of high-dimensional robotic state
space, which allows for efficient and effective traversal.
Furthermore, among all these approaches, only DAMON,
together with Dynamic RRT* [8] and MpNet [10], can
effectively handle dynamic obstacle avoidance.

Statement of Contributions: In this paper, we present

ar
X

iv
:2

20
3.

13
28

2v
3

 [
cs

.R
O

]
 2

8
M

ar
 2

02
3

Method Planning Data Space Motion Planning Method Obstacle
Avoidance Adaptive

Replaning
Unified Multi-purpose

Hierarchical GraphAmbient Space Latent Space Graph Search Sampling Based Static Dynamic
DAMON (Ours) X X X X X X

RRT X X X
RRT* X X X

Dynamic RRT* [8] X X X X X
L2RRT [9] X X X
MpNet [10] X X X X X

Notes : (i) Our Proposed Method encompasses both robot pose and obstacle location in one high dimensional vector
(ii) One full vectorized geometrical information eliminates the requirement of learning separate collision checker network

TABLE I: Summarization of various existing methods for Robot Motion Planning against static and dynamic obstacle
DAMON, a novel approach to tackle the challenges of
robotic arm motion planning. It adopts a topological man-
ifold perspective and adaptive graph traversals to avoid
dynamic obstacles, as depicted in Fig.1. Unlike prior works
[4], [6], [7], [9] that rely on complex system dynamics
modeling or multiple-network sample-based computing on
latent space, DAMON employs a unique manifold learning-
based framework that adaptively traverses a pre-computed
hierarchically-structured graph in a low-dimensional latent
space. Our specific contributions are as follows:

(1) DAMON is superior to previous sampling-based meth-
ods due to its universal, versatile, and reusable nature. Once
learned for a specific robotic manipulator, it can avoid any
number of 3D obstacles with arbitrary and unseen trajec-
tories, making it highly applicable in human-robot collab-
oration applications. Moreover, DAMON can handle any
number of dynamic obstacles with arbitrary shapes once the
underlying manifold surface is learned. This makes DAMON
more adaptable and robust to real-world scenarios where the
environment can change unpredictably.

(2) DAMON’s algorithm creates a hierarchically-
structured graph for efficient traversal of the latent space.
Its ability to encapsulate intricate information about a
robotic arm’s interaction with its surroundings in a low-
dimensional graph results in faster and more efficient motion
planning with lower computational overhead and memory
requirements. This scalability and efficiency make it suitable
for real-time applications and enable safer human-robot
interaction.

(3) DAMON uses Gaussian mixture models for statistical
learning, allowing for robust performance evaluation and
optimal algorithm parameter selection. Its ability to navigate
multiple obstacles while achieving multiple objectives makes
it versatile and adaptable. DAMON’s generalizability means
that the trained model can be applied to new environments
and obstacles without additional training, saving time and
computational resources.

(4) DAMON’s effectiveness was demonstrated in both
simulated and real-world scenarios, surpassing state-of-the-
art methods in terms of efficiency and effectiveness. It
was used to avoid dynamic obstacles with arbitrary shapes
using a 7-DoF robotic manipulator. The approach learned
and replicated complex robot skills, and could handle new
obstacles without requiring additional learning efforts.

II. PROBLEM FORMULATION: MOTION PLANNING FOR
DYNAMIC OBSTACLE AVOIDANCE

The motion control of a robotic manipulator involves cal-
culating a joint-space trajectory that guides the end-effector
to a desired position. The forward kinematic mapping of a
k-DOF robotic manipulator in an n-dimensional task space
is a surjective function of the joint-space coordinates, x(t) =
f(θ(t)), where x(t) ∈ Rn and θ(t) ∈ Rk are the task-
space and joint-space coordinates, respectively. This nonlin-

ear vector-valued function can be easily formulated using
the mechanical design and Denavit-Hartenberg parameters
for a given manipulator. However, for most applications,
computing the inverse mapping from the task space to the
joint space is more important, as it allows us to specify
the desired end-effector position. Similarly, we can define
an inverse kinematics model as θ(t) = f−1(x(t)), where
f−1(·) is the inverse kinematic mapping.

Our goal is to solve the inverse kinematics equation for
the joint-space coordinates that guide the end-effector to a
target position. However, solving this equation alone does not
guarantee that the calculated trajectory will avoid collisions
with obstacles. To address this issue, we formulate the
problem of obstacle avoidance as the problem of maximizing
the minimum distance between the links of the manipulator
and the obstacle.

Let S ⊆ Rsn and U ⊆ Rk defines the state space
and control input of a robotic manipulator system such
that Sr(t),So(t) ∈ S where Sr(t) defines the robot’s state
condition at timestep, t and So(t) carries all information
about independent obstacles in the environment. The robotic
system evolves through time by following defined discrete-
time dynamics of robotic system,

S(t+ 1) = FS(S(t),U(t)) (1)

where, FS defines the functional for discrete-time sys-
tem evolution. Now, let Sfree ∈ S and Scoll ∈ S de-
fines the free state space and colliding state space of the
robot, such that Sfree = S\Scoll. Now for any initial
state Sinit ∈ Sfree and a defined goal state Sgoal ∈
Sfree, we aimed at finding a continuous trajectory, T :=
(Sinit, uinit, · · · Si, ui, · · · Sgoal, ugoal), such that the con-
tinuous curve between adjacent state space in the planned
trajectory remains collision free i.e, (Si,Si+1) ∩ Scoll = ∅.
Our algorithm ensured that all trajectory path safely ends at
pre-defined goal state Sgoal.

III. PROPOSED METHODOLOGY

Hiearchically-Structured Amnifold Graph
(System Dynamics between Manipulator and Obstcles)

Motion Planning Algorithm
(Collision-Free Trajectory)

Motion Control Algorithm
(System Dynamics Model

or Measurements)

Environment State
(Obstacle Positions, ...)

Robotic Manipulator State
(Pose, Gripper Position, ...)

System State Vector

u(t)

(Forces and Torques, ...)

Fig. 2: Algorithmic block digram of DAMON methodology.

Fig. 2 depicts DAMON, consisting mainly of two algo-
rithm modules: the motion control algorithm (MCA) and
the motion planning algorithm (MPA). The MPA module
computes an optimized trajectory that satisfies all spatial
and temporal requirements, while the MCA generates control
signals that regulate the position, velocity, and accelera-
tion of the robotic manipulator’s actuators, allowing the
robot manipulator to track the computed trajectory. Although
DAMON adopts the conventional PID control for MCA,
it focuses on developing an innovative motion planning

algorithm that efficiently avoids dynamic obstacles while
reaching its objective state. The key idea behind DAMON
is to adaptively traverse a hierarchically-structured manifold
graph that captures the intricate dynamics of the entire
system, including a whole-body robotic arm and a point
obstacle located anywhere in the workspace. By doing so,
DAMON efficiently avoids dynamic obstacles while achiev-
ing its objective state.

DAMON addresses the primary challenge of computa-
tional inefficiency and intractability in motion planning for
real-world robotic systems. Such systems have complex sys-
tem dynamics and high-dimensional state-space, making con-
ventional algorithms unsuitable for dynamic environments.
Even sampling-based motion planning methods can become
inefficient when the state-space evolves randomly after the
planner has completed planning. Moreover, sampling-based
dynamic replanning algorithms, such as [8], [10], consume a
significant amount of runtime to re-sample a new path when
dynamic obstacles block the initial path. This inefficiency is
further compounded by the fact that the computational load
increases as the number of obstacles and dimensions in the
workspace grows.
Simulation Model

Joint Space 𝜽𝟎, . . , 𝜽𝟔

Obstacle {𝒙𝒐, 𝒚𝒐, 𝒛𝒐}

Collision, 𝑰𝑭 = ቊ
𝟏, 𝒄𝒐𝒍𝒍𝒊𝒅𝒆𝒅
𝟎, 𝒆𝒍𝒔𝒆

High-Dim.

Data Samples

𝒮 ∈ ℝ𝟏𝟏

Low-Dim.

Representation

𝒵 ∈ ℝ𝟐

Manifold

Transformation

N
ea

re
st

 N
ei

g
h

b
o

r

S
ea

rc
h

Disparate Clusters in 𝑮𝒃

Safe Samples and Collision Samples

Connected Network over

Safe tagged samples

Shortest Path Route

Start node:A Goal node:E

A-B-C-D-E

Decoder Net

𝒛 ∈ ℝ𝟐 → 𝒔′ ∈ ℝ𝟏𝟏

Unsqueeze Stage

𝐬′ ∈ ℝ𝟏𝟏 → 𝜽𝟏, . . , 𝜽𝟕

Proximity Probability

𝑷(𝒅|𝒛) ∼ (𝜽𝟏, . . , 𝜽𝟕 ,
𝒙𝒐, 𝒚𝒐, 𝒛𝒐 𝒄𝒖𝒓𝒓𝒆𝒏𝒕)

𝒅 ≤ 𝒔𝒂𝒇𝒆𝒕𝒚
𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅, 𝝀

Filtration

B-C-D

Yes

No

Sample Next Best Route from B to D

Hardware

Movement

Fig. 3: Flow diagram of algorithmic stages of DAMON.

In the following, we provide more information on the three
major algorithm modules that constitute DAMON.

Algorithm Module 1: Topological Manifold Learning

Manifold learning is a mathematical framework used to
investigate the geometrical structure of datasets in high-
dimensional spaces. In this paper, we consider a high-
dimensional space defined by [θ0, · · · , θ6; [x, y, z]o; IF],
where θi determines the full joint-space pose of a robotic
arm and [x, y, z]o defines the location of a point obstacle. IF
is a boolean collision flag. Our key insight of DAMON is
that the geometrical structure of this high-dimensional space,
combining both the pose of robotic manipulator and the 3D
location of obstacle, can encapsulate all the intricate informa-
tion about how a robotic arm interacts with its surroundings,
especially a point obstacle at an arbitrary location, in a low-
dimensional latent-space graph. This approach circumvents
the need for repeated computation required by obstacle
detection and motion replanning. Furthermore, to handle 3D
geometrical obstacles, we consider the closest point on the
3D mesh of the object to 3D collision meshes of the robot’s
pose as the point obstacle coordinate showed in Figure 7.

To leverage the embedding power of our learned low-
dimensional manifold for robotic motion planning, we
need to seamlessly transform between the high-dimensional
robotic space, S, and the low-dimensional manifold space,
Z . To achieve this, we utilized a variational autoencoder
(VAE) [14] for both latent space learning and decoding to

Input

Sample

𝜽𝟎

𝜽𝟔

.

.

.

𝒙𝒐

𝒚𝒐

𝒛𝒐

𝕀𝑭

𝒔~ 𝒮 ∈ ℝ𝟏𝟏

Mean

{𝜇𝑖}𝑖=1
2

Latent Space Representation

𝒔~ 𝒮 → 𝒛𝒍 ~ 𝒵 ∈ ℝ𝟐

Covariance

{𝜎𝑖}𝑖=1
2

Low Dimensional Mapping

Encoder Network

𝐐𝝓 ⋅ 𝒔. 𝒕. 𝝓 ∶ 𝒔 → 𝒛𝒍

𝒛𝒍𝒐

𝒛𝒍𝟏

Sampling Manifold

data

Decoder Network

𝑷𝝍 ⋅ 𝒔. 𝒕. 𝝍 ∶ 𝒛𝒍 → 𝒔′ 𝜽𝟎

𝜽𝟔

.

.

.

𝒙𝒐

𝒚𝒐

𝒛𝒐

𝕀𝑭

𝒔′ ~ 𝒮 ∈ ℝ𝟏𝟏

𝜽𝟎
′

𝜽𝟔
′

.

.

.

𝒙𝒐
′

𝒚𝒐
′

𝒛𝒐
′

𝕀𝑭
′

Output

One-to-one

Reconstruction

M
in

im
iz

e
:

ℒ
𝑠,
𝑠
′
=

𝑠
−
𝑠
′

2

𝒂𝟎
𝟏

.

.

.

𝒂𝟑𝟎𝟎
𝟏

𝒂𝟎
𝟐

.

.

.

𝒂𝟐𝟎𝟎
𝟐

𝒂𝟎
𝟑

.

.

.

𝒂𝟕𝟓
𝟑

𝒃𝟎
𝟏

.

.

.

𝒃𝟕𝟓
𝟏

𝒃𝟎
𝟐

.

.

.

𝒃𝟐𝟎𝟎
𝟐

𝒃𝟎
𝟑

.

.

.

𝒃𝟑𝟎𝟎
𝟏

Fig. 4: Schematic of Variational autoencoder used for Manifold Learning.

x
x

Point Obstacle, o Target Location, T

𝒮(𝑡) = { 𝜃0, ⋯ , 𝜃6 , 𝑥𝑜, 𝑦𝑜 , 𝑧𝑜 , 𝕀𝐹}

Manifold

Transformation

𝜙 ∶ 𝒮 → 𝒵

𝒵 = {𝑧1, 𝑧2}
𝑧1

𝑧2

Latent Space manifold

representation of N data-points

Fig. 5: The high-dimensional dataspace transforms to Latent Manifold
representation to facilitate efficient and scalable motion planning
the high-dimensional state space. Specifically, as depicted
in Fig. 4, our VAE is implemented as a feedforward, non-
recurrent neural network that employs an input layer and
an output layer connected by multiple hidden layers. The
output layer has the same number of nodes (neurons) as the
input layer. The purpose of our VAE is to reconstruct its
inputs, minimizing the difference between the input and the
output, rather than predicting a target value S ′ given inputs
S. This allows us to capture the essential information about
the high-dimensional robotic space in a lower-dimensional
manifold, enabling us to perform efficient motion planning
and obstacle avoidance in real-time. The implementation
of VAE in DAMON largely adopted from [10] and is
trained through backpropagation of the error. Conceptually,
the feature space zl of our autoencoder is the low-dimension
manifold representations produced by manifold learning,
therefore having lower dimensionality than the input space
S, which, in DAMON, is the pose of our 7-DoF robotic
manipulator with object position and collision flag. As such,
the feature matrix Qφ(s) after manifold learning can be
regarded as a compressed representation of the input s.

Algorithm Module 2: Hierarchical Graph Construction
and Graph-Traversal-Based Motion Planning

To achieve robustness and adaptability in motion planning
for real-world scenarios where the environment can change
unpredictably, DAMON employs two key techniques. Firstly,
we learn the latent space manifold representation Z ∈ Rzn ,
where zn � sn, through a mapping function φ : S →
Z . Secondly, instead of relying on a sampling-based tree
expansion, we construct a fully connected graph G = (V,E),
where Vi := zi ∈ Z and E is weighted by nearest joint space
control inputs for smoother trajectory execution. We utilize G
for path traversal from any Vstart to Vgoal. Furthermore, the
dense connectivity of our graph allows the planner to re-route
from any node Vi without significant runtime loss, even if
the old path becomes convoluted due to a potential collision
with a moving obstacle. These two techniques ensure that
DAMON can efficiently handle changing environments while

maintaining adaptability and robustness. The latent space
manifold representation reduces the dimensionality of the
state-space, making it easier to handle and learn. The fully
connected graph enables us to utilize the learned represen-
tation for efficient path traversal and re-routing, even in
dynamic environments with moving obstacles.

Although graph-based robotic motion planning is a well-
established technique [15], it is commonly used for mo-
bile robots operating in complex environments [16], [17].
Our DAMON methodology has two distinctions from these
graph-based motion planning studies. Firstly, DAMON ex-
ploits a two-layered hierarchical graph that encodes the
complex system dynamics between a robotic manipulator and
its closest obstacle through a topological manifold space.
Secondly, DAMON performs adaptive graph traversal for
effective motion planning.

Latent Space Representation 𝒵
Manifold Graph, Gb(V, E) ∈ ℝ2

𝑧𝑖 ∈ 𝒵 → 𝑉𝑖 ∈ 𝐺𝑏

Obstacle Information, 𝒮𝑜
Top Layer Gt(V) ∈ ℝ2

𝑠𝑜
𝑘 ∈ 𝒮𝑜 → 𝑉𝑘 ∈ 𝐺𝑡

Subgraph, 𝐺𝑠

Fig. 6: Hierarchical Graph Structure.

DAMON simplifies its data structure and facilitates
graph traversal by leveraging a hierarchically-structured low-
dimensional manifold space Z ∈ R2. In this manifold graph
depicted in Figure 6, the bottom layer Gb contains all the
manifold points {zi}ni=1 ∈ Z learned from VAE for the
stored dataset, with each zi corresponding to a vertex Vi
in the graph layer Gb. The top layer Gt considers the
point obstacle Sko information as each node Vk, where k is
the number of obstacles considered while accumulating the
dataset.

To further simplify the structure, the manifold graph
is partitioned into multiple subgraphs, each containing all
vertices with the same obstacle 3D locations. Conceptually,
a hyperedge between the two layers connects the vertices
{Vi}mi=1 ∈ Gb associated with respective Vk ∈ Gt. Further-
more, the vertices in each subgraph are labeled as either
”collision” or ”collision-free/safe” samples. During robotic
arm motion planning, we use Dijkstra’s algorithm to perform
shortest-distance routing, considering only the green vertices
(”collision-free/safe”) for safer robot movement.

Point Obstacle

𝒮𝒐 𝒕𝟐 = (𝒙𝒐, 𝒚𝒐, 𝒛𝒐)

Point Obstacle

𝒮𝒐 𝒕𝟏 = (𝒙𝒐, 𝒚𝒐, 𝒛𝒐)

Fig. 7: Here, t1 < t2. The point location information gets updated as the
robot moves close to cuboid obstacle after avoiding the spherical obstacle.

The 2-layer hierarchically-structured manifold graph re-

duces computational overhead as DAMON only needs to
traverse the subgraph Gs in Gb that is closest to the current
obstacle point location. We use a KD-Tree to quickly query
the node Vk that is closest to the current point obstacle
location, as illustrated in Fig. 7. When multiple dynamic ob-
stacles are present, DAMON hops among different subgraphs
according to the one closest to the robotic manipulator.

Our implementation manipulates graph-like objects solely
via predefined API methods and not by acting directly
on the data structure. We utilize the well-known ”dict-of-
dicts” structure as the main data structure, which allows
fast addition, deletion, and lookup of nodes and neighbors
in large graphs. Our software code is based largely on the
open-source NetworkX package [18]. We omit the standard
implementation details for the sake of brevity.

Algorithm Module 3: Theoretical Framework for Perfor-
mance Analysis and Algorithm Parameter Optimization

𝒅𝒊>𝝀𝒔𝒂𝒇𝒆

Manifold Graph

𝐺𝑏 𝑉, 𝐸 ∈ ℝ2

Each 𝑧𝑖 represented with 𝑉𝑖

Surface Plot, 𝑆𝑑
distance, 𝑑𝑖 = 𝑓(𝜃 𝑡 , 𝑜(𝑡))
𝑓 ⋅ ≔ 𝑀𝑖𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑢𝑛𝑐.
between robot pose, 𝜃(𝑡) and

obstacle location, 𝑜(𝑡)

Safety Threshold, 𝜆𝑠𝑎𝑓𝑒

𝒅𝒊 < 𝝀𝒔𝒂𝒇𝒆

Safe point Collision Point

Fig. 8: Each latent space representation zi is associated with the minimum
distance di between the robot’s collision meshes and nearest obstacle point.
We encapsulate this data to perform parameter optimization for DAMON.

When optimizing the algorithm of DAMON, we need
to address two key algorithm questions. Firstly, how to
accurately estimate the delay performance of DAMON for
a given task and its setting? Secondly, for a given delay
performance requirement, what should be the ideal density
of our constructed manifold graph? To satisfactorily answer
both of these questions, DAMON develops an analytical
framework to compute the average rerouting probability and
derive the relationship between the total runtime of each
robotic experiment and the density of our low-dimensional
manifold graph. To this end, DAMON utilizes the Gaussian
mixture regression (GMR) [19] to estimate the conditional
probability distribution of di given a set of input latent space
variables, i.e., its manifold coordinates zi of vertex Vi, as
shown in Figure 8.

DAMON assumes that our manifold graph G consists
of N vertices, each of which is denoted by Vi defined
by low-dimensional coordinates zi and augmented with
di ∈ R. Abstractly, G represents a multivariate functional
surface depicted in Fig. 8. With the GMR method, DA-
MON assumes that the target variable di obeys a mix-
ture of Gaussian distributions, where the parameters of
each Gaussian component are dependent on the input
variables zi, where i = 0., 1., · · · , N − 1. During the
training phase, DAMOM learns a K-component Gaussian
mixture model p(z,d) =

∑K
k=1 πkNk (z, d | µzdk ,Σzdk)

through Expectation-Maximization (EM) training [19],
where Nk (z, d | µzdk ,Σzdk) are Gaussian distributions with
mean µzdk and covariance Σzdk ,K is the number of

Gaussians, and πk ∈ [0, 1] are priors that sum up to
one. After the Gaussian mixture model is successfully
trained, DAMON performs a regression to predict dis-
tributions of variables di by computing the conditional
distribution p(di | zi). The conditional distribution of
each individual Gaussian is N (z, d | µzd,Σzd), where

µzd =

(
µz

µd

)
, Σzd =

(
Σzz Σzd

Σdz Σdd

)
, µd|z = µd +

ΣdzΣ
−1
zz (z− µz), and Σd|z = Σdd − ΣdzΣ

−1
zz Σzd. DA-

MON can now compute the conditional distribution of each
individual Gaussian and their priors according to πd|zk

=
Nk(z|µzk,Σzk)∑K
l=1Nl(z|µzl,Σzl)

to obtain the conditional distribution p(d |
z) =

∑K
k=1 πd|zk

Nk
(
d | µd|zk

,Σd|zk

)
. Now, given any

location z on the manifold graph, we can compute its
probability of collision as

p(collision|z) = p(0 ≤ d ≤ λ|z) =

∫ λ

0

p(y|z)dy

=

∫ λ

0

[
K∑
k=1

πy|zk
Nk
(
y | µy|zk

,Σy|zk

)]
dy

=

∫ λ

0

[
K∑
k=1

Nk (z | µzk
,Σzk

) · Nk
(
y | µy|zk

,Σy|zk

)∑K
l=1Nl (z | µzl

,Σzl
)

]
dy,

(2)
where λ is a user-defined parameter that defines the mini-
mum distance required to be collision-free between obstacle
and the robotic manipulator.

Let one complete trajectory in DAMON contain K ver-
tices Vi, i = 0, 1, · · · ,K − 1 on the manifold surface graph.
During each step from Vi → Vi+1, the robotic manipulator
will take ti =

ti,p
1−p(collision|Vi)

+ ti,r in total run-time, where
ti,p and ti,r denote the motion planning time for each step
and the runtime for the robotic manipulator moving from
Vi to Vj , i = 0, 1, · · · ,K − 1. Note that the multiplying
factor of 1/(1− p(collision | Vi)) accounts for the rerouting
time when traversing Vi causes collision. Therefore, the total
runtime for each task trajectory will follow

T =

K−1∑
i=0

ti =

K−1∑
i=0

ti,p
1− p(collision | Vi)

+ ti,r. (3)

1) Estimating the delay performance of DAMON
DAMON uses the standard EM learning algorithm to

extract a Gaussian Mixture Model M(G) with statistical
accuracy. With M(G) in hand, we can easily calculate the
probability of collision at any location Vi on the manifold, as
indicated by Equation 2. This approach provides an effective
means of estimating the total runtime for each trajectory
task, as shown in Equation 3. It’s worth noting that we have
made two simplifying assumptions. First, we assume that
each routing step on the manifold graph is probabilistically
independent during each computed trajectory. Second, we
assume that the robotic manipulator moves at a constant
average rate. These assumptions were made for the sake
of brevity in modelling. However, it is possible to achieve
more complex modelling to account for variable velocity and
acceleration.
2) Determining the optimal manifold point density

Intuitively, as the point density of the manifold graph
increases, the rerouting probability p(collision | Vi) due to

data sparsity error decreases. However, the graph traversing
time and the motion planning time in each step ti,p are likely
to increase because a denser manifold graph requires more
computations. Additionally, as the rerouting probability at
each manifold vertex decreases, the average number of steps
decreases. Hence, there is an intriguing and complicated
relationship between the number of manifold points collected
and the average runtime for a typical motion trajectory.
Our experimental results in Fig. 11 have validated this
analytical finding. Equations 2 and 3 together provide an
effective way of determining the optimal number of manifold
points we need to collect, given a well-defined performance
requirement in terms of the total runtime for each task.

IV. SYSTEM OVERVIEW

A. Experimental Platform and Simulation Setup

In our hardware demonstrations, we utilized a 7-DoF
Franka Emika Panda robot arm mounted on a table-top
workspace, as depicted in Fig.14. Our adaptive trajectory
planning algorithm was implemented in Python and ran
on a Lambda QUAD GPU workstation equipped with an
Intel Core-i9-9820X processor. To track dynamic obstacles
and extract depth information, we used an Intel RealSense
Depth Camera D435i. By applying the conventional hand-to-
eye calibration mathematical formulation, we transported the
[x, y, z]o information from the camera reference frame to the
robot coordinate system. Our algorithm utilized this feedback
from depth sensors to avoid obstacles in real-world scenarios
by computing the distance between the 3D geometry of the
obstacle and the collision meshes of robot links using the
Gilbert–Johnson–Keerthi distance (GJK) [13] algorithm to
safely route to the target location. To validate our approach,
we replicated the exact model of the Franka Emika Panda
Arm in Robotics Toolbox (RTB) for Python. We encap-
sulated the entire framework inside the Robot Operating
System (ROS) ecosystem, utilizing libfranka and Franka
ROS, to establish low-latency and low-noise communication
protocols for data processing and parallel execution among
simulation environments and real hardware.
B. Experimental Procedures and Learning Variables

We collected high-dimensional data samples from the
robot’s workspace and transformed them into a latent space
representation for creating the topological manifold. Each
data sample contained 11 numerical variables, including 7
joint angles, the position of a point obstacle in 3D space,
and a binary collision flag. We accumulated a dataset of
1MM samples by randomly manipulating the arm in the sim-
ulated environment for a large number of epochs. Our VAE
architecture, implemented on PyTorch [20], had a decoder
and encoder network with three layers containing (300, 200,
75) neurons and an encoded latent space representation in
R2. We focused on collecting adequate collision samples to
ensure a safer elementary trajectory. When the algorithm and
manifold learning converged, we conducted real-time and
scalable test experiments against varying occlusions created
by geometrically different 3D objects in the real hardware
setup.

V. RESULTS ANALYSIS

Our experiments seek to investigate the following:
1) Can DAMON learn manifold representation Z ∈ R2

space differentiating the non-colliding and colliding
samples with hierarchical structure for faster routing?

Fig. 9: Structure of Topological Manifold with varying number of input samples. (a) for 10k samples, (b) for 25k samples, (c) for 100k samples

Fig. 10: (a) Connected Network over 10k Manifold Points (To have a clear visual, we plotted the network with 10k points. All planning were completed
with optimal samples), (b)-(c) Uniformly Sampled Points for a densely Connected Network, (d) Shortest Path Routing by Dijkstra’s algorithm

2) Can we preserve the best performance model with
optimal and computationally efficient sample density
for efficient graph routing while reducing the rerouting
probability?

3) Can DAMON concurrently track the unseen perturba-
tions created by geometrically varying obstacles and
dynamically adjust the trajectory to reach the goal
location through graph routing?

A. Latent-Space Manifold Graph and Optimum Routing

Each input sample in DAMON’s high-dimensional space
comprises the joint angle vector for the robotic manipulator
in operation, the 3D coordinate location of the closest point
on the obstacle mesh, and a collision flag IF . Our Variational
Autoencoder (VAE) learns a topological manifold representa-
tion Z ∈ R2 from this high-dimensional space. As illustrated
in Fig. 9, the latent space manifold representation exhibits
visually contrasting clusters based on the binary level of
the collision flag. Next, we construct a connected graph,
Gb, over the R2 space that contains only the collision-free
samples. By applying the unsupervised K-Nearest Neighbor
algorithm [21] to locate the nearest family of vertices in
the collision-free manifold space, we create a connected
graph that accelerates any shortest path routing algorithm to
traverse on a transformed low-dimensional manifold graph.
We further divide the large graph, Gb, into several subgraphs,
Gs, where each Gs is associated with its own obstacle
information embedded in the top layer Gt of the hierarchi-
cal graph structure. As depicted in Fig.10(a), disconnected
sub-networks are automatically generated inside the safe
manifold while creating connected graphs, as the nearest
neighboring algorithm only helps to create a connected
network at the closest distance. This sub-network generation
violates the notion of a complete path routing from any
random node to another random node on the fully connected
network. To ensure dense connectivity, we artificially sample
points in the same R2 space as a grid mesh over the learned
R2 space. By adjusting the level of sparsity in creating the
grid of artificial points, we can easily sample denser artificial
points to create a densely connected network. With the
decoder part of our trained VAE, we can label these artificial

points as safe/colliding sample points, as shown in Fig.10(c).
Furthermore, with decoded high-dimensional points, we can
label these artificial points to their nearest obstacle node of
Gt and include them in the associated subgraph networks.

B. Performance Analysis and Comparison to Baselines

We evaluate the performance of DAMON against clas-
sical navigation approaches and state-of-the-art latent-space
sampling-based algorithms with the following metrics:
• Total Runtime, T : Total Runtime is determined by

calculating total time to compute the initial path, ti,p;
time to maneuver by the physical robot joints, ti,r;
time to perform replanning if the initial path gets
occluded with dynamic obstacle, tp(collision|Vi); T =
f(ti,p, tp(collision|Vi)) + ti,r

• Success Ratio, SR: A planned trajectory is successful
if the robotic arm reaches the target location without
colliding with any moving obstacles.

• Trajectory Smoothness: Smoothness will be measured
by summing up the joint space configuration change in
consecutive via-point pair along the planned path, i.e∑N−1
i=0 ||Θi − Θi+1||2, where N is the total number of

movement stages.
Table II showcases the performance of DAMON in com-

parison to other main methods. To ensure thoroughness, we
have tested DAMON in 5 different settings that involve
both static and dynamic obstacles to verify its generalization
capability. It is worth noting that RRT, RRT*, and L2RRT
do not explicitly support dynamic obstacle replanning; hence,
their results against dynamic environments are unavailable.
Regarding total runtime, DAMON outperforms other ap-
proaches by 2-3 times on average across all cases. However,
when it comes to trajectory and movement smoothness,
the comparison results are mixed. In general, DAMON
is smoother than RRT* Dynamic RRT*, and MpNet, but
less smooth than RRT, and about the same as L2RRT. We
believe that this discrepancy is primarily due to the sampling-
intensive nature of computing versus relatively more effi-
cient graph traversal. Finally, in terms of navigation success
rate, DAMON clearly demonstrates its edge over all other
methods. We attribute this mostly to the synergistic interplay

Methods
Environment Settings Environment Settings Obstacle Condition
Total Runtime, T (s) Smoothness Comparison Success Ratio (%SR)

A B C D E A B C D E Static Dynamic
DAMON 3.2 4.7 5.1 6.5 7.3 0.31 0.35 0.41 0.57 0.51 98.6 97.8

RRT 42.5 39.2 46.3 - - 0.25 0.25 0.25 - - 78.4 -
RRT* 22.6 20.4 29.6 - - 0.61 0.81 0.55 - - 83.2 -

Dynamic-RRT* 15.1 13.4 15.9 37.2 45.2 0.55 0.67 0.41 0.91 0.84 86.2 76.3
L2RRT 7.9 6.2 8.3 - - 0.35 0.38 0.39 - - 90.2 -
MpNet 5.6 6.1 7.2 10.3 12.85 0.42 0.53 0.64 0.88 0.95 91.3 82.3

Environment Settings Details:
A : Static Obstacle #1 Shape : Cuboidal Block
B : Static Obstacle #1 Shape : Spherical Block
C : Static Obstacle #2 Shape : Cuboidal, Spherical

D : Static #1 and Dynamic #1 Shape : Cuboidal (#1, Static), Spherical (#1, Dynamic)
E : Static #2 and Dynamic #1 Shape : Cuboidal (#2, Static), Spherical (#1, Dynamic)

TABLE II: Comparison Results between DAMON and Baseline Approaches for varying environments
between topological manifold learning and adaptive graph
traversal.

Fig. 11: Analysis of how rerouting probability evolves as we changed num-
ber of nodes in the graph structure (In Red). Total Run Time Performance
Analysis for increasing number of Nodes in the Graph Structure(In Blue).

Furthermore, Fig. 11 plots how the number of samples
N affects the total runtime T and the aggregated rerouting
probabily P in DAMON across 12 different obstacle sce-
narios. When tested against with the analytic performance
framework in Section III, our experimental results have
shown a close match. For both cases, larger number of
sampling points to form our manifold graph will in general
make the graph traversal more successful and rerouting
less needed. However, denser manifold graph also requires
more computation, thus long per-stage motion planning time.
As such, there is an intriguing and complicated interplay
between the density of manifold graph and performance met-
rics. To balance this trade-off between readily available safe
path for rerouting and initial trajectory over optimal number
of nodes n∗, we found the optimal number of nodes n∗ which
produced the lowest average T over set of different test-
cases. Lastly, Figure 11 showed how the rerouting probability
plateaued to a fixed range as we consistently increased the
number of samples while computing rerouting probability.
This convergence of rerouting probability pointed out that
we located n∗ which allowed required amount of rerouting
capability without increasing additional computational over-
head for our graph-centric navigation planning.

C. Adaptive Navigation with Dynamic Obstacle Avoidance

DAMON achieves dynamic obstacle avoidance on a 2-D
manifold graph, by adapting the trajectory in real-time to
reach the goal position as quickly as possible while avoiding
moving obstructions. The system achieves this by receiving
feedback based on distance measurements and adapting its
path using a nearest neighbor network. It is worth noting that
each manifold vertex in DAMON contains not only the pose
state of the robotic arm and a specific point obstacle, but
also the precomputed distance between the obstacle and the

t = 0s t = 0.25s t = 0.5s

t = 1.5s t = 2.0s t = 3.0s

(a) (b) (c)

(d) (e) (f)

Fig. 12: (a) Initial pose, (b) Robot follows its initial path, (c) Obstacle
appears at different time-step and robot stops it previous motion, (d) Robot
revises its trajectory to avoid possible collision, in red shaded – collision
when the trajectory planning non-adaptive, (e) (f) Safely reach target
robotic manipulator. This precomputed information and the
topology of manifold graph is crucial because it embeds the
intricate dynamics between the robotic arm and the obstacle,
effectively minimizing the computing effort required for on-
the-fly motion planning.

We demonstrate the effectiveness of our proposed method
in achieving dynamic obstacle avoidance with Fig. 12. Ini-
tially, the robotic arm attempted to reach the goal position
by following its initial computed trajectory. However, at a
later time step, as shown in Fig. 12(c), a dynamically placed
obstacle blocked the robot’s motion. DAMON effectively
guided the robotic arm to re-route through a new trajectory,
which successfully dodges the obstacle and move around the
red block, thus avoiding a possible collision and successfully
reaching the target position. With extensive experimenta-
tions, as listed in Table II, DAMON has shown to be capable
of efficiently adapting the robot manipulator’s trajectory in
real-time, enabling it to avoid moving obstructions and reach
its destination safely.

Since DAMON leverages only point obstacle information
for replanning, our proposed approach can be easily extended
for avoiding probable collision with any shaped obstacles.
In Fig. 13, we attempted to graphically convey an idea on
how DAMON successfully performed replanning when the
robot’s initial motion was convoluted with presence of dif-
ferent shaped obstacles. For instance, the routing performed
successfully even when the 3D shape of obstacles varied
between a cuboid mesh and cylindrical mesh. Inside the
RTB simulated environment, integrated high functionality
API can be effortlessly used to track the proximal distance
among 3D meshes. This API has been modified with the
GJK algorithm [13] for calculating the proximity among
3D meshes in real-world scenarios. This distance metric
produced a feedback to the controller when the robot’s
mechanical structure reaches very close to an obstacle. When
there is chance of probable collision i.e P (d ≤ λ), the
robot controller is triggered to halt its current trajectory
motion and revise its intermediate node connectivity to reach
the preset goal position. On hardware setup, we localized

Fig. 13: Addressing the presence of any amorphous obstacles and avoiding collision through sampling new path from the connected networks

(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 14: (a) Comparison between initial waypoints and final waypoints, (c) Presence of obstacle compels the robot to update previous path, (d) Routing
over the obstacle to avoid collision, (e) Reached next waypoint while again perturbed by different shaped-spherical obstacle, (f) algorithm enables the arm
to dodge the collision, (g) Robot arm reaches its goal position successfully, (h) Object Detection and Depth Information
obstacles in consecutive frames by applying color filtering
through HSV color model and tracked the spatial positions
of random obstacles through depth information extracted
from Realsense depth camera. After successful extraction
of depth values, we transported the 3D coordinate value of
closest point on the object mesh to the learning controller
and the controller evaluated the probability of collision based
on our GMM model. If the condition is suddenly violated,
the algorithm replans for a new shortest and safest path to
reach the goal position. In Fig. 14, we have added snapshots
from real hardware operation. In red shaded figure, we also
depicted the probable collision would occur without the pres-
ence of dynamic adaption on real time. Here, we validated
our experiments with varying size and different geometric
objects. For both obstacles, our adaptive motion planning
approach successfully avoided the dynamic obstacles which
appear at different time-step of robot operation.

VI. CONCLUSION

Dynamically avoiding 3D obstacles with unpredictable
trajectories for a given robotic manipulator can be effectively
addressed by combining three theoretical algorithm modules
- topological manifold learning, variational autoencoding,
and adaptive graph traversing. By reducing dynamic obstacle
avoidance to a basic point obstacle avoidance problem sup-
ported by a strong theoretical foundation, DAMON demon-
strates versatility and generalizability in tackling arbitrary
numbers of obstacles.

REFERENCES

[1] M. A. Goodrich and A. C. Schultz, “Human-robot interaction: A
survey,” Foundations and Trends in Human-Computer Interaction,
vol. 1, no. 3, pp. 203–275, 2007.

[2] P. S. Schmitt, F. Witnshofer, K. M. Wurm, G. V. Wichert, and
W. Burgard, “Modeling and planning manipulation in dynamic envi-
ronments,” Proceedings - IEEE International Conference on Robotics
and Automation, vol. 2019-May, pp. 176–182, 2019.

[3] D. Falanga, K. Kleber, and D. Scaramuzza, “Dynamic obstacle avoid-
ance for quadrotors with event cameras,” Science Robotics, 2020.

[4] S. Sundar and Z. Shiller, “Optimal obstacle avoidance based on the
hamilton-jacobi-bellman equation,” IEEE Transactions on Robotics
and Automation, vol. 13, no. 2, pp. 305–310, 1997.

[5] S. M. Khansari-Zadeh and A. Billard, “A dynamical system approach
to realtime obstacle avoidance,” Autonomous Robots, vol. 32, no. 4,
pp. 433–454, 2012.

[6] L. Blackmore, M. Ono, and B. C. Williams, “Chance-constrained
optimal path planning with obstacles,” IEEE Transactions on Robotics,
vol. 27, no. 6, pp. 1080–1094, 2011.

[7] A. Garg, H.-T. L. Chiang, S. Sugaya, A. Faust, and L. Tapia, “Com-
parison of deep reinforcement learning policies to formal methods for
moving obstacle avoidance,” IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 3534–3541, 2019.

[8] O. Adiyatov and H. A. Varol, “A novel rrt*-based algorithm for motion
planning in dynamic environments,” in 2017 IEEE International
Conference on Mechatronics and Automation, 2017, pp. 1416–1421.

[9] B. Ichter and M. Pavone, “Robot motion planning in learned latent
spaces,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp.
2407–2414, 2019.

[10] A. H. Qureshi, Y. Miao, A. Simeonov, and M. C. Yip, “Motion
planning networks: Bridging the gap between learning-based and
classical motion planners,” IEEE Transactions on Robotics, vol. 37,
no. 1, pp. 48–66, 2021.

[11] H. B. Mohammadi, S. Hauberg, G. Arvanitidis, G. Neumann, and L. D.
Rozo, “Learning riemannian manifolds for geodesic motion skills.”

[12] A. V. Bernstein, “Manifold learning in machine vision and robotics,”
in International Conference on Machine Vision, 2017.

[13] A. H. Khan, S. Li, and X. Luo, “Obstacle Avoidance and Tracking
Control of Redundant Robotic Manipulator: An RNN-Based Meta-
heuristic Approach,” IEEE Transactions on Industrial Informatics,
vol. 16, no. 7, pp. 4670–4680, 2020.

[14] M. W. Diederik P Kingma, “Auto-encoding variational bayes,” 2014.
[15] T. Dang, F. Mascarich, S. Khattak, C. Papachristos, and K. Alexis,

“Graph-based path planning for autonomous robotic exploration in
subterranean environments,” in 2019 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2019, pp. 3105–3112.

[16] O. Kupervasser, H. Kutomanov, M. Mushaelov, and R. Yavich, “Using
diffusion map for visual navigation of a ground robot,” Mathematics,
vol. 8, no. 12, 2020.

[17] Y. F. Chen, S.-Y. Liu, M. Liu, J. Miller, and J. How, “Motion planning
with diffusion maps,” 10 2016.

[18] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using networkx,” in Proceedings of
the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and
J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 – 15.

[19] Z. Ghahramani and M. Jordan, “Supervised learning from incomplete
data via an em approach,” in Advances in Neural Information Pro-
cessing Systems, J. Cowan, G. Tesauro, and J. Alspector, Eds., vol. 6.
Morgan-Kaufmann, 1993.

[20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8024–8035.

[21] P. Cunningham and S. J. Delany, “k-Nearest Neighbour Clas-
sifiers: 2nd Edition (with Python examples),” arXiv e-prints, p.
arXiv:2004.04523, Apr. 2020.

	I Introduction
	II Problem Formulation: Motion Planning for Dynamic Obstacle Avoidance
	III Proposed Methodology
	III-.1 Estimating the delay performance of DAMON
	III-.2 Determining the optimal manifold point density

	IV System Overview
	IV-A Experimental Platform and Simulation Setup
	IV-B Experimental Procedures and Learning Variables

	V Results Analysis
	V-A Latent-Space Manifold Graph and Optimum Routing
	V-B Performance Analysis and Comparison to Baselines
	V-C Adaptive Navigation with Dynamic Obstacle Avoidance

	VI Conclusion
	References

