
Imitation Is Not Enough: Robustifying Imitation with
Reinforcement Learning for Challenging Driving Scenarios

Yiren Lu1, Justin Fu1, George Tucker2, Xinlei Pan1, Eli Bronstein1, Rebecca Roelofs2, Benjamin Sapp1,
Brandyn White1, Aleksandra Faust2, Shimon Whiteson1, Dragomir Anguelov1, Sergey Levine2,3

Abstract— Imitation learning (IL) is a simple and power-
ful way to use high-quality human driving data, which can
be collected at scale, to produce human-like behavior. How-
ever, policies based on imitation learning alone often fail to
sufficiently account for safety and reliability concerns. In
this paper, we show how imitation learning combined with
reinforcement learning using simple rewards can substan-
tially improve the safety and reliability of driving policies
over those learned from imitation alone. In particular, we
train a policy on over 100k miles of urban driving data,
and measure its effectiveness in test scenarios grouped by
different levels of collision likelihood. Our analysis shows
that while imitation can perform well in low-difficulty
scenarios that are well-covered by the demonstration data,
our proposed approach significantly improves robustness
on the most challenging scenarios (over 38% reduction in
failures). To our knowledge, this is the first application of a
combined imitation and reinforcement learning approach
in autonomous driving that utilizes large amounts of real-
world human driving data.

I. INTRODUCTION

Building an autonomous driving system that is de-
ployable at scale presents many difficulties. First and
foremost is the challenge of handling the numerous
rare and challenging edge cases that occur in real-world
driving. To this end, imitative learning based approaches
have been proposed that allow the performance of the
method to scale with the amount of data available [1],
[2], [3]. While situations that are well represented in the
demonstration data are likely to be handled correctly by
such a policy, more unusual or dangerous situations that
occur only rarely in the data might cause the imitation
policy – which has not been explicitly instructed on what
constitutes a risky or inappropriate response – to respond
unpredictably. The problem is compounded by complex
interactions, where human expert driving data in similar
scenarios may be scarce and sub-optimal [4].

1 Waymo Research. 2 Google Research, Brain Team 3 UC Berkeley.
Point of contact: maxlu@waymo.com.
Webpage: waymo.com/research/imitation-is-not-enough-robustifying-
imitation-with-reinforcement-learning

Fig. 1: The demonstration-reward trade-off. As the amount of
data for a particular scenario decreases, reward signals become
more important for learning. We show a few visual examples
representing scenarios with different frequencies.

Reinforcement Learning (RL) has the potential to
resolve this by leveraging explicit reward functions that
tell the policy what constitutes safe or unsafe outcomes
(e.g., collisions). Furthermore, because RL methods train
in closed-loop, RL policies can establish causal relation-
ships between observations, actions, and outcomes. This
yields policies that are (1) less vulnerable to covariate
shifts and spurious correlations commonly seen in open
loop IL [5], [6], and (2) aware of safety considerations
encoded in their reward function, but which are only
implicit in the demonstrations.

However, relying on RL alone, e.g., [7], [8], [9], is
also problematic because it heavily depends on reward
design, which is an open challenge in autonomous
driving [10]. Without accounting for imitation fidelity,
driving policies trained with RL may be technically safe
but unnatural, and may have a hard time making forward
progress in situations that demand human-like driving
behavior to coordinate with other agents and follow
driving conventions. IL and RL offer complementary
strengths: IL increases realism and eases the reward
design burden and RL improves safety and robustness,
especially in rare and challenging scenarios in the ab-
sence of abundant data (Fig. 1).

In this paper we focus on the driving scenarios that
are most likely to exhibit safety and reliability concerns,
leveraging the difficulty estimation from [11]. Our pro-
posed method, BC-SAC, combines IL and RL with a

ar
X

iv
:2

21
2.

11
41

9v
2 

 [
cs

.A
I]

  1
0 

A
ug

 2
02

3

https://waymo.com/research/imitation-is-not-enough-robustifying-imitation-with-reinforcement-learning/
https://waymo.com/research/imitation-is-not-enough-robustifying-imitation-with-reinforcement-learning/


simple reward function, and trains on difficult driving
scenarios. Difficulty is estimated via a classifier that
estimates the likelihood of a collision or near-miss when
re-simulated with a pre-trained planning policy. Our
proposed reward function enforces safety of the agent,
while natural driving behaviors are implicitly learned
with IL. The training data comes from a subset of real-
world human driving data (over 100k miles of real-
world urban driving data) [11]. We demonstrate that this
approach substantially improves the safety and reliability
of policies learned over imitation alone without compro-
mising on human-like behavior, showing 38% and 40%
improvements over pure IL and RL baselines.

The main contributions of our work are: (1) We
conduct the first large-scale application of a combined
IL and RL approach in autonomous driving utilizing
large amounts of real-world urban human driving data
(over 100k miles) and a simple reward function. (2)
We systematically evaluate its performance and baseline
performance by slicing the dataset by difficulty, demon-
strating that combining IL and RL improves safety and
reliability of policies over those learned from imitation
alone (over 38% reduction in safety events on the most
difficult bucket).

II. RELATED WORK

Learning-based approaches in autonomous driv-
ing. We briefly summarize key properties of different
learning-based algorithms for planning in Table I. IL
was among the earliest and most popular learning-based
approaches adopted for deriving driving policies [1], [2],
[24], [25], [26], [27]. Controllable models trained with
either IL [3], [28] or RL [8] allow the user to specify
high-level commands in the form of goals or control
signals (e.g., left, right, straight) to combine higher-level
route planning with low-level control.

Two drawbacks of IL methods are: (1) open-loop
IL (such as the widely used behavioral cloning ap-
proach [12], [14], [13], [29], [30]) suffers from covariate
shift [5] (which can be addressed with closed-loop
training [15], [16]), (2) IL methods lack explicit knowl-
edge of what constitutes good driving, such as collision
avoidance. RL methods have been proposed that allow
the policy to learn from explicit reward signals with
closed-loop training and have been applied to tasks such
as lane-keeping [31], intersection traversal [32], and lane
changing [33]. While these works show the efficacy of
RL on specific scenarios, our work analyzes both the
large-scale, aggregate performance and challenging and
safety-critical edge cases that make autonomous driving
difficult to deploy in a real-world system.

RL and other closed-loop methods for autonomous
driving typically use simulation for training. There are a
number of such public environments, which vary in how
realistic they are, in particular what drives the simulated
agents (e.g., expert-following/log playback [34], [35],
[36], [37], intelligent driving model (IDM) [38], or
other rule based systems [39] and ML-based agents [38],
[40]), and whether scenarios are procedurally generated
(e.g., [39], [41], [40]) or initialized from real-world
driving scenes [42], [36], [34], [37]. In our experiments,
we develop and evaluate in closed-loop on real-world
data with other agents following logs.

Combining IL and RL. Methods such as DQfD [22],
DDPGfD [43], and DAPG [44] have shown that IL can
help RL overcome exploration challenges in domains
with known sparse rewards. Offline RL approaches, such
as TD3+BC [21] and CQL [20] combine RL objectives
with IL ones to regularize Q-learning updates and avoid
overestimating out-of-distribution values. Our goal is
not to propose a novel algorithmic combination of IL
and RL, but rather to leverage this general approach to
address challenges in autonomous driving at scale.

Addressing challenging and safety-critical scenar-
ios for autonomous vehicles. [4] learns policies that
address long-tail scenarios in autonomous driving by
using an ensemble of IL planners combined with model-
predictive control. Another approach to improving safety
is to augment a learned planner with a rule-based
fallback layer that guarantees safety [45], [25]. Our
work differs from these approaches, in that we directly
incorporate safety awareness into the model learning
process through a reward. Our method is also com-
patible with a fallback layer if needed, although we
this is potential future work. Another way to improve
robustness of polices is to increase the frequency of
negative examples during training. [46] collects failure
data that covers various ways an unmanned aerial vehicle
can crash, and the combined negative and positive data
helps to train more robust policies. [11] investigates
the use of curriculum training to improve performance
on challenging edge cases. While we also increase the
exposure of the policy to challenging scenarios during
training, we extend these findings by showing how RL
yields outsized improvements on the hardest scenarios.

III. BACKGROUND

A. Markov Decision Processes (MDPs)

In this work, we cast the autonomous driving poli-
cies learning problem as a Markov decision process.
Following standard formalism, we define an MDP as
a tuple {S,A, T ,R, γ, ρ0}. S and A denote the state



TABLE I: A comparison of different learning-based approaches to robotic control and autonomous driving.

Offline Demo Closed-loop Rewards Example Methods
Behavior Cloning (BC) Expert Demos No No Multipath [12], Precog [13], Trajectron++ [14]
Adversarial Imitation/IRL Expert Demos Yes No IRL [15], GAIL [16], MGAIL [17]
RL No Yes Yes DQN [18], SAC [19]
Offline RL Behavioral Data No Yes CQL [20], TD3+BC [21]
“Imitative” RL Expert Demos Yes Yes DQfD [22], DAPG [23], BC-SAC (ours)

and action spaces, respectively. T denotes to transi-
tion model. R represents the reward function, and γ
represents the discount factor. ρ0 represents the initial
state distribution. The objective is to find a policy
π, a (stochastic) mapping from S to A, that maxi-
mizes the expected discounted sum of rewards, π∗ =
maxπ ET ,π,ρ0 [

∑∞
t=0 γ

tR(st, at)] .

B. Imitation Learning (IL)
IL constructs an optimal policy by mimicking an

expert. We assume an expert (an optimal policy), de-
noted as πβ , produces a dataset of trajectories D =
{s0, a0, · · · , sN , aN} through interaction with the en-
vironment. The learner’s goal is to train a policy π
that imitates the πβ . In practice, we only observe
the expert states, so we estimate expert actions us-
ing inverse dynamics. For example, behavioral cloning
(BC) trains the policy via a log-likelihood objec-
tive, Es,a∼D [log π(a|s)]. Alternatively, closed loop ap-
proaches include inverse RL (IRL) [15] and adversarial
IL (GAIL [16], MGAIL [17]), which instead aim to
more directly match the occupancy measure or state-
action visitation distribution between the policy and the
expert, rather than indirectly through the conditional
action distribution. In principle, this can resolve the
covariate shift issue that affects open loop imitation [5].

C. Reinforcement Learning (RL)
RL aims to learn an optimal policy through an iter-

ative, online trial and error process. In this work we
use off-policy, value-based RL algorithms such as Q-
learning. These methods aim to learn the state-action
value function, defined as the expected future return
when starting from a particular state and action:

Qπ(s, a) = ET ,π,ρ0

[ ∞∑
t=0

γtR(st, at)|s0 = s, a0 = a

]
.

In this work, we use an actor-critic method for training
continuous control policies. Typical actor-critic methods
alternate between training a critic Q to minimize the
Bellman error and an actor π to maximize the value
function. We use the entropy-regularized updates of Soft
Actor-Critic (SAC) [19]:

min
Q

Es,a,s′∼π[(Q(s, a)− Q̂(s, a, s′))2] (1)

max
π

Es,a∼π [Q(s, a) +H(π(·|s))] , (2)

where

Q̂(s, a, s′) = r(s, a) + γEa′∼π

[
Q̄(s′, a′)− log π(a′|s′)

]
(3)

and Q̄ denotes a target network that is a copy of the
critic through which gradients do not pass.

IV. LEARNING TO DRIVE WITH RL-AUGMENTED BC

We wish to design an approach that benefits from
the complementary strengths of IL and RL. Imitation
provides an abundant source of learning signal without
the need for reward design, and RL addresses the weak-
nesses of IL in rare and challenging scenarios where
data is scarce. Following this intuition, we formulate an
objective that utilizes the learning signal from demon-
strations where data is abundant and the reward signal
where data is scarce. Specifically, we utilize a weighted
mixture of the IL and RL objectives:

max
π

ET ,π,ρ0

[ ∞∑
t=0

γtR(st, at)

]
+ λEs,a∼D[log π(a|s)].

(4)

A. Behavior Cloned Soft Actor-Critic (BC-SAC)

While in principle a variety of RL methods could be
combined with IL to optimize Eq. 4, a convenient choice
for efficient training is to use actor-critic algorithms, in
which case the policy can be optimized with respect to
Eq. 4 simply by adding the imitation learning objective
to the expected value of the Q-function (i.e., the critic),
similarly to DAPG [23] or TD3+BC [21]. Building on
the widely used SAC framework, which further adds an
entropy regularization objective to the actor, we obtain
our full actor objective:

Es,a∼π[Q(s, a) +H(π(·|s))] + λEs,a∼D[log π(a|s)].

The critic update remains the same as in SAC, outlined
in Eq 1. With the appropriate setting of λ, this objective
encourages the policy to mimic the expert data when it
is within the data distribution D. However, in out-of-
distribution states the policy primarily relies on reward
to learn. Fig. 2 visualizes this concept.



Fig. 2: Different objective influence. For in-distribution states,
both IL and RL objectives provide learning signal. For out-of-
distribution states, the RL objective dominates.

B. Reward Function

While designing a reward function to capture “good”
driving behavior is an open-challenge [10], we can side-
step this issue by relying on the imitation learning loss
to primarily guide the policy, while the simple reward
function only needs to encode safety constraints. To this
end, we use a combination of collision and off-road
distances as our reward signal. The collision reward is

Rcollision = min(dcollision − dc offset, 0), (5)

where dcollision is the Euclidean distance in meters of
the closest points between the ego vehicle and a nearest
bounding box of other vehicles; dc offset (default 1.0)
is an offset added to encourage the vehicle to keep a
distance from nearby objects. The off-road reward is

Roff-road = clip(−do offset − dto-edge,−2.0, 0.0), (6)

where dto-edge is the distance in meters of the vehicle to
the nearest road edge (negative being on-road, positive
being off-road). do offset (default 1.0) is an offset to
encourage the vehicle to keep a distance to road edge.
We combine the rewards additively, such that R =
Rcollision +Roff-road.

C. Forward and Inverse Vehicle Dynamics Models

We update the vehicle’s state using the kinematic
bicycle dynamics model [47], which computes the
vehicle’s next pose (x, y, θ) given a steering and ac-
celeration action a = (asteer, aaccel). In order to obtain
expert actions for imitation learning, we use an inverse
dynamics model to solve for the actions that would have
achieved the same states as the logged trajectories in our
dataset. These expert actions are found by minimizing
the MSE of the corners’ (x, y) positions between the
inferred state T (st, at) and ground-truth next state st+1.

D. Model Architecture

We use a dual actor-critic architecture similar to
TD3 and SAC [48], [19]: the main components are
an actor network π(a|s), a double Q-critic network
Q(s, a) and a target double Q-critic network Q̄(s, a).
Each network has a separate Transformer observation

encoder described in [49] that encodes features including
all vehicle states, road-graph points, traffic lights signals,
and route goals. The actor network outputs a tanh-
squashed diagonal Gaussian distribution parameterized
by a mean µ and variance σ.

E. Training on Difficult Examples

The performance of learning-based methods strongly
depends on the training data distribution, especially in
safety-critical settings with long-tail distributions [50],
[51], [45], [52], [53]). Autonomous driving falls in this
category: most scenarios are mundane, but a sizable
minority of scenarios have critical safety concerns. Fol-
lowing [11], which demonstrated that training on more
difficult examples results in better performance than
using unbiased training distributions, we explore how
the training distribution affects the method performance.

V. EXPERIMENTS
A. Experimental Setup

Datasets. We use a dataset (denoted All) consisting of
over 100k miles of expert driving trajectories, split into
10 second segments, collected from a fleet of vehicles
operating in San Francisco (SF) [11]. We divide these
segments into 6.4 million for training and 10k for
testing. Trajectories from the same vehicle operating on
the same day are stored in the same partition to avoid
train-test leakage. The trajectories, which are sampled
at 15 Hz, contain features describing the autonomous
vehicle (AV) state and the state of the environment
as measured by the AV’s perception system. We use
the difficulty model described by [11] as a proxy for
measuring the rarity of events, since it is difficult
to directly construct a scenario-level out-of-distribution
estimator, and challenging scenarios are generally less
frequent. Given a run segment, the difficulty model
predicts whether a segment will result in a collision
or near-miss when re-simulated with an internal AV
planner. We trained the difficulty model in a supervised
manner using cross-entropy loss on a dataset consisting
of 5.6k positive examples and 80k negative examples,
with binary human labels. We create the Top1, Top10,
and Top50 subsets by selecting the top 1% (40k train,
1.2k test), 10% (400k train, 19k test), and 50% (2 million
train, 66k test) percentiles of difficulty model scores
from a chronologically separate dataset of 4 million
segments, respectively.
Simulation. As mentioned in Sec. IV-C, vehicle dynam-
ics are modeled using a 2D bicycle dynamics model. The
behavior of other vehicles and pedestrians in the scene
are replayed from the logs (log-playback), similarly
to [34], [35], [36]. While this means that agents are



Fig. 3: Failure rates on the most challenging evaluation sets:
Top1 and Top10 (lower is better, with training on All and
Top10). BC-SAC consistently achieves the lowest error rates.

Fig. 4: Failure rates of BC, MGAIL, and BC-SAC across
scenarios of varying difficulty levels (50%-100%, lower is
better). While all methods perform worse as the evaluation
dataset becomes more challenging, BC-SAC always performs
best and shows the least degradation.

non-reactive, it ensures that the behavior of other agents
is human-like, and the inclusion of imitative losses
discourages the learned policy to deviate too far from
the logs, which would cause the log-playback agents to
become unrealistic. We also use short segments of 10s
to mitigate pose divergence.
Baselines. We compare our method to both open-loop
(BC [1]) and closed-loop (MGAIL [17]) imitative meth-
ods. The latter takes advantage of closed loop training
and the differentiability of the simulator dynamics. For
completeness, we also include a SAC baseline to repre-
sent an RL-only approach.
Metrics. We evaluate agents using two metrics:

1) Failure Rate: Percentage of the run segments that
have at least one Collision or Off-road event at any
timestep. Collision is true if the bounding box of
the ego vehicle intersects with a bounding box of
another object. Off-road is true if the bounding
box of the ego vehicle deviates from the drivable
surface according to the map.

2) Route Progress Ratio: Ratio of the distance trav-
eled along the route by the policy compared to the
expert demonstration. We project the ego vehicle’s
state onto the route and compute the total length
from the start of the route.

B. Results

We evaluate the baseline methods (BC, MGAIL,
SAC) and our method (BC-SAC) trained on several
subsets of the training dataset (All, Top10, and Top1),
and evaluate against subsets of the evaluation set (Top1,
Top10, Top50, All) in Table II. All configurations are
evaluated with three random seeds, reporting mean and
standard deviation. Previously, [11] showed that training
MGAIL on Top10 yields similar performance with train-
ing on All. Similarly, we find that all methods perform
best when trained on Top10. Notably, BC trained on
Top1 performs significantly worse compared to training
on All or Top10, which reflects the fact that imitation
learning methods rely on large amounts of data to
implicitly infer driving preferences. In contrast, BC-SAC
performs robustly when trained on Top1. Given that all
methods perform best when trained on Top10, we focus
on that setting in the following subsections.
BC-SAC comparison to imitation methods (BC,
MGAIL) in the challenging scenarios. Figure 4 com-
pares BC-SAC against BC and MGAIL across the
evaluation dataset slices according to difficulty levels.
BC-SAC achieves better performance overall, especially
in the more challenging slices where the performance of
both BC and MGAIL substantially degrade. Addition-
ally, BC-SAC has the lowest variance across scenarios
of varying difficulty in performance (σ = 0.37) vs. BC
(σ = 1.29) and MGAIL (σ = 0.78).
BC-SAC comparison to RL-only training (SAC). In
all configurations, BC-SAC outperforms SAC in terms
of safety metrics (Table II), likely because BC-SAC also
utilizes learning signal from large amount of demonstra-
tions. SAC generates actions that deviate significantly
from the demonstrations with more boundary action val-
ues yielding unnatural (more swerves) and uncomfort-
able (abrupt acceleration) driving behavior (Figure 5).
With a BC loss, BC-SAC generates an action distribution
similar to the logs.
Reward shaping and RL / IL weights. We conduct
a set of ablation studies to answer how the form of
the reward function and the weights on the RL and
imitation components influence final performance. We
use a smaller dataset constructed by sampling 10% of
the Top10 data and compare: (1) our full reward vs.
a discrete binary reward (Fig 6 Right), (2) off-road
and collision reward term weights (Fig 6 Left), (3) off-
road and collision offset parameters (Fig 7), and (4) the
weight on the RL and IL terms in the objective (Fig 8).
The results indicate that the proposed shaped reward
improves overall performance over the simpler sparse
reward with an appropriate choice of reward parameters,



Method Training Top1 (%) Top10 (%) Top50 (%) All (%) Route Progress
Ratio, All(%)

BC All 9.74±0.49 6.72±0.47 5.14±0.39 4.35±0.27 99.00±0.39
MGAIL All 7.28±0.98 4.22±0.77 3.40±0.97 2.48±0.29 99.55±1.91

SAC All 5.29±0.66 4.64±1.08 4.12±0.74 6.66±0.44 77.82±8.21
BC-SAC All 3.72±0.62 2.88±0.23 2.64±0.21 3.35±0.31 95.26±8.64

BC Top10 5.79±0.82 3.45±0.72 2.71±0.57 3.64±0.31 98.06±0.18
MGAIL Top10 4.21±0.95 2.57±0.52 2.20±0.52 2.45±0.35 96.57±1.19

SAC Top10 4.33±0.47 4.11±0.63 3.66±0.47 5.60±0.86 71.05±2.47
BC-SAC Top10 2.59±0.31 2.01±0.29 1.76±0.20 2.81±0.26 87.63±0.58

BC Top1 7.66±1.13 7.84±0.92 6.63±0.78 6.85±0.65 94.10±1.00
MGAIL Top1 4.24±0.95 3.16±0.43 2.74±0.46 3.79±0.46 93.10±11.72

SAC Top1 4.15±0.31 3.87±0.12 3.46±0.16 5.98±1.03 75.63±2.19
BC-SAC Top1 3.61±0.87 2.96±1.11 2.69±0.87 3.38±0.48 75.00±17.21

TABLE II: Failure rates (lower is better) and progress ratios (higher is better)
of BC-SAC and baselines on different training/evaluation subsets.

(a) SAC
acceleration

(b) SAC tire
angles

(c) BC-SAC
acceleration

(d) BC-SAC tire
angles

Fig. 5: Marginal action distributions.
SAC/BC-SAC (orange) vs logs (blue).

Fig. 6: Left: Off-road / collision weights. Off-road weight
and collision weight add up to 2.0. The x-axis is the collision
weight. A balanced choice of off-road and collision weights
lead to the best performance. Right: Dense vs binary rewards.
Binary reward is defined as −1 when a safety event happens
and 0 otherwise. Dense rewards lead to fewer safety events.

Fig. 7: Off-road offset do offset and collision offset dc offset abla-
tions. A small amount of offsets improves overall performance.

and a balance between imitation and RL terms leads to
the best performance.
Progress-safety balance. While our work focuses on
safety-critical scenarios, in Fig 8 Right, we show that
introducing a small amount of a progress reward leads
to significantly more progress without major regressions
in safety metrics. However, large progress rewards lead
to degradation in performance.
In-depth failure analysis. Table III presents a detailed
analysis of failure modes on a set of 80 sampled scenar-

Method CLIP COLL OFF RED LAN DIV
BC-SAC 8 7 2 1 7 15
MGAIL 16 8 8 2 0 6

TABLE III: Failure frequency categorizations, per type, in-
curred by BC-SAC and MGAIL on a small sample set (N=80).
BC-SAC generally has fewer direct collisions and off-road
events, but has a greater frequency of being hit by other
objects.

Fig. 8: Left Imitation weights (log-scale) vs failure rates.
Right Progress reward weights (log-scale) vs policy evaluation
performance: safety event rate and route progress ratio.

ios from the Top1 and Top10 buckets. We categorize
failures into 6 broad buckets. CLIP (clipping): small
collisions that occur when a vehicle collides with an
object on the side while moving. OFF (off-road): failures
when the agent drives off the road. LAN (bad lane):
an agent encroaches into another lane, either the wrong
lane or a bad merge, which results in a collision. COLL
(collision): collision where the planning agent is at fault
and drives into another vehicle. RED (red light): red
light violations that result in collisions. Finally, DIV (log
divergence): collisions where a sim agent collides with
the planning agent due to divergence from the logs.

Overall, MGAIL tends to have more clipping col-
lisions and off-road events. Fig 9 shows two of the
cases where RL improves over IL. We hypothesize that
our method improves in these cases because MGAIL,
as an imitation method, lacks an explicit penalty for
collisions, and thus is not sensitive to small collisions
during otherwise realistic behavior. On the other hand,
the collisions encountered by BC-SAC tend to be cases
where the collision is not directly the result of the
AV planner’s action, but the planner diverges from the
logs in a way such that it is hit by other vehicles.
Because BC-SAC also is not explicitly rewarded for
following traffic rules (though it inherits this behavior
via imitation), we also see a small amount of failures
due to that.



Fig. 9: Visualizations of a few scenarios where BC-SAC
improves over imitation (MGAIL) and RL-only (SAC). The
cyan car is controlled. Example 1: MGAIL collides with a
pedestrian exiting a double parked car while BC-SAC leaves
enough clearance. Example 2: MGAIL does not provide
sufficient clearance and collides with the incoming vehicle.
Example 3: SAC slows down in an intersection resulting in
an rear collision. BC-SAC maintains a proper speed profile
through the intersection without a collision.

VI. CONCLUSIONS

We presented a method for robust autonomous driving
in challenging driving scenarios, that combines imitation
learning with RL (BC-SAC), paired with a simple safety
reward, and trained on large datasets of real-world driv-
ing. Overall, the method significantly improves safety
and reliability in challenging scenarios, resulting in more
than 38% reduction in safety events of the most difficult
scenarios compared to IL-only and RL-only baselines.
Our extensive experiments examined the roles of training
datasets, reward shaping and IL / RL objective terms.
BC-SAC inherits implicit human-like driving behaviors
from imitation, while RL is a fail-safe for handling out-
of-distribution safety scenarios. Similarly to the IL-only
settings, training on the top 10% of the most challenging
scenarios yields the most robust performance in the com-
bined IL and RL setting. While this work mainly focused
on optimizing safety-related rewards, a natural extension
is to incorporate other factors into the objective, such
as progress, traffic rule adherence, and passenger com-
fort. Besides the reward function, this approach does
not account for unexpected behavior of other agents
in response to out-of-distribution actions on the part
of the ego vehicle, and it still requires heuristically
choosing the tradeoff between the IL and RL objectives.
A promising future work direction would be to enable
reactive sim agents for training and evaluation and to
extend the approach to enforce safety as an explicit

constraint, perhaps in combination with methodology to
mitigate distributional shift.

REFERENCES

[1] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a
neural network,” Advances in neural information processing
systems, vol. 1, 1988.

[2] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al.,
“End to end learning for self-driving cars,” arXiv preprint
arXiv:1604.07316, 2016.

[3] F. Codevilla, M. Miiller, A. López, V. Koltun, and A. Dosovit-
skiy, “End-to-end driving via conditional imitation learning,” in
2018 IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE, 2018, pp. 1–9.

[4] W. Zhou, Z. Cao, N. Deng, X. Liu, K. Jiang, and D. Yang,
“Long-tail prediction uncertainty aware trajectory planning for
self-driving vehicles,” arXiv preprint arXiv:2207.00788, 2022.

[5] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation
learning and structured prediction to no-regret online learning,”
in Proceedings of the fourteenth international conference on
artificial intelligence and statistics. JMLR Workshop and
Conference Proceedings, 2011, pp. 627–635.

[6] P. De Haan, D. Jayaraman, and S. Levine, “Causal confusion in
imitation learning,” Advances in Neural Information Processing
Systems, vol. 32, 2019.

[7] X. Pan, Y. You, Z. Wang, and C. Lu, “Virtual to real re-
inforcement learning for autonomous driving,” arXiv preprint
arXiv:1704.03952, 2017.

[8] X. Liang, T. Wang, L. Yang, and E. Xing, “Cirl: Controllable
imitative reinforcement learning for vision-based self-driving,”
in Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 584–599.

[9] Z. Zhang, A. Liniger, D. Dai, F. Yu, and L. Van Gool, “End-to-
end urban driving by imitating a reinforcement learning coach,”
in Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2021, pp. 15 222–15 232.

[10] W. B. Knox, A. Allievi, H. Banzhaf, F. Schmitt, and P. Stone,
“Reward (mis) design for autonomous driving,” arXiv preprint
arXiv:2104.13906, 2021.

[11] E. Bronstein, S. Srinivasan, S. Paul, A. Sinha, M. O’Kelly,
P. Nikdel, and S. Whiteson, “Embedding synthetic off-policy
experience for autonomous driving via zero-shot curricula,” in
6th Annual Conference on Robot Learning, 2022.

[12] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov, “Multipath:
Multiple probabilistic anchor trajectory hypotheses for behavior
prediction,” arXiv preprint arXiv:1910.05449, 2019.

[13] N. Rhinehart, R. McAllister, K. M. Kitani, and S. Levine,
“PRECOG: prediction conditioned on goals in visual multi-agent
settings,” CoRR, vol. abs/1905.01296, 2019.

[14] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Tra-
jectron++: Multi-agent generative trajectory forecasting with het-
erogeneous data for control,” arXiv preprint arXiv:2001.03093,
2020.

[15] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement
learning,” in Proceedings of 17th International Conference on
Machine Learning, 2000, 2000, pp. 663–670.

[16] J. Ho and S. Ermon, “Generative adversarial imitation learning,”
Advances in neural information processing systems, vol. 29,
2016.

[17] N. Baram, O. Anschel, and S. Mannor, “Model-based adversarial
imitation learning,” arXiv preprint arXiv:1612.02179, 2016.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski et al., “Human-level control through deep rein-
forcement learning,” nature, vol. 518, no. 7540, pp. 529–533,
2015.



[19] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor,” CoRR, vol. abs/1801.01290, 2018.

[20] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-
learning for offline reinforcement learning,” Advances in Neural
Information Processing Systems, vol. 33, pp. 1179–1191, 2020.

[21] S. Fujimoto and S. S. Gu, “A minimalist approach to offline rein-
forcement learning,” Advances in neural information processing
systems, vol. 34, pp. 20 132–20 145, 2021.

[22] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, I. Osband et al., “Deep
q-learning from demonstrations,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[23] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning complex dexterous manip-
ulation with deep reinforcement learning and demonstrations,”
in Robotics: Science and Systems, 2018.

[24] Z. Zhang, A. Liniger, D. Dai, F. Yu, and L. Van Gool, “End-to-
end urban driving by imitating a reinforcement learning coach,”
in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021, pp. 15 222–15 232.

[25] M. Vitelli, Y. Chang, Y. Ye, A. Ferreira, M. Wołczyk, B. Osiński,
M. Niendorf, H. Grimmett, Q. Huang, and A. Jain, “Safetynet:
Safe planning for real-world self-driving vehicles using machine-
learned policies,” in 2022 International Conference on Robotics
and Automation (ICRA). IEEE, 2022, pp. 897–904.

[26] N. Nayakanti, R. Al-Rfou, A. Zhou, K. Goel, K. S. Refaat, and
B. Sapp, “Wayformer: Motion forecasting via simple & efficient
attention networks,” arXiv preprint arXiv:2207.05844, 2022.

[27] V. Lioutas, A. Scibior, and F. Wood, “Titrated: Learned human
driving behavior without infractions via amortized inference,”
Transactions on Machine Learning Research, 2022.

[28] N. Rhinehart, R. McAllister, and S. Levine, “Deep imitative
models for flexible inference, planning, and control,” arXiv
preprint arXiv:1810.06544, 2018.

[29] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and
R. Urtasun, “Learning lane graph representations for motion
forecasting,” arXiv preprint arXiv:2007.13732, 2020.

[30] J. Ngiam, B. Caine, V. Vasudevan, Z. Zhang, H. L. Chiang,
J. Ling, R. Roelofs, A. Bewley, C. Liu, A. Venugopal, D. Weiss,
B. Sapp, Z. Chen, and J. Shlens, “Scene transformer: A unified
multi-task model for behavior prediction and planning,” CoRR,
vol. abs/2106.08417, 2021.

[31] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen,
V.-D. Lam, A. Bewley, and A. Shah, “Learning to drive in a day,”
in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 8248–8254.

[32] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fu-
jimura, “Navigating occluded intersections with autonomous
vehicles using deep reinforcement learning,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 2034–2039.

[33] P. Wang, C.-Y. Chan, and A. de La Fortelle, “A reinforcement
learning based approach for automated lane change maneuvers,”
in 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018,
pp. 1379–1384.

[34] E. Vinitsky, N. Lichtlé, X. Yang, B. Amos, and J. Foerster,
“Nocturne: a scalable driving benchmark for bringing multi-
agent learning one step closer to the real world,” arXiv preprint
arXiv:2206.09889, 2022.

[35] P. Kothari, C. Perone, L. Bergamini, A. Alahi, and P. On-
druska, “Drivergym: Democratising reinforcement learning for
autonomous driving,” arXiv preprint arXiv:2111.06889, 2021.

[36] Q. Li, Z. Peng, L. Feng, Q. Zhang, Z. Xue, and B. Zhou,
“Metadrive: Composing diverse driving scenarios for general-
izable reinforcement learning,” IEEE transactions on pattern
analysis and machine intelligence, 2022.

[37] V. Lioutas, J. W. Lavington, J. Sefas, M. Niedoba, Y. Liu,
B. Zwartsenberg, S. Dabiri, F. Wood, and A. Scibior, “Critic
sequential monte carlo,” arXiv preprint arXiv:2205.15460, 2022.

[38] H. Caesar, J. Kabzan, K. S. Tan, W. K. Fong, E. Wolff, A. Lang,
L. Fletcher, O. Beijbom, and S. Omari, “nuplan: A closed-loop
ml-based planning benchmark for autonomous vehicles,” arXiv
preprint arXiv:2106.11810, 2021.

[39] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“Carla: An open urban driving simulator,” in Conference on robot
learning. PMLR, 2017, pp. 1–16.

[40] K. Ramamohanarao, H. Xie, L. Kulik, S. Karunasekera, E. Tanin,
R. Zhang, and E. B. Khunayn, “Smarts: Scalable microscopic
adaptive road traffic simulator,” ACM Transactions on Intelligent
Systems and Technology (TIST), vol. 8, no. 2, pp. 1–22, 2016.

[41] E. Leurent, “An environment for autonomous driving decision-
making,” https://github.com/eleurent/highway-env, 2018.

[42] W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann,
J. Kummerle, H. Konigshof, C. Stiller, A. de La Fortelle et al.,
“Interaction dataset: An international, adversarial and coopera-
tive motion dataset in interactive driving scenarios with semantic
maps,” arXiv preprint arXiv:1910.03088, 2019.

[43] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot,
N. Heess, T. Rothörl, T. Lampe, and M. Riedmiller, “Leverag-
ing demonstrations for deep reinforcement learning on robotics
problems with sparse rewards,” arXiv preprint arXiv:1707.08817,
2017.

[44] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning complex dexterous manip-
ulation with deep reinforcement learning and demonstrations,”
arXiv preprint arXiv:1709.10087, 2017.

[45] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” arXiv
preprint arXiv:1610.03295, 2016.

[46] D. Gandhi, L. Pinto, and A. Gupta, “Learning to fly by crashing,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2017, pp. 3948–3955.

[47] R. Rajamani, Vehicle dynamics and control. Springer Science
& Business Media, 2011.

[48] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” in International
conference on machine learning. PMLR, 2018, pp. 1587–1596.

[49] A. Jaegle, F. Gimeno, A. Brock, O. Vinyals, A. Zisserman,
and J. Carreira, “Perceiver: General perception with iterative
attention,” in International conference on machine learning.
PMLR, 2021, pp. 4651–4664.

[50] J. Frank, S. Mannor, and D. Precup, “Reinforcement learning
in the presence of rare events,” in Proceedings of the 25th
international conference on Machine learning, 2008, pp. 336–
343.

[51] N. Kalra and S. M. Paddock, Driving to Safety: How Many Miles
of Driving Would It Take to Demonstrate Autonomous Vehicle
Reliability? RAND Corporation, 2016.

[52] S. Paul, K. Chatzilygeroudis, K. Ciosek, J.-B. Mouret, M. Os-
borne, and S. Whiteson, “Alternating optimisation and quadrature
for robust control,” in AAAI Conference on Artificial Intelligence,
2018.

[53] S. Paul, M. A. Osborne, and S. Whiteson, “Fingerprint policy
optimisation for robust reinforcement learning,” in International
Conference on Machine Learning, 2019.

[54] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih,
T. Ward, Y. Doron, V. Firoiu, T. Harley, I. Dunning et al.,
“Impala: Scalable distributed deep-rl with importance weighted
actor-learner architectures,” in International conference on ma-
chine learning. PMLR, 2018, pp. 1407–1416.

[55] E. Bronstein, M. Palatucci, D. Notz, B. White, A. Kuefler, Y. Lu,
S. Paul, P. Nikdel, P. Mougin, H. Chen et al., “Hierarchical
model-based imitation learning for planning in autonomous
driving,” arXiv preprint arXiv:2210.09539, 2022.

https://github.com/eleurent/highway-env


APPENDIX

A. IL + RL Distributed Actor-Learner Training Architecture

Fig. 10: IL + RL distributed actor-learner training architecture. We extend the distributed IMPALA architecture
[54] with additional demo rollout workers and a demo replay buffer, which produce rollout transitions in the same
format as the actor workers. The learner worker samples from both the rollout replay buffer and the demo replay
buffer to perform training updates in an off-policy manner.

B. Additional Details on Model Architectures and Hyper-parameters Settings

We use a dual actor-critic architecture similar to TD3 and SAC [48], [19]: each of the main components,
actor network π(a|s), double Q-critic network Q(s, a) and target double Q-critic network Q̄(s, a), has a separate
Transformer observation encoder described in [55], and the encoder embedding is fed to a (256, 256) fully connected
head. The actor network outputs a tanh-squashed diagonal Gaussian distribution parameterized by a mean µ and
variance σ.

We train the BC-SAC algorithm with the following hyper-parameters: the actor learning rate is 1e-4, the critic
learning rate is 1e-4, the imitation learning rate is 5e-5, the batch size is 64, and the reward discount ratio is 0.92.
The sample-to-insert ratio for replay is 8, which is the average number of times the learner should sample each
item in the replay buffer during the item’s entire lifetime. In practice, instead of performing a combined gradient
step of both the IL and RL objectives, we alternate the training steps between IL and RL with different update
frequencies. For every 8 RL updates, we update with IL loss for one time. The hyper-parameters are found by
performing grid-search.

For SAC, we use the same network design and hyper-parameters as in BC-SAC, except that it does not perform
IL step.

For BC, we discretize the 2d action space (steer, acceleration) in to 31×7 = 217 actions with the same underlying
dynamics model. We use a similar network design for BC as in BC-SAC’s actor network with a Softmax prediction
head representing probabilities of the discrete actions. We use the cross-entropy loss with a learning rate of 1e-4
and batch size of 256 for training.

For MGAIL, we follow the network design and hyper-parameters setting presented in [55].


	INTRODUCTION
	RELATED WORK
	BACKGROUND
	Markov Decision Processes (MDPs)
	Imitation Learning (IL)
	Reinforcement Learning (RL)

	Learning to Drive with RL-Augmented BC
	Behavior Cloned Soft Actor-Critic (BC-SAC)
	Reward Function
	Forward and Inverse Vehicle Dynamics Models
	Model Architecture
	Training on Difficult Examples

	EXPERIMENTS
	Experimental Setup
	Results

	CONCLUSIONS
	References
	Appendix
	IL + RL Distributed Actor-Learner Training Architecture
	Additional Details on Model Architectures and Hyper-parameters Settings


